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Abstract

Many organizations today are faced with the challenge of processing and distilling informa-
tion from huge and growing collections of data. We see examples of retailers trying to better serve
their customers, telecommunications providers trying to more effectively manage their growing
networks, cities trying to provide smarter infrastructure and services for their rapidly growing
populations, and many more similar instances across multiple industries. These organizations
are facing a deluge of information and are increasingly deploying sophisticated mathematical
algorithms to model the behavior of their business processes to discover correlations in the data,
to predict trends and ultimately drive decisions to optimize their operations. These techniques,
are known collectively as ”analytics”, and draw upon multiple disciplines, including statistics,
quantitative analysis, data mining, and machine learning.

In this survey paper and the accompanying research report, we identify some of the key
techniques employed in analytics both to serve as an introduction for the non-specialist and to
explore the opportunity for greater optimization for parallel computer architectures and systems
software. We are interested in isolating and documenting repeated patterns in analytical algo-
rithms, data structures and data types, and in understanding how these could be most effectively
mapped onto parallel systems. Scalable and efficient parallelism is critically important to en-
able organizations to apply these techniques to ever larger data sets for reducing the time taken
to perform these analyses. To this end, we focus on analytical models (e.g. neural networks,
logistic regression or support vector machines) that can be executed using different algorithms.
For most major model types, we study implementations of key algorithms to determine com-
mon computational and runtime patterns. We then use this information to characterize and
recommend suitable parallelization strategies.
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1 Introduction

From streaming news updates on smart-phones, to instant messages on micro-blogging sites, to
posts on social network sites, we are all being overwhelmed by massive amounts of data [242, 225].
Access to such a large amount of diverse data can be a boon if any useful information can be
extracted and applied rapidly and accurately to a problem at hand. For instance, we could contact
all of our nearby friends for a dinner at a local mutually agreeable and well-reviewed restaurant that
has advertised discounts and table availability for that night but finding and organizing all that
information is very challenging. This process of identifying, extracting, processing, and integrating
information from raw data, and then applying it to solve a problem is broadly referred to as
analytics and has become an integral part of everyday life.
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While analytics may help us all to better organize our personal lives, this process is becoming
a critical capability and competitive differentiator for modern businesses, governments and other
organizations. In the current environment, organizations need to make on-time, informed decisions
to succeed. Given the globalized economy, many businesses have supply chains and customers that
span multiple continents. In the public sector, citizens are demanding more access to services and
information than ever before. Huge improvements in communication infrastructure have resulted in
wide-spread use of online commerce and most recently a boom in smart, connected mobile devices.
More and more organizations are run around the clock, across multiple geographies and time zones
and those organizations are being instrumented to an unprecedented degree. This has resulted in
a deluge of data that needs to be carefully studied to harvest relevant information and must be
processed rapidly in order to make timely decisions. This has led many organizations to employ a
wide variety of analytics techniques to help them decide what kind of data they should collect, how
this data should be analyzed to glean key information, and how this information should be used
for achieving their organizational goals. These analytics techniques often rely on mathematical
formulations for modeling, processing, and applying the raw data and as well as the extracted
information [241].

Application Principal Goals
Google search, Bing Web Indexing and Search
Netflix and Pandora [18, 128] Video and Music Recommendation
IBM DeepQA (Watson) [72] Intelligent Question-Answer System
IBM Telecom Churn Analysis [210] Analysis of Call-data Records (CDRs)
Cognos Consumer Insight (CCI) [230] Sentiment/Trend Analysis of BLOGS
UPS [11] Logistics, Transportation Routing Optimizations
Amazon Web Analytics [134] Online Retail Management
Moodys, Fitch, S &P Analytics Financial Credit Rating
Yelp, FourSquare Integrated Geographical Analytics
Oracle, SAS Retail Analytics End-to-end Retail management
Hyperic [107] and Splunk [234] System Management Analytics
Salesforce.com [222] CRM Analytics
CoreMetrics, Mint, Youtube Analytics Web-server workload Analytics
Flickr, Twitter, Facebook and Linkedin Analytics Social Network Analysis
IBM Healthcare Analytics [114] Streaming analytics for Intensive Care
IBM Voice of Customer Analytics [24] Analyzing Customer Voice Records

Table 1: Examples of well-known analytics applications

Tables 1 and 2 present a sample of key analytics applications and their characteristics. As this
list illustrates, many applications that we take for granted and use extensively in everyday life would
not be possible without the help from analytics. For example, social networking applications such as
Facebook [69], Twitter [247], and LinkedIn [195] encode social relationships as graphs and use graph
algorithms to identify hidden patterns (e.g. finding common friends). Graph analytics has also been
employed to identify customer churn in the mobile telecom industry by analyzing customer calling
patterns [210]. Other popular social networking applications like Yelp [262] or FourSquare [76]
combine location and social relationship information to answer complex spatial queries (e.g. find
the nearest restaurant of a particular cuisine that all of your friends like). Online media providers
such as Netflix [18] or Pandora [128] not only provide recommendations based on the user’s historical
behaviour and th behaviour of similar users, but they also classify the media content (e.g. songs
or movies) using attributes with known predictive qualities. Analysis of unstructured content such
as text documents with natural language has wide applicability in practice. For example, consider
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IBM’s DeepQA intelligent question-answer (Q/A) system that recently beat human participants in
the Jeopardy challenge [232]. The DeepQA system builds a knowledge base from a large corpus of
mostly unstructured data sources and uses it to answer queries specified in a natural language (e.g.
English) [72]. The DeepQA system uses a variety of analytics techniques including text analytics,
natural language processing, and machine learning to rank the results and also to decide upon the
confidence of the answer (or the amount to wager in a Jeopardy context). While the IBM DeepQA
system was originally demonstrated as an engine to win a challenging game against humans, it’s
intelligent Q/A capabilities are being used to solve hard problems in other knowledge-intensive
domains such as clinical diagnostics [73]. The DeepQA system can be viewed as a generalization of
traditional web search engines (e.g. Google [82] or Bing [171]) that use text analytics to crawl the
internet to create an index of web documents such as pages, photos and movies and then rank the
documents according to their expected relevance (e.g. using linkage characteristics [196]). Other
interesting applications of the text analytics approach include the IBM Cognos Consumer Insight
solution [230] that predicts sentiments from BLOGs and the IBM Voice of the Customer Analytics
solution that extracts meaning from customer conversations [24]. As a final example, automated
secure analytics of medical text records has been identified as the key step towards reducing health-
care expenses [159]. In practice, business analytics solutions have been used by a wide array of
different industries [56, 57, 228, 7]. Appendix A presents a more exhaustive list of business analytics
solutions and associated industrial sectors.

Application Key Functional Characteristics
Google, Bing search Web crawling, Link Analysis of the web graph, Result ranking,

Indexing Multi-media data
Netflix and Pandora Analyzing structured and unstructured data, Recommendation
IBM DeepQA (Watson) Natural language processing, Processing large unstructured data,

artificial intelligence (AI) techniques for result ranking and wagering
IBM Telecom Churn Analysis Graph modeling of call records, Large graph dataset,

Connected component identification
Cognos Consumer Insight (CCI) Processing large corpus of text documents, Extraction

& Transformation, Text indexing, entity extraction
UPS Linear Programming solutions for large transportation networks
Amazon Web Analytics Analysis of e-commerce transactions, Massive data sets,
Salesforce.com Real-time response, Reporting, Text search, Multi-tenant support

personalization, automated price determination, recommendation
Moody’s, Fitch, S &P Statistical analysis of large historical data
Google Maps, Yelp, FourSquare Spatial queries, Streaming and persistent data, Spatial ranking
Oracle, SAS, Analysis over large persistent and transactional data, Extraction &
Amazon Retail Analytics Transformation, Reporting, Integration with Logistics, HR, CRM
Hyperic and Splunk Text analysis of large corpus of system logs
CoreMetrics, Mint, Website traffic/workload characterization, Massive historical data,
Youtube Analytics Video annotation and search, Online advertisement/marketing
Flickr, Twitter, Graph modeling of relations, Massive graph datasets, Graph analytics
Facebook and Linkedin Analytics Multi-media annotations and indexing
IBM Healthcare Analytics Streaming data processing, Time-series analysis
IBM Voice of Customer Analytics Natural language processing, Text entity extraction

Table 2: Key characteristics of the analytics applications

As Table 2 illustrates, analytics applications exhibit a wide range of functional characteristics.
While many of the applications process large quantities of data, the type of I/O varies considerably.
Some applications like the search engines or the DeepQA take unstructured text documents as input,
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while others like the Oracle retail analysis [194] use structured data stored in relational databases.
Applications like Google Maps [82], Yelp, or Netflix use both structured and unstructured data.
Certain applications such as the search engines process read-only historical data whereas other
application such as retail analytics process both historical and transactional data. Still other
applications, such as some in the health-care domain, work exclusively on streaming data. In
addition, the data structures used by the analytical applications vary considerably, according to
the scale of data and expected access patterns. These data structures include graphs, relational
tables, lists, numerical matrices, hash-based structures, and binary objects. Finally, analytics
applications use different classes of algorithms; they vary from statistical quantitative techniques,
numerical linear algebraic methods to relational operators and string algorithms.

The main focus of our work is to understand how to effectively optimize analytics applications
on today’s computing systems. This is important both because of the demanding requirements of
analytics and because systems architecture is currently undergoing a set of disruptive changes. Over
the years, main memory sizes have increased significantly - machines with 1 TB main memory are
not uncommon. The advent of technologies like the phase-change memories (PCMs) could further
increase main memory capacities. Thus the applications that were considered out-of-core just a
few years ago, can now be executed completely in-memory. Wider usage of streaming applications
has further increased the importance of in-memory processing. At the same time, prices of hard
disk drives (HDDs) are falling precipitously; one can get 1 TB HDD for less than $100. Thus,
one can easily build a multi-TB storage system using commodity HDDs. The prices of solid-state
drives (SSDs) are also falling steadily. The SSDs are being increasing used in three-tier systems
either as caches for hot read-only data from HDDs or as faster swap or memory-mapped space for
main memories. Availability of cheaper and larger storage systems has made applications with very
large I/O requirements practical, even into the petabyte range. Thus on the storage side, a clear
trend is emerging in which main memory processing would become increasingly prevalent, mainly for
streaming and large (terabyte size) datasets, and disk-based out-of-core computations would be used
for petabyte and eventually exabyte scale processing. On the processing side, multi-core processors
have become the norm driving up system parallelism on a curve similar to past increases in single
core performance. While the commodity desktop processors have been continuously improving
their performance and functionality, specialized accelerators such as GPUs and FPGAs are also
becoming increasingly popular in compute-intensive domains. Hybrid systems that use both the
CPUs and GPUs are becoming common-place, both in desktop and mobile domains. Even with
these large improvements in single system performance, applications processing huge data sets are
also exploiting distributed processing to satisfy their appetite for large computing and storage
resources. Given the diverse characteristics exhibited by the analytics applications, it is difficult
to fine-tune system parameters, both in hardware and software, that can match requirements of
different applications. This problem is further exacerbated as most analytics applications consist
of more than one components, each with its unique set of features.

Given the diverse and demanding requirements of analytics and the new technology available
in systems, it is imperative to perform an in-depth study of various analytics applications. Any
insights would help us identify: (1) optimization opportunities for analytics applications on existing
systems, and (2) features for future systems that match the requirements of analytics applications.
Towards achieving these goals, as the first step, we plan to examine the functional flow of analytics
applications from the usage to the implementation stages. Figure 1 presents a simplified functional
flow of the analytics applications.

As Figure 1 illustrates, execution of an analytics application can be partitioned into three main
components: (1) solution, (2) library, and (3) implementation. The solution component is end-
user focused and uses the library and implementation components to satisfy user’s functional goal,
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Figure 1: Simplified Functional Flow of Business Analytics Applications

which can be one of the following: prediction, prescription, reporting, recommendation, quantita-
tive analysis, pattern matching, or alerting [56, 57]. These functional goals need to be achieved
while processing very large datasets or data streams, supporting batch or ad-hoc queries, and/or
supporting a large number of concurrent users. Analytic applications leverage well-known ana-
lytical disciplines such as machine learning, data mining, statistics, mathematical programming,
modeling and simulation. Specifically, a given analytic solution uses appropriate problem types
from these disciplines, e.g., supervised/unsupervised learning or statistics, and builds process that
invokes tasks that use such problem types, e.g., classification followed by regression and scoring.
Table 3 presents a list of problem types that are used to achieve functions goals of key business
focus areas.

The library component is usually designed to be portable and broadly applicable. A library
usually provides implementations of specific models of the common problem types shown in Table 3.
For example, an unsupervised learning problem can be solved using one of associative mining,
classification, or clustering [91]. Each model can in turn use one or algorithms. For instance, the
associative mining model can be implemented using the associative rule mining algorithms or using
decision trees. Similarly, classification can be implemented using nearest-neighbor, neural network,
or naive Bayes algorithms. Table 4 presents a list of problem types, along with associated models
and algorithms. It should be noted that in practice, the separation between models and algorithms
is not strict and many times, an algorithm can be used for supporting more than one models. For
instance, neural networks can be used for clustering or classification. Finally, depending on how
the problem is formulated, each algorithm uses data structures and kernels. For example, many
algorithms formulate the problem using dense or sparse matrices and invoke kernels like matrix-
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matrix, matrix-vector multiplication, matrix factorization, and linear system solvers. These kernels
are sometimes intensively optimized for the underlying system architecture, in libraries such as IBM
ESSL [108] or Intel MKL [123]. Any kernel implementation can be characterized according to: (1)
how it is implemented on a system consisting of one or more processors, and (2) how it optimized
for the underlying processor architecture. The system-level implementation varies depending on
whether a kernel is sequential or parallel, and if it uses in-memory or out-of-core data. Many
parallel kernels can use shared or distributed memory parallelism. In particular, if the algorithm is
embarrassingly parallel, requires large data, and the kernel is executing on a distributed system, it
can often use the map-reduce approach [59]. At the lowest level, the kernel implementation can often
exploit hardware-specific features such as short-vector data parallelism (SIMD) or task parallelism
on multi-core CPUs, massive data parallelism on GPUs, and application-specific parallelism on
FPGAs or ASICs.

Focus Areas Functional Goals Problem Type
Revenue Prediction Prediction Unsupervised Learning
BioSimulation Simulation Modeling and Simulation
Product Portfolio Optimizations Prescription Mathematical Programming
Product Configuration management Prescription Mathematical Programming
Financial Performance Prediction Prediction Inferential Statistics
Disease Spread Prediction Prediction Supervised Learning
Topic/Semantic Analysis Pattern Matching Unstructured Data Analysis
Semiconductor Yield Analysis Prediction Inferential Statistics
Cross-Sell Analysis Recommendation Unsupervised Learning
Customer Retention Recommendation Unsupervised Learning
Fraud Detection Alerting Supervised Learning
Risk Analysis Quantitative Analysis Descriptive/Inferential Statistics

Table 3: Examples of analytical focus areas, functional goals, and corresponding analytical problem
types

Problem Type Model Algorithms
Unsupervised Learning Association Mining Association Rule Mining, Decision Trees
Unsupervised Learning Classification Nearest-neighbor, Neural Network, Naive Bayes
Unsupervised Learning Clustering K-Means, Hierarchical Clustering
Supervised Learning Neural Networks RBF and MLP Neural Networks
Supervised Learning Support Vector Machines String and RBF Kernel Functions
Supervised Learning Decision Tree Learning ID3/C4.5, C&RT, CHAID, QUEST
Mathematical Programming Linear Programming Branch&Bound integer linear programming
Mathematical Programming Constraint Solvers A* Algorithms
Inferential Statistics Regression Analysis Logistic, Linear, Probit Regression
Descriptive Statistics Univariate Analysis Histogram, Standard Deviation
Modeling and Simulation Monte Carlo Methods Markov-Chain, Quasi-Monte Carlo Methods
Unstructured Data Analysis Text Analytics Naive Bayes, Non-linear Matrix Factorization

Table 4: Analytical problem types, corresponding analytical models and algorithms

Given the wide variety of algorithmic and system alternatives for executing analytics applica-
tions, it is difficult for solution developers to make the right choices to address specific problems.
Our solution is to use the analytical techniques for examining analytical applications themselves.
Specifically, we are interested in isolating repeated patterns in analytical applications, algorithms,
data structures, and data types. We plan to use this information for determining optimal mapping
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of these applications onto modern system structures. Towards this goal, we have studied the func-
tional flow of a set of analytical applications that span multiple business domains, e.g., telecom,
financial, government, healthcare, manufacturing, sales & marketing, etc., and have identified a set
of widely-used analytical models and algorithms. Table 5 presents 13 methods and algorithms that
capture the most important computation and data access patterns of the analytics applications we
have studied.

Model & Algorithm Exemplar Key Application Domains
Regression Analysis Social Sciences, Marketing, Economics, Computational Finance
Clustering Marketing, Bio-Informatics, Medical Imaging, Document Management
Nearest-Neighbor Search Computational Biology, Image Processing, Recommendation Systems
Associative Rule Mining Retail Analysis, Bio-Informatics, Intrusion Detection, Web Analysis
Neural Networks Computational Finance, Intrusion Detection, Games, Weather Forecasting
Support Vector Machines Bio-Informatics, Document Classification, Financial Modeling
Decision Tree Learning Medical Diagnostics, Fraud Detection, Marketing, Manufacturing
Time Series Processing Geology, Economics, Process Engineering, Medical Informatics
Text Analytics Medical Informatics, Web Search/Navigation, Bio-Informatics
Monte Carlo Methods Numerical Analysis, VLSI Sensitivity Analysis, Insurance Risk Modeling
Mathematical Programming Routing, Scheduling, Manufacturing, Product Portfolio optimizations
On-line Analytical Processing Sales/Marketing, Retail, Computational Finance
Graph Analytics Social Analysis, Computational Neuroscience, Routing/Flow Logistics

Table 5: Business analytics exemplar models and algorithms along with key application domains

Our study consists of two phases: in the first phase, we perform an in-depth study of the analyt-
ics models and algorithms presented in Table 5. In the second phase, we use the observations from
this study to suggest suitable parallelization and optimization strategies for analytical applications
in modern systems. This report presents results of the first phase of our study.

1.1 Further Reading

Using analytics in business problems [56, 57, 157, 228, 7, 187, 10, 67, 258, 201, 209, 186, 217, 34, 95,
159, 225, 241]; Analytics solutions: Netflix [18], Pandora [128, 80], DeepQA(Watson) [72], Telecom
Churn Prediction [210, 54], Cognos Consumer Insight(CCI) [230, 115], UPS [11], Hyperic [107],
and Splunk [234]; Analytics products: R [243], Weka [89], STATISTICA [244], RapidMiner [208],
Oracle [192], SAP [215], SAS [218], and IBM [109, 112, 113]; Academic references [91, 17, 206, 237,
260].

2 Business Analytics Exemplar Models and Algorithms

In this section, we discuss the Business Analytics (BA) Exemplar Models and Algorithms introduced
in Table 5. For each BA exemplar, we first describe the basic idea and then present detailed
explaination of key associated algorithms.

2.1 Regression Analysis

Regression analysis is a classical statistical technique used to model the relationship between a
dependent variable and one or more independent variables. Specifically, regression can predict how
the value of the dependent variable can change when any one of the independent variables is var-
ied while the remaining independent variables are fixed. Regression analysis is primarily used for
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prediction and forecasting purposes and also to discover relationships between dependent and inde-
pendent variables, e.g., to estimate conditional expectation of the dependent variable given multiple
independent variables. Thus, regression can be viewed as an example of supervised learning which
uses independent variables for training. Regression analysis has been used in many application
domains, including economics, psychology, social sciences, marketing, health-care, and computa-
tional finance, e.g., for predicting house prices based on information such as crime rate, population,
number of rooms, property tax; for predicting airfares on new routes using the location and airport
information (such as population, average income, passenger estimates, number of airport gates,
etc.) [228].

2.1.1 Basic Idea

Formally, any regression model relates a dependent variable Y to a regression function f of inde-
pendent variables (regressors) X and unknown parameters, β: Y ≈ f(X,β). The quality of the
predication depends on the amount of information available about the dependent variable X. If k
is the length of the vector of unknown parameters β, then the regression analysis is possible only
if N ≥ k, where N is the number of observed data points of the form (Y,X). If N = k, and the
regression function f is linear, then the equations Y = f(X,β) can be solved exactly. However, if
the regression function is non-linear, then either many solutions exist or a solution may not exist.
When N > k (also called an over-determined system), a best-fit strategy is usually used to predict
the values of X. We now describe some of the key regression algorithms:

2.1.2 Linear Regression

Linear regression models the relationship between a scalar dependent variable Y and one or more
regressor variables X using linear regression functions. A dependent variable yi can be approxi-
mated as a linear combination of regressors xi: the approximation is modeled using a disturbance
term ǫi, an unobserved random variable that adds noise to the linear relationship. For example,
the following represents a simple linear regression model for n data points with one independent
variable xi, and two parameters, β0 and β1:

yi = β0 + β1xi + ǫi, i = 1, . . . , n (1)

The linear regression model can be formulated as:

yi = β1xi1 + · · ·+ βpxip + ǫi = ~xTi β + ǫi i = 1, . . . , n (2)

where T denotes the transpose, so that xTi β is the inner product between vectors xi and β.
Often, these n equations are stacked together and processed in vector form as

y = Xβ + ǫ (3)

where y and ǫ are n-element vectors, X is a (n, p) design matrix and β is a p-element parameter
vector. The relationship between ǫ and regressors is an important factor in deciding which method
to use to solve the equation. Any solution for the linear regression model aims to estimate and infer
the values of parameters βi (also called as regression coefficients). Some of the estimation methods
for linear regression include:

• Ordinary Least Squares (OLS) minimizes the sum of squared residuals to estimate the values
of the unknown parameters β. Let b be the candidate value for the parameter β. Then for the
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ith data point, the residual is given by yi − xTi b. The sum of squared residuals is a measure
of the estimation quality:

S(b) =

n
∑

i=1

(yi − xTi b)
2 = (y −Xb)T (y −Xb) (4)

The value of b that minimizes this sum is called the OLS estimator for β and its solution can
be found by an explicit formula:

β̂ = (
1

n

n
∑

i=1

xix
T
i )

−1.
1

n

n
∑

i=1

xiyi = (XTX)−1XT y (5)

After estimating the values of β, the predicated values from the regression will be

ŷ = Xβ̂ (6)

• Generalized Least Squares (GLS) estimation is used when the variances in observations are
unequal or when there is a certain degree of correlation between the observations. This
model assumes that the conditional mean of Y given X is a linear function of X, whereas the
conditional variance of Y given X is a known matrix Ω, i.e.,

E[ǫ|X]0, V ar[ǫ|X] = Ω (7)

The Generalized least squares method estimates β by minimizing the squared Mahanobis
length of the residual vector:

S(b) = (y −Xb)TΩ−1(y −Xb) (8)

Like the OLS estimator, this objective has a quadratic form and can be solved using an
explicit formula:

β̂ = (XTΩ−1X)−1XTΩ−1y (9)

2.1.3 Non-linear Regression

The non-linear regression model is characterized by the fact that the dependent variables Y are re-
lated to the regressor variables X via a non-linear relationship on one or more unknown parameters,
β. A non-linear regression model has the following form:

yi = f(xi, β) + ǫi, i = 1, . . . , n (10)

where the function f(xi, β) is nonlinear as it cannot be expressed as a linear combination of
the parameters, β and ǫi are random errors. One of the most common nonlinear function is the
exponential decay or growth model [231]: f(x, β) = β1exp(−β2x). Other nonlinear functions
include logarithmic, trigonometric, power, and Gaussian functions.

Unlike linear regression, there is no closed-form expression for finding best-fitting parameters.
The regression parameters β can be estimated by minimizing a suitable goodness-of-fit expression
with respect to β. One popular approach is to minimize the sum of squared residuals
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n
∑

i=1

[yi − f(xi, β)]
2 (11)

using the nonlinear least squares method that uses the Gauss-Newton numerical method. In
some cases, maximum likelihood or weighted least squares estimation is used.

Alternatively, in some cases, the nonlinear function can be transformed to a linear model. The
transformed model can then be estimated using linear regression approaches. For example, an
exponential regression function, Y = aeβX , can be transformed using a logarithm on both sides as
ln(Y ) = ln(a) + βX. The parameters β can then be estimated using a linear regression of ln(Y )
on X.

2.1.4 Logistic Regression

The logistic regression is used for prediction of the probability of occurrences of an event (e.g., death
by heart attack) by fitting data to a logistic function, f(z) = 1

1+e−z . The variable z is a measure
of the total contributions of all the independent variables while f(z) represents probability of a
particular outcome, given the set of independent variables. The variable z is usually defined as

z = β0 + β1x1 + · · · + βkxk (12)

and for any value of z, the output f(z) varies between 0 and 1.
Logistic regression analyzes binomially distributed data of the form Yi ∼ B(ni, pi), for i =

1, . . . , n, where the number of Bernoulli trials ni are known, and the probabilities of success pi are
unknown. This model proposes for each observation i, there is a set of k explanatory variables that
can be viewed as being in a k-dimensional vector Xi. The model can then be represented using

pi = E(Yi

ni
|Xi) (13)

The logistic function of pI can be computed as its inverse-logit function defined as

logit−1(pi) =
1

1+exp(−pi)
= exp(pi)

1+exp(pi)
(14)

where pi can modeled as a linear function of the Xi.

β0 + β1x1,i + · · ·+ βkxk,i (15)

The parameters βi can then be estimated by maximum likelihood approach via the iteratively
re-weighted least squares method that can use the Gauss-Newton numerical algorithm.

2.1.5 Probit Regression

Probit regression is used for predicting binary outcomes of an event. Let the regression variable Y
be a binary variable (i.e., it can have only two possible outcomes) and X be the set of regressor
variables that have influence on the outcome of Y. Then the probit model can be specified as:

Pr(Y = 1|X) = Φ(XTβ) (16)

where Pr denotes probability, and Φ denotes the Cumulative Distribution Function (CDF) of
the normal distribution. The regression coefficients β can then be estimated using the Fisher’s
maximum likelihood method on the joint log-likelihood metric of the input data set {yi, xi}

n
i=1.
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2.1.6 Further Reading

Algorithms [91, 260]; Packages: R [243], Weka [89], IBM SPSS [119], RapidMiner [208], STATIS-
TICA [244], Oracle Data Miner [193], and SAS [218]; Applications [228, 237, 231].

2.2 Clustering

Clustering is a process of grouping together entities from an ensemble into classes of entities that
are similar in some sense. Clustering is also called data segmentation [91, 228] as it partitions large
datasets into segments of similar and dissimilar datasets. Clustering is an example of unsupervised
machine learning and is being used in a wide variety of applications e.g., in market segmentation
for partitioning the customers according to gender, interests, etc., in gene sequence analysis to
identify gene families, in medical imaging for differentiating key features in PET scan images, and
in clustering documents based on semantic information [258].

2.2.1 Basic Idea

Any clustering algorithm needs to effectively identify and exploit relevant similarities in underlying
potentially disparate data sources. The similarity can be expressed using either geometric distance-
based metric (e.g., using either Euclidean or Minkowski metric) or conceptual relationships in the
data. The input data can be noisy, of different types (interval-based, binary, categorical, ordinal,
vector, and mixed etc.), have high dimensions, and have large size (e.g., millions of objects). Thus
the key challenges before any clustering algorithm are the effective use of the similarity metric,
exploitation of intrinsic characteristics of the data, support for large number of dimensions, large
data sets, and different cluster shapes.

Current approaches to solving the clustering problem can be broadly classified into parametric
and non-parametric approaches. The parametric or model-based methods assume that the input
data is associated with a certain probability distribution and the clustering to designed to fit the
data to some mathematical model [91]. The non-parametric methods exploit spatial properties
(e.g., distance or density) of the input data. Clustering algorithms also differ depending on the
dimensionality of the datasets [140]. We now discuss some of the key clustering algorithms.

2.2.2 K-Means Clustering

The k-means clustering algorithm [156, 97] is an example of a partitioning method that constructs
k partitions from a database of n objects, where each partition represents a cluster and k ≤ n. Each
cluster contains at least one object and an object lies in only one cluster. A partitioning algorithm
creates an initial assignment of objects to partitions and then iterative relocation technique are
used [91] to move objects among the groups. The objects in a group are considered to be closer to
each than objects in different clusters. In the k-means algorithm, the cluster similarity is measured
as the mean value of objects, which can be viewed as the cluster’s centroid or center of gravity.

The k-means algorithms works as follows: Given the number of partitions k, it first randomly
selects k objects, each of which initially represents a cluster mean. For the remaining objects,
every object is then assigned to one of the k clusters, to which it is the most similar, based on
the distance of the object and the cluster mean. Once, the object is assigned to a cluster, a new
mean is computed. Using the new cluster mean value, the objects are re-distributed to the clusters
based on which new cluster center is the nearest.The iterative relocation process continues until a
convergence criterion is met. The k-means algorithm uses the following square-error criterion for
convergence:
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E =

k
∑

i=1

∑

p∈Ci

|p−mi|
2 (17)

where E is the sum of the square error for all objects in the data set, p is the point representing
a object and mi is the mean of a cluster Ci. This criterion tries to make the k clusters to be as
compact and separate as possible. The algorithm runs in O(nkt) time, where n is the number of
objects, k is the number of clusters, and t is the number of iterations, k ≪ n and p≪ n.

The k-means algorithms works only on data whose mean can be computed (e.g., it is not possible
to compute a mean value for categorical datasets). The algorithm also requires the number of
clusters k to be defined a priori. The algorithm can not discover clusters with different shapes
and is sensitive to noise and outliners as they can significantly affect calculations of the mean
value. One variation of the k-means problem, the k-modes method uses modes as a measure of
similarity for categorical objects and a frequency-based update method [38]. Another variation,
the k-medoid, reduces the effect of noise and outliners using the following absolute-error criterion
for convergence [91].

E =
k

∑

i=1

∑

p∈Ci

|p− oi| (18)

where E is the absolute error for all objects in the data set, p is the point representing a object
and oi is the representative object (a medoid) of a cluster Ci. Initially, the medoids are chosen
randomally and they are iteratively refined as the algorithm progresses.

2.2.3 Hierarchical Clustering

Hierarchical clustering methods group data objects into a tree of clusters. Hierarchical clustering
often produces data clusters that can be viewed graphically using a dendrogram. Hierarchical
methods can be classified into: (1) agglomerative, i.e., those use a bottom-up strategy to construct
increasing large clusters until certain termination conditions are met, and (2) divisive, i.e., those
that start from a single cluster and subdivide it into smaller pieces until termination conditions are
met.

The most popular hierarchical clustering algorithm, BIRCH [265], uses the agglomerative strat-
egy. BIRCH uses a two-step strategy to improve I/O scalability and clustering flexibility. In the
first micro-clustering stage, it uses the hierarchical clustering strategy to build an initial set of in-
memory clusters, that summarize the information in the original data. The second macro-clustering
phase processes these summarized in-memory clusters (i.e., it does not fetch the raw data again)
using any clustering method, e.g., iterative partitioning, and computes the final clustering.

The BIRCH algorithm uses two concepts of clustering features and clustering tree to summarize
the input data. A clustering feature is a three-dimensional vector summarizing statistics for the
given cluster: the zeroth, first, and second moments of the cluster. For a cluster ci with n d-
dimensional points, the cluster feature CFi is defined as CFi =< n,LS, SS >, where n is the
number of points in the cluster ci, LS is the linear sum of the n points (i.e.,

∑n
i=1 xi), and SS

is the square sum of the data points (i.e.,
∑n

i=1 xi
2). The clustering features are additive; thus a

clustering feature for a newly merged cluster can be computed by simply adding clustering features
of the two original clusters. The clustering features provide sufficient information for the BIRCH
algorithm to make the clustering decisions.

The clustering tree is a height-balanced tree that stores clustering features for the hierarchical
clustering. Each node of the clustering tree represents a set of clusters. The maximum number of
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children per non-leaf nodes of a CF tree is bound by a branching factor, B. The size of the leaf
nodes is determined by the threshold, T representing the maximum diameter of the clusters stored
in the leaf nodes, where diameter (the average pairwise distance within a cluster) of a cluster ci
with n elements is computed as:

D =

√

∑n
i=1

∑n
j=1 (xi − xj)

2

n(n− 1)
(19)

The branching factor and threshold, along with the data page size P , determine size of the
CF tree leaf nodes, L, and in turn, the CF tree size. To optimize the I/O costs, the BIRCH
algorithm performs clustering in two phases: in the first phase, a CF tree is created using a single
scan of the underlying data (optionally, additional passes are used to improve the representation
quality by reducing the impact of outliners). The size of the CF tree is determined by choosing the
appropriate values of the branching factor, threshold, and data page size. The CF tree is then built
by incrementally inserting data into a sub-tree rooted at a root node. For every data point, the
CF tree is recursively traversed; an appropriate leaf node is identified using a inter-cluster distance
function using the Euclidean, Manhattan, or log-likelyhood centroid values [265, 41]. Once the leaf
is found, the data point can be absorbed into the leaf (i.e., into its CF vector) if it doesn’t violate
the threshold value. Otherwise a new leaf entry (a CF vector) is created. Once the leaf size exceeds
L, a new leaf node is created by splitting. At the end of the first phase, the CF tree represents
summarized version of the input data using the CF vectors.

In the second phase, BIRCH applies a standard clustering algorithm (e.g., iterative clustering)
on the CF tree leaves to determine the final clustering of the input data. The computational
complexity of the BIRCH algorithm is O(n) and in most cases, the algorithm requires only one I/O
pass.

2.2.4 EM Clustering

The Expectation-Maximization (EM) clustering is a model-based approach that extends the k-
means partitioning algorithm. The EM clustering algorithm assumes that the underlying data is
a mixture of the k probability distributions (referred to as component distributions), where each
distribution represents a cluster. The key problem for any model-based algorithm is to estimate
the parameters of the probability distributions so as to best fit the data.

The EM algorithm [62, 91] is an iterative refinement algorithm that extends the k-mean paradigm:
it assigns a data item to a cluster according to a weight representing the probability of membership
(unlike the cluster mean metric used in the k-means algorithm). The new means of these clusters
are then computed using the weighted measures.

The most common version of the EM algorithm learns a mixture of Gaussian distribution [25]. It
starts with an initial estimate of the parameters of the mixture model, referred to as the parameter
vector. Each data item is assigned a probability that it would possess a certain set of attributes
given that it was a member of a given cluster. The items are then re-scored against the mixture
density produced by the parameter vector and then the items are used to update the parameter
estimates. The complexity of the EM algorithm is linear in d (the dimensions or features of the
input data), n (the number of data items), and t (the number of iterations) (O(dnt)).

The EM algorithm can be described as follows:

1. (Initialization): Make an initial guess of the parameter vectors by randomly selecting k items
to represent cluster centers and making guesses for probability distribution parameters, i.e.,
mean, mk, and expectation, Ek.
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2. (Expectation and Maximization) This step iteratively refines the parameter guesses using the
following two steps:

(a) Expectation: Assign each item xi to Cluster Ck with the probability

P (xi ∈ Ck) = p(Ck|xi) =
p(Ck)p(xi|Ck)

p(xi)
(20)

This step calculates the probability of cluster membership of object xi, for each of the
clusters. These probabilities are the expected cluster memberships of object xi.

(b) Maximization: Use the probability calculated from above to refine the model parameters.
For example:

mk =
1

n

n
∑

i=1

xiP (xi ∈ Ck)
∑

j P (xi ∈ Cj)
(21)

This step maximizes the likelihood of the distributions given the data.

2.2.5 Further Reading

Algorithms: K-means [156, 97, 38], Hierarchical Clustering [265, 41], EM [62], PROCLUS [2] and
CLIQUE [3]; Packages: R [243], Weka [89], IBM SPSS and InfoSphere DataMining [118, 112],
RapidMiner [208], STATISTICA [244], Oracle Data Miner [193] and SAS [218]; Applications [91,
228, 187].

2.3 Nearest Neighbor Search

Nearest neighbor search is an optimization problem for finding the closest points in a metric space.
This problem of identifying points from an ensemble of points that are in some defined proximity
to a given query point has been applied for classification and clustering purposes in multiple appli-
cation domains such as distributed systems, image processing, data mining, computational biology,
data compression, and machine learning. The notion of proximity varies from domain to domain
and is usually formulated using a suitable metric function (e.g., Euclidean distance for spatial prox-
imity). For example, the online media providers such as Netflix and Pandora use nearest neighbor
algorithms to suggest movies or songs that match a particular taste of a particular user [128, 18].
Nearest neighbor algorithms have also been used for finding similarities in multi-media data (e.g.,
videos) to detect any copyright violations [120]. Other well-known applications of the nearest
neighbor search algorithm include control systems, robotics, and drug discovery [236, 124, 22].

2.3.1 Basic Idea

Formally the nearest neighbor problem can be defined as follows: Given a set S of n points in
some metric space (X, d), the problem is to preprocess S so that given a query point p ∈ X, one
can efficiently find a q ∈ S that minimizes d(p, q). In practice, several variations of this definition
are implemented as per input data characteristics and runtime constraints. Broadly, the existing
sequential nearest neighbor solutions can be classified as per the dimensionality of input data, type
of metric used in proximity calculations, result cardinality (e.g., top-k and all-pairs ), and data size
(e.g., Terabyte datasets).

The key aspect of any nearest neighbor algorithm is the metric function used for calculating
the proximity distance between the input data points. The most widely used metric in the nearest
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neighbor algorithms is the Euclidean distance: distance between any two points pi and pj in a d-

dimensional space can be computed as |~pi− ~pj|=
√

∑k=d
k=1 (pik − pjk)

2, where pik is the k
th component

of the vector ~pi. In practice, the Euclidean distance has proven to be effective for low-dimensional
data. For high-dimensional data, more generalized forms of metric distances are employed (e.g.,
Hamming distance) [248]. In the case of two-dimensional data, the nearest neighbor problem can
be solved by using Voronoi diagrams [189]. For datasets with very high dimensionality (e.g., in
computer vision), these search algorithms provide sub-linear performance. One approach to deal
with this inefficiency is to define an approximate version of the nearest neighbor problem: this
version of the problem identifies points from an ensemble of points whose distance from the given
query point is no more than (1 + ǫ) times the distance of the true kth nearest-neighbor.

2.3.2 K-d Trees

The k-d tree algorithm addresses the precise nearest neighbor problem [20, 21, 77]. The k-d tree is
a binary tree used for representing k-dimensional data using recursive hyperplane decomposition.
Each node of the k-d tree represents a region of the input dataset and its partitioning. Each level
of the k-d tree covers the entire dataset. In k dimensions, a record is represented by k keys, i.e.,
each record can be represented by a k element vector of real values, where each element represents
a position in the kth dimension. The k-d tree is then constructed by recursively selecting one of
the k coordinates as the discriminator dimension and then partitioning the dataset into the subset
of vectors according to a certain partition value. For example, the original k-d tree design [20], the
discriminator D at each tree level L is computed as D = L mod k + 1, and a median or random
value for the chosen coordinate is selected as the partition value. During the query process, the
tree is recursively traversed from the root: at every level, the value of the discriminator coordinate
of the query record is compared against the partition value and either the left or right path is
chosen for further traversal. When the traversal reaches a leaf node, the query record is compared
with the records in the leaf, and a list of the m closest records is maintained. In some cases, it
might be required to traverse nearby nodes to validate the current list of nearest neighbors. This
situation arises in those scenarios when the minimum distance is greater than the radius of the
geometric region represented by the tree node. Overall, for a dataset of N k-dimensional records,
the tree search requires O(logN) time, with O(N) space consumption. The k-d tree is very effective
for small dimensionalities. As the number of dimensions increases, the quality of discrimination
degrades as the proximity calculations are based only on a subset of coordinates.

2.3.3 Approximate Nearest Neighbor (ANN)

The ANN algorithm uses hierarchical space decomposition for solving the approximate nearest
neighbor problem for low-dimensional data. The ANN algorithm represent points in a d-dimensional
space using a balanced box-decomposition (BBD) tree with O(log n) depth [12]. ANN recursively
sub-divides the space into a collection of cells, each of which is either an axis-aligned d-dimensional
fat (i.e., the ratio between the longest and shortest sides is bounded) rectangle or the set-theoretic
difference of two rectangles, each enclosed within the other. Each node of the tree is associated
with a cell. Thus, it is associated with all points contained within the enclosed cells. Each leaf cell
is associated with a single point lying within the bounding rectangle of the cell. The leaves of the
tree span the entire space. The ANN tree has O(n) nodes and can be built in O(dn log n) time.
During the querying process, for a given query point q, a priority queue of the internal nodes of the
BBD-tree is created, where priority of a node is inversely related to the distance between the query
point and the cell corresponding to the node. The highest priority node is then selected for recursive
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descent towards the leaves. As the descent progresses, for every cell visited, the distance from q
to the point associated with cell is computed and the priority queue is updated appropriately. Let
p denote the closest point seen so far; as soon as the distance from q to the current leaf exceeds
dist(q,p)
(1+ǫ) , the search can be terminated.

2.3.4 Locality Sensitive Hashing (LSH)

The locality-sensitive hashing (LSH) algorithms are designed for solving the approximate nearest
neighbor problem for very high-dimensional data sets (e.g., with a million feature vectors). The
key idea behind the LSH algorithms is to hash points using several hash functions to ensure that
for each function, the probability of collision is much higher for points that are close to each other
than for those that are far apart [121, 8]. Then for the query point, one can determine its nearest
neighbors by the hashing the query point and retrieving the points in the bucket containing that
point. The LSH method relies on a family of hash functions that have the property that if two
points are close, then they hash to same bucket with high probability; if they are far apart, they
hash to the same bucket with low probability. Formally, a function family H = h : S → U is
(r1, r2, p1, p2) − sensitive, where r1 < r2, p1 > p2, for a distance function D if for any two points
p, q ∈ R

d, the following properties hold

1. if p ∈ B(q, r1), then PrH[h(q) = h(p)] ≥ p1, and

2. if p /∈ B(q, r2), then PrH[h(q) = h(p)] ≤ p2

where B(q, r) denotes a hypersphere of radius r centered at q. For a LSH family H to be useful,
it has to satisfy p1 > p2. By defining a family of LSH functions, namely a(r, r(1 + ǫ), p1, p2)-
sensitive hash family, the (1+ ǫ) approximate nearest neighbor problem can be solved. [8] describe
a methodology for selecting a set of appropriate hash functions for LSH. For example, for binary
vectors from {0, 1}d, H can be defined as a family of functions which contains all projections of the
input point on one of the coordinates, i.e., H contains all functions hi from {0, 1}

d to {0, 1}, such
that hi(p) = pi. Choosing one hash function uniformly at random from H means that h(p) returns
a random coordinate of p [121, 8]. This approach can be used for cases when Hamming distance
is used for defining locality. Another example uses the hash function ha,b(v) : R

d → N to map a
d-dimensional vector v onto a set of integers. The hash function ha,b(v) is defined as ⌊a·v+b

r
⌋, where

some ~a is a d dimensional vector with entries chosen independently from a stable distribution and
b is a real number chosen uniformly from the range [0, r] [55].

2.3.5 Ball and Metric Trees

The Ball [191, 190, 189] and Metric trees [42, 175, 149] are two related hierarchical data structures
designed to support nearest neighbor queries on high-dimensional datasets. A Ball tree is a complete
binary tree in which each node represents a hyper-sphere in the n-dimensional Euclidean space (a
ball). Each ball is represented by n + 1 floating point values which specify the coordinates of its
center and the Euclidian length of its radius. A Ball tree is constructed such that an interior node’s
ball is the smallest which contains the balls of its children. Only the leaves of the tree hold relevant
information; the interior nodes are used only to guide efficient search to the leaf nodes. Unlike the
k-d trees, sibling regions in Ball trees can intersect and need not partition the entire space. To
find the nearest neighbor for a given query point, the Ball tree algorithm finds the smallest ball
centered at the query point and containing a point that can be selected as the nearest neighbor.
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The selection procedure employs recursive branch-and-bound strategy that tries to find increasingly
smaller and tighter balls by pruning searches over internal nodes.

Metric trees are closely related to Ball trees: metric tree use generalized metric distance [248]
between points. Each node n of the metric tree contains two fields: npivot and nradius. The metric
tree is constructed such that for all nodes x owned by a node n, D(npivot, x) ≤ nradius, where D
is the distance metric. If a node n contains less than some threshold Rmin number of point, it is
considered as a leaf node, otherwise n is considered as an internal node, and has two child nodes.
The child nodes partition the points owned by the node n using the pivot value. There are several
ways of choosing the pivot value; most common pivot values include median or centroid. Each node
of the metric tree also has a hyper-sphere (ball) with the radius nradius. Note that at a node n, the
pivot value can cause uneven partition of the dataset, and the corresponding balls can overlap (as
in the Ball tree). The pivot partitioning ensures that a metric tree has log(n) depth [149]. Metric
trees can be queried using a recursive branch-and-bound strategies similar to the Ball trees. At
all times, the metric tree search algorithm maintains a candidate nearest neighbor, which is the
nearest neighbor to the query point q it finds so far while traversing the tree. Correspondingly, the
nearest distance rnn is maintained. At a node n to be traversed, the algorithm checks if there is
any point owned n that falls within the distance rnn from the query point q. If not, the subtree
rooted at the node n is not traversed.

2.3.6 Spill Trees

Spill trees [150, 151] are a variant of the metric tree; unlike metric trees, the spill tree children
can share points. A spill tree internal node has two children and its dataset split into over the
two children nodes using an overlap region. The amount of overlap improves the result quality,
but reduces the query search performance. Therefore, in practice, a hybrid version of the spill tree
is used, where only datasets of certain nodes are split using the overlap approach. Querying a
spill tree uses a combination of branch-and-bound and non-backtracking approaches. The subtrees
rooted at overlap nodes are traversed using the non-backtracking approach, while the non-overlap
nodes are traversed using traditional branch-and-bound strategies (similar to the metric trees).

2.3.7 Further Reading

Basic idea [248, 189]; Algorithms: KD-Tree [20, 21, 77], ANN [12]; LSH [121, 8, 55], Ball Trees [191,
190, 189], Metric Trees [42, 175, 149], Spill Trees [150, 151], and Cover Trees [23]; Packages:
ANN [176]; Applications [18, 128, 187, 91, 236, 124, 22].

2.4 Association Rule Mining

Association rule mining is a key data mining method used for discovering relationships between
variables. Agrawal at al [4] first proposed using association rule mining for identifying relationships
between items purchased in retail stores, a process widely known as the market-basket analysis
(e.g., Amazon’s ”people who bought an item x, also bought items y, z, . . .” feature). An example
of an association rule is c% of customers that purchased items X and Y, also bought item Z with
percentage d% . Over the years, this method has been applied to more complex data patterns
such as sequences, trees, graphs, etc., and different application domains such as bio-informatics,
intrusion detection, and web-usage analysis [4, 5, 258, 260].
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2.4.1 Basic Idea

Formally, the association rule mining processes a set (or database) D of transactions, where each
transaction T is a set of items such that T ⊆ I, where I = {i1, i2, · · · , im} is a set of literals, called
items. Each transaction is associated with a unique identifier, called TID. By association rule, we
mean an implication of the form X =⇒ Ij , where X is a set of some items in I and Ij is a single
item in I that is not present in X. The rule X =⇒ Y in the transaction set D has a confidence
c if c% of transactions in D that contain X also contain Y . The rule X =⇒ Y has support s
in the transaction set D if s% of transactions in D contain X ∪ Y [4, 5]. While confidence is a
measure of the rule’s strength, support corresponds to statistical significance. The support of a
rule X =⇒ Y is defined as supp(X =⇒ Y ) = supp(X ∪ Y ). The confidence of this rule is defined
as conf(X =⇒ Y ) = supp(X ∪ Y )/supp(X). Given a set of transactions D, the problem of mining
association rules is to generate all association rules that have support and confidence greater than
the user-specified minimum support (called minsup) and minimum confidence (called minconf ).
The problem of discovering all association rules can be decomposed into two subproblems [4, 5, 101]:

• Find all sets of items (itemsets) that have transaction support above minsup. The support
for an itemset is the number of transactions that contain the itemset. Itemsets with at least
minsup are called large (frequent) itemsets, and all others are small itemsets.

• Use the frequent itemsets to discover the desired rules. For every frequent itemset l, we find
all non-empty subsets of l. Note that the support attribute follows the downward closure
property: all subsets of a frequent itemset must be frequent. For every such subset a, we
output a rule of the form a =⇒ (l − a) if the ratio of support(l) to support(a) is at least
minconf. One needs to consider all subsets of l to generate rules with multiple consequences.
The number of rules can grow exponentially with the number of items, but the choices can
be pruned using both minsup and minconf.

Once the associated rules are computed, further pruning may be required to select the most
useful rules [133].

The key task in the association rule mining process is to find all itemsets that are frequent
with respect to a given minimal threshold minsupp. All existing associative rule mining algorithms
employ the downward closure property of the itemset support for pruning the search space: every
subset of a new frequent itemset must be frequent. These algorithms can be classified by how the
search space is traversed to construct itemsets [101]: the breadth-first search (BFS) algorithms
compute all itemsets of size k− 1 before building the itemsets of size k, while the depth-first search
(DFS) algorithms, hierarchically compute all possible itemsets of size k from a list of frequent
itemsets of size j (j < k), before processing other itemsets of size j.

Frequent and potentially frequent itemsets are called candidate itemsets. There are two com-
mon ways of computing support values of these candidate itemsets. The first approach directly
counts occurrences of that itemset in all D transactions. The second approach uses set intersection
to compute the support values of the itemsets. For every item in the transaction set, a list of
identifiers (TIDs) that correspond to the transactions containing that item is maintained (tidlist).
Accordingly, tidlists also exist for every itemset X and denoted by X.tidlist. The tidlist of a can-
didate C = X ∪ Y can be obtained as C.tidlist = X.tidlist ∩ Y.tidlist. The actual support of the
itemset C can then be computed as |C.tidlist|.

Based on the strategy for traversing the candidate search space (i.e., DFS vs. BFS) and for
computing the support values (i.e., direct counting vs. intersection), the association rule mining
algorithms can be partitioned into 4 key families [101] (Table 2.4.1).
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Traversal Method Support Computations Algorithm
Breadth-first search Direct Counting Apriori [5]
Breadth-first search Intersection Partition [219]
Depth-first search Direct Counting FP-Growth [92, 93]
Depth-first search Intersection Eclat and MaxClique [263, 264]

Table 6: Classification of associated rule mining algorithms

2.4.2 Apriori

The Apriori class of algorithms exploit the downward closure of itemsets by making multiple passes
over the raw data. In the first pass, the algorithm identifies individual items with large support and
uses it as a seed set of items to generate new potentially large itemsets, called candidate itemsets.
Actual counts of the candidate itemsets are then computed and those with large enough support
are then used as a seed for future iterations. The process continues until no new itemsets are
observed. Since these algorithms compute all large itemsets of size k before processing itemsets of
size k + 1, they use the apriori knowledge of infrequent smaller-sized itemsets to reduce creation
of unnecessary candidate itemsets. These algorithms use a hash-tree data structure [5] to quickly
get references to the candidate itemsets: every path from the root to the leaf encodes a common
prefix of the itemsets stored in the leaf. In addition, bitmaps are used to encode the transactions to
further improve the processing times. AprioriTID and AprioriHybrid are extensions to the basic
apriori algorithm that use encoding of the processed candidate sets to generate new candidate sets
and avoid multiple expensive accesses to the raw datasets [5].

2.4.3 Partition

The partition algorithm [219] has been specifically designed to optimize the number of database
accesses required during the candidate itemset generation and pruning phases. Fundamentally,
the partition algorithm is similar to the apriori algorithms as it also iteratively computes large
candidate itemsets of size k using candidate itemsets of size k− 1. The key feature of the partition
algorithm is that it requires only two scans of the underlying database: one for generating a set of
potentially large candidate itemsets (it is a superset of all large itemsets, i.e., it may contain false
positives), and the second for calculating the supports of these candidate itemsets and identifying
the large itemsets. The partition algorithms reduces the number of database accesses by logically
partitioning the database into non-overlapping partitions such that the number of itemsets to be
evaluated can be fit into the main memory. Each partition is evaluated separately to identify a
set of locally large candidate itemsets using counts of the local candidate item sets. Counts of the
candidate item sets are computed using its tidlist. Then, the tidlist of a candidate C = X ∪ Y can
be obtained as C.tidlist = X.tidlist ∩ Y.tidlist. The global large candidate set is then generated
as the union of the local large candidate sets from all partitions. The global candidate itemset is
then pruned to identify the final large itemsets using tidlists of all 1-item subsets of the itemsets.

