Analysis of Quicksort

Best-case

In the best case, the partition occurs right down the middle. Let

- W(n) = the work done by Quicksort on an array of size n.
- P(n) = the work done in (only) partitioning an array of size n.

Thus, the time taken will be proportional to W(n).

Observe that P(n) = cn because partitioning requires only a single scan and does only a constant amount of work in each scan step.

In the best case:

$$W(n) = P(n) + W(\frac{n}{2}) + W(\frac{n}{2})$$

$$= P(n) + W(\frac{n}{2})$$

$$+ W(\frac{n}{2})$$

$$= P(n) + P(\frac{n}{2}) + W(\frac{n}{4}) + W(\frac{n}{4})$$

$$+ P(\frac{n}{2}) + W(\frac{n}{4}) + W(\frac{n}{4})$$

$$= P(n) + 2P(\frac{n}{2}) + 4W(\frac{n}{4})$$

$$= P(n) + 2P(\frac{n}{2}) + 4P(\frac{n}{4}) + 8W(\frac{n}{8})$$

$$= P(n) + 2P(\frac{n}{2}) + 4P(\frac{n}{4}) + \dots + kP(1) + W(0)$$

$$< cn + 2c\frac{n}{2} + 4c\frac{n}{4} + \dots + kc + W(0)$$

$$< kcn$$

$$= O(kn)$$

What is k? It is the number of times n can be divided until you reach unit size: $\log n$.

Hence, $W(n) = O(n \log n)$.

Worst-case

In the worst-case, each partition only peels off one element: the partition for n is into sizes (n-2) and 1.

Here,

$$W(n) = P(n) + W(n - 1)$$

$$= P(n) + P(n - 1) + W(n - 2)$$

$$= P(n) + P(N - 1) + \dots + P(1)$$

$$= cn + c(n - 1) + \dots + c$$

$$= c(n + (n - 1) + \dots + 1)$$

$$> c' \frac{n(n + 1)}{2}$$

$$= O(n^{2})$$

Unusual-case

Now, suppose each partition divides the array into two unequal sizes: 80% and 20%.

Again, what is k? It is the number of times n can be divided by successive 80-20 cuts to reach unit size: $\log_{10/8} n = O(\log_e n)$.

Again,
$$W(n) = O(n \log n)!$$

Average-case

It is possible to show: $O(n \log n)$ running time even with random partition sizes, but the proof is more complicated.