Analysis of Quicksort

Best-case

In the best case, the partition occurs right down the middle. Let

e W(n) = the work done by Quicksort on an array of size n.

e P(n) = the work done in (only) partitioning an array of size n.

Thus, the time taken will be proportional to W (n).

Observe that P(n) = cn because partitioning requires only a single scan and

does only a constant amount of work in each scan step.

In the best case:

W(n) = P(n) + W(E)+WI()
= P(n) + W(3)
- W)
= P(n) + P(Z)+W()+W()
b P W)+ ()
— P(n) + 2P(2)+4W()
= P(n) + 2P(2)+4P(3) +8W(2)
= P(n) + 2P(%)+4P(%)+...+kP(1)+W(0)
< cn + 25 +4ch+ ...+ ke+W(0)
< ken

I
[

™
S



What is k7 It is the number of times n can be divided until you reach unit

size: logn.

Hence, W (n) = O(nlogn).



Worst-case

In the worst-case, each partition only peels off one element: the partition for

n is into sizes (n — 2) and 1.

Here,
W(n) = P(n)+W(n-—1)
= P(n)+Pn—1)+W(n-—2)
= P(n)+P(N—-1)+...+ P(1)



Unusual-case

Now, suppose each partition divides the array into two unequal sizes: 80%

and 20%.
W(n) = P(n)

2n

=
=
=

+ (%L 10
= P(n) + W()

+ W%
= P(n) + P(35)+W(5Th) + WG
- + PG+ W)+ W ()
= o+ W W)
= + B W)+ W (R
= cn + o+ WSS + W (25
= AWERD D)
= P(n) + 2P(3)+4P(}) +8W (%)
= P(n) + 2P(3)+4P(%)+...+kP(1)+W(0)
< ¢cn + en+cen+... ktimes ... +c¢n
< ken
= O(kn)

Again, what is k7 It is the number of times n can be divided by successive

80-20 cuts to reach unit size: logygsn = O(log, n).

Again, W(n) = O(nlogn)!



Average-case

It is possible to show: O(nlogn) running time even with random partition

sizes, but the proof is more complicated.