2.4.4 FP-Growth

The FP-Growth algorithm use a novel strategy that eliminates the need for generating candidate
itemsets to identify the large itemsets in the database. The FP-Growth uses a compact data
structure, called frequent-pattern tree or FP-Tree to store path and count information of the frequent
items [92, 93, 213]. The FP-tree is an extended prefix-tree structure that compactly represents as
paths groups of frequent items (called 1-items). Further, the tree nodes are arranged such that most
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frequent items have longest common prefix paths. Thus, the FP-tree performs a DFS traversal of
the database and generates a compact representation. The item-set mining algorithm then works
on the FP-tree, rather than on the raw database. The mining algorithm uses the 1-item nodes as
initial suffixes and builds increasingly larger frequent patterns by concatenating shorter frequent
patterns. The mining algorithm uses least frequent 1-items to build the suffix paths, this improving
the selectivity of the algorithm. The mining algorithm builds a partial conditional tree using the
suffixes under consideration, and uses it as a guide to build larger frequent patterns. Thus, unlike
the Apriori and partition algorithms, it does not generate level-wise candidate itemsets, but uses
known shorter suffix patterns to build larger frequent patterns,

2.4.5 Eclat and MaxClique

The Eclat and MaxClique family of algorithms [263, 264] aim to reduce the I/O costs of candidate
generation by identifying relevant candidate itemsets using structural relationships among the can-
didate itemsets. Specifically, these algorithms view the creation of candidate itemsets using the
downward closure property as a lattice, and use two strategies, one based on equivalence classes,
and another on maximal cliques in a hypergraph, to predict the useful candidate itemsets (called
the potential maximal itemsets). These itemsets logically induce a sub-lattice, which is then tra-
versed using either bottom-up or hybrid (top-down and bottom-up) strategy to generate all frequent
itemsets. Each sub-lattice is processed in its entirety before progressing to the next sub-lattice.
These algorithms assume that the transactions database is represented in the vertical format using
tidlists, and as in the previous case, the itemset frequency can be calculated by intersection. These
features enable the Eclat and MaxClique to compute the frequent itemsets in a single database
scan.

2.4.6 Further Reading

Basic idea [4, 5, 101, 133]; Algorithms: Apriori [5], Partition [219], FP-Growth [92, 93], Eclat
and MaxClique [263, 264]; Packages: R [243], Weka [89], RapidMiner [208], STATISTICA [244],
SAS [218], Microsoft SQL Server [169], IBM InfoSphere DataMining [112], Oracle Data Miner [193],
and SAP [147]; Applications [56, 57, 91].

2.5 Neural Networks

Artificial Neural network is a system inspired by the biological network of neurons in the brain and
uses a mathematical or computational model for information processing based on a connectionistic
approach [258]. In practice, it is a system composed of a very large number of simple processing
elements operating asynchronously in parallel whose function is determined by network structure,
connection strengths, and the processing performed at computing elements or nodes. A neural
network can be viewed as a massively parallel distributed system that has a natural propensity
for storing knowledge and mimics the brain in two respects: a neural network acquires knowledge
through a learning process and stores it using inter-neuron connection strengths, represented using
synaptic weights [216, 238].

Neural networks can be considered as non-linear statistical data modeling or decision making
tools. In practice, they are used to model complex relationships between system input and output
to infer results for novel inputs or finds patterns in data. Broadly, tasks to which neural networks
are applied can be classified into:
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1. Function Approximation, including regression analysis, time-series prediction, and mod-
eling [216]

2. Classification, e.g., pattern and sequence recognition [216]

3. Data Processing and Mining, e.g., filtering, clustering, data mining [216]

4. Decision Making/Inferencing, e.g., systems control, vehicle control, robots [216]

5. Cognitive Modeling, i.e., simulating and understanding neural activities [216]

Neural networks have been applied to a diverse set of domains e.g., games (e.g., Go, Chess,
Bridge, Checkers), Music, music, material science, weather forecasting, medicine, chemistry, pattern
recognition (e.g., face or character), financial industry (e.g., analyzing stock trends), online fraud
detection, and many more [216, 141, 257].

2.5.1 Basic Idea

The most common neural network designs are based on the biological systems. In a biological
network, neurons are linked to each other via weighted edges and when stimulated, they electri-
cally transmit their signals via connecting axons. These signals get modified before reaching the
destination neuron. A neuron gets multiple inputs that have been pre-processed and accumulated
into a single pulse. A neuron, upon stimulation, may or may not emit a pulse. The output may be
non-linear and may not be proportional to the accumulated input [141].

Thus, a neural network implementation assumes that a neuron receives a vector input, ~x that
is weighted and accumulated to a scalar value as a weighted sum before transmitting it to the
receiver neuron (

∑

i wixi). The weighted sum is an example of the propagation function. The set
of such weights represent information storage of a neural network.The output of a neuron is not
proportional to the input (i.e., the response y is non-linear, y = f(

∑

iwixi)). The neural output is
determined by its activation function. Multiple scalar output from different neurons in turn form
the vector input of another neuron. Finally, the weights used in weighting the inputs are variables
capturing the chemical processes in neurons.

The neural networks can be classified by: (1) underlying network topology, (2) type of learning
algorithm used, (3) type of input data. There are three major kinds of network topologies:

1. Feedforward networks: Feedforward networks consist of layers of neurons with connections to
any one of the next layers. The neurons are grouped into the following layers: input layer, n
hidden layers (invisible from outside), and output layer. These connections do not form any
cycles.

2. Feedback networks: In feedback or recurrent networks, the state of a neuron at one time can
influence its state at a future time. Some feedback networks allow direct cycles, in which a
neuron is connected to itself; others only allow indirect cycles, where a neuron A acts as in
input to neuron B and in turn, neuron B is one of neuron A.

3. Completely linked networks: Completely linked networks permit connections between all
neurons, except for direct recurrences. Furthermore, the connections need to be symmetric.

Neural networks are characterized by their capability to familiarize with problems by means of
training and after sufficient training, to be able to solve unknown problems of the same class [141].
Neural networks learn by using a set of training patterns and modify their connecting weights as
per certain rules (e.g., the Hebbian Rule [99]). There are three main types of learning schemes:
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1. Unsupervised learning: In this approach, the training set consist of input patterns and the
neural network tries by itself to detect similar patterns and classify them into pattern classes.

2. Reinforcement learning: In reinforcement learning, after completion of a training sequence,
the network receives a response that specifies whether the result was right or wrong, if possible,
how right or wrong it was.

3. Supervised learning: In supervised learning, the training set consists of input patterns and
their correct results in form of activation from all output neurons. The objective is to change
the weights so that not only the outputs match the values in the training set, but for unknown,
similar patterns, the network produces plausible result.

Finally, neural networks are characterized by the kinds of input data. The most common kinds
of data are categorical and quantitative. The categorical variables take only a finite number of
possible values in different classes or categories, while the quantitative variables represent numerical
measurements of some attributes. Learning with categorical values can be viewed as classification,
while supervised learning with quantitative values is viewed as regression.

2.5.2 Single- and Multi-level Perceptrons Networks

A perceptron is the simplest feed-forward network with one input neuron layer connected to one
or more trainable weight layers.

A single-level perceptron (SLP) is a perceptron with an input layer and only one trainable weight
layer. Neurons in the weight layer use a variety of activation functions (e.g., binary threshold,
hyperbolic tangent, or weighted sum). A SLP with binary output is considered a linear classifier
that maps its input real-valued vector x to an output binary value f(x:

f(x) = 1 if (w.x+ b) > 0, else 0 (22)

where b is a bias value. A SLP can be trained using the supervised learning approach. In the
supervised learning approach, the weights get adapted using the learning rate α, 0 < α ≤ 1 as
follows:

wi(t+ 1) = wi(t) + α[d(t) − y(t)]xi(t), 0 ≤ i ≤ m (23)

where d(t) is the desired output, y(t) is the actual output, and m is the training set size. This
step is repeated until a predetermined number of iterations is completed or the error becomes less
than an user-specified error bound. In a SLP, the learning algorithm converges only if the learning
set, Dm = {(x1, y1), . . . , (xm, ym)} is linearly separable, i.e., if there exists a positive constant γ and
a weight vector ~w such that yi.(〈~w, xi〉+ b) > γ, ∀i, where 〈w, xi〉 is the output of the perceptron.
In other words, a SLP can divide the input space using a hyperplane.

If the activation function is non-linear and differentiable then a gradient descent learning rule
(the delta rule) is used for updating the weights of the neurons. For a neuron j with activation
function g(x), the delta rule for updating weight wji is given by

∆wji = α(dj − yj)g
′

(hj)xi (24)

where α is the learning rate, g
′

(x) is a first derivative of the activation function, dj is the desired
output, hj is the weighted sum of the neuron’s inputs, yj is the actual output, and xi is the input.

A perceptron with two or more trainable weight layers is called a multi-level perceptron (MLP).
An n-stage perceptron has n variable weight layers and n + 1 neuron layers, the first layer being
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the input layer, and n − 1 hidden layers. The hidden layers usually have non-linear differentiable
functions, e.g., logistic, softmax, and gaussian. Multi-layer perceptrons are usually trained using
a supervised learning algorithm called backpropagation. The backpropagation algorithm involves
two steps: (1) Propagation that involves forward propagation of input through the neural network
and backward propagation of the output activations to generate the delta errors, (2) Use the delta
errors and input values to calculate the gradient of error of the network. The gradient is then used
in a simple stochastic gradient descent algorithm to find weights that minimize the errors. This
algorithm is basically a generation of the delta rule that is used for the single-layer perceptrons.
First, the derivative of the error function with respect to the network weights is calculated and
then the weights are modified such that the error decreases. For this reason, backpropagation can
only be applied to nodes with differentiable activation functions.

