Analysis of Quicksort

Best-case

In the best case, the partition occurs right down the middle. Let

e W(n) = the work done by Quicksort on an array of size n.

e P(n) = the work done in (only) partitioning an array of size n.

Thus, the time taken will be proportional to W (n).

Observe that P(n) = cn because partitioning requires only a single scan and

does only a constant amount of work in each scan step.

In the best case:
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What is k7 It is the number of times n can be divided until you reach unit

size: logn.

Hence, W (n) = O(nlogn).



Worst-case

In the worst-case, each partition only peels off one element: the partition for

n is into sizes (n — 2) and 1.

Here,
W(n) = P(n)+W(n-—1)
= P(n)+Pn—1)+W(n-—2)
= P(n)+P(N—-1)+...+ P(1)



Unusual-case

Now, suppose each partition divides the array into two unequal sizes: 80%

and 20%.
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Again, what is k7 It is the number of times n can be divided by successive

80-20 cuts to reach unit size: logygsn = O(log, n).

Again, W(n) = O(nlogn)!



Average-case

It is possible to show: O(nlogn) running time even with random partition

sizes, but the proof is more complicated.