2.5.3 Radial Basis Function (RBF) Networks

Radial Basis Function (RBF) networks are feedforward networks with exactly three layers, i.e., with
only one single layer of hidden neural layer. The hidden neurons are called the RBF neurons. The
connections between the input and RBF neurons are unweighted. But the connections between
the RBF and output neurons are weighted. The output neurons use the weighted sum as the
propagation function and identity as the activity function.

The RBF neurons use the distance between the input vector and a center ch of the neuron as
a propagation function. This distance is then sent through a radial basis activation function that
outputs the activation of the neuron. A radial basis function is a real-valued function whose value
depends only on the distance from the origin or some other point c, called a center: φ(x, c) =
φ(‖ x − c ‖), where the norm is usually Euclidian distance. Any function φ that satisfies the
property φ(x) = φ(‖ x ‖) is a radial function. Examples of radial basis functions include Gaussian
(φ(r) = exp(−βr2)), multi-quadric (φ(r) =

√

(r2 + β2)), and splines (e.g., φ(r) = rk), where r is
the Euclidian distance norm from any center c, r =‖ x− c ‖.

The output yi of an RBF output neuron i results from combining results from multiple hidden
RBF neurons:

yj =
∑

0<i≤n

wj.fact(φ(x, c)) (25)

where wj are the weights of the output neurons. A RBF network can be trained using the
supervised training approach with P examples (p, t). Then we can form P equations as follows:

yj =
∑

0<i≤n

wj.fact(φ(p, c)) (26)

Thus, the goal of the training is to find the values of the RBF centers ci, output weights wj, and
the parameter βi of the radial basis functions. The two most common approaches to train a RBF
network are: (1) To solve the above set of P equations using an interpolation approach, and (2)
Use a gradient descent approach to minimize an objective function (e.g., the least squares function
to represent the errors) [141].

2.5.4 Recurrent Networks

A recurrent neural network is a class of neural network where connections between neurons form a
directed graph. Such networks are able to influence themselves by means of recurrents, e.g., using
network output in the following computation steps. This creates an internal state of the network
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that allows it to process arbitrary sequences of inputs. Recurrent networks represent dynamic
systems with varying temporal behavior.

Recurrent networks have a very general architecture that can be specialized in different ways.
The most popular examples of recurrent networks are:

• Fully-connected Networks: In this architecture, each neuron has a directed connection with
every other neuron. Each neuron has a time-varying real-valued activation and each con-
nection has a modifiable real-valued weight. This is the more general form of the recurrent
networks.

• Hopfield Networks: A Hopfield network [105] is an example of recurrent neural network where
connections are symmetric.

• Elman and Jordan Networks: Both Elman and Jordan networks are three-layer networks,
with the addition of a set of context units in the input layer. In the Elman network [68],
the middle (hidden) layer is connected to the context nodes with weight of one, while in the
Jordan network [127], output layer is connected to the context nodes with weight of one. At
each time step, the input is propagated in a feed-forward fashion and then a learning rule is
applied. Due to the feedback connections to the context nodes, the context nodes maintain
a copy of the previous values of hidden (in Elman) and output (in Jordan) networks.

The recurrent networks can be trained using either supervised or reinforcement learning schemes.
In both cases, progress is measured as optimization of a cost function that reduces the total error (in
supervised learning) or maximizes a reward or fitness value (in reinforcement learning). Algorithms
for error minimization usually employ gradient descent methods [141], however, any non-linear
global optimizations methods can be used as well.

2.5.5 Kohonen Neural Networks

Kohonen neural network most often refers to one of following three competitive neural networks [216,
135]: Vector Quantization, Self-Organized Maps (SOMs), and Learning Vector Quantization.

1. Vector Quantization (VQ): The VQ networks are competitive neural networks that can be
viewed as unsupervised density estimators [216]. Each neuron corresponds to a cluster, the
center of which is called a codebook vector. The VQ network uses a competitive learning
algorithm that finds the codebook vector closest to the training case and moves the winning
codebook vector to the training case by a distance determined by its learning rate

new codebook = old codebook ∗ (1− learning rate) + data ∗ learning rate (27)

The Kohonen’s VQ learning rule is an approximation of the K-Means algorithm [156]: in the
K-Means algorithm, the learning rate is inversely proportional to the size of the data set.
The VQ learning rule with the fixed learning rate does not converge. Several versions of the
original VQ algorithm have been proposed to get convergence [216].

2. Self-Organized Maps: The Self-organized Maps are competitive neural networks that define an
ordered mapping or projection from a set of potentially high-dimensional data onto a regular,
usually two-dimensional, grid [136]. Each node is associated with a model (or a codebook)
and a data item is mapped to a node that is most similar to the data item using some metric.
Like the VQ algorithm, the model is then updated using the data item. However, the SOM
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learning algorithm uses smoothing kernel function (also called the neighborhood function)
that is similar in nodes that are closer in the grid. Upon convergence, the grid represents a
similarity graph of the data items [135].

3. Learning Vector Quantization (LVQ): The LVQ network is a version of the VQ network for
supervised classification. Each codebook vector is assigned to one of the target classes (each
class can have more than one codebook vectors). A training sample is classified by finding
the nearest codebook vector and then assigned to the corresponding class. Hence, the LVQ
algorithm behaves like the nearest-neighbor search algorithms.

2.5.6 Further Reading

Basic ideas [141, 99]; Algorithms: RBF Networks: [141], Hopfield Networks [105], Elman and
Jordan networks: [68, 127], Kohonen networks: [135, 216, 136]; Packages: R [243], Weka [89], IBM
SPSS, InfoSphere DataMining [118, 112], RapidMiner [208], STATISTICA [244], and SAS [218];
Applications [257, 216, 141, 238].

2.6 Support Vector Machines

Support Vector Machines (SVMs) is a family of supervised learning methods, primarily used for
classification and regression analysis [250, 251, 19]. While this technique was originally designed
for pattern recognition applications, it has found applications in a wide spectrum of fields, e.g.,
astrophysics (parameter estimation, red-shift detection), bio-informatics (e.g., gene classification),
medical imaging (e.g., brain fMRI processing), text analytics (e.g., string-based text classifica-
tion), and time-series prediction (e.g., traffic modeling), and financial modeling (e.g., stock indices
behavior prediction) [188, 32, 106, 199, 207, 88, 226].

2.6.1 Basic Idea

An SVM is a class of algorithms that use the kernel mapping approaches to map original data
to high-dimensional feature space and combine statistical learning approaches with optimization
techniques for classifying the input dataset. A classification application usually involves operating
on two data sets: training and testing. Each instance of the training set contains one target value
(i.e., class labels) and several attributs (i.e., features). The goal of the SVM is to produce a model
based on the training data that predicts the target values of the tests data, given only the test
data attributes. The standard form of SVMs usually classify the tests data into two categories.
Intuitively, each data point in the training set is first mapped to a high-dimensional space, which
is then partitioned by a set of hyperplanes constructed by the machine. The optimal hyperplanes
provide maximum separation (margin) between the data points [26, 50].

2.6.2 Core Algorithms

The error rate of an SVM machine on the test data (also called generalization) depends on the
accuracy in learning a particular training set and its capacity, i.e., its ability to learn any training
set without error. All SVM algorithms are designed such that there are zero errors in learning
a particular training set, and the capacity is optimized, i.e., errors in learning any training set
are minimized. It has been proven that optimal hyperplanes that provide maximum separation
between data points in a high dimensional space lead to improved generalization [251]. Further,
to construct such optimal hyperplanes, one needs to use only a subset of training data, called the
support vectors.
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Consider the linearly separable binary classification scenario. We have l training points, where
each input xi has d features and is in one of the two classes yi= -1 or +1, i.e., the training set has
the following form: {xi, yi}, i = 1, · · · , l, yi ∈ {1,−1}, x ∈ Rd. Since the data is linearly separable,
one can partition the data into 2 classes using a hyperplane x ·w+ b = 0, where w is normal to the
hyperplane and b

‖w‖ is the perpendicular distance from the hyperplane to the origin. Let d+ and

d− be the shortest distances from the separating hyperplanes to the closest training examples (i.e.,
support vectors). For the linearly separable case, the support vector algorithm simply looks for
a separating hyperplane with the maximum margin, d+ + d−. This can be formulated as follows:
suppose the training data set satisfy the following constraints:

xi ·w + b ≥ +1, for yi = +1 (28)

xi ·w + b ≤ +1, for yi = −1 (29)

These can be combined into one set of inequalities:

yi(xi ·w + b)− 1 ≥ 0 ∀ i (30)

The points (support vectors) for which the equalities in Equations 1 and 2 hold, lie on two
hyperplanes with d+ = d− = 1

w
and the margin is 2

‖w‖ . Maximizing the margin to the constraint
in Equation 30 is equivalent to finding:

min ‖ w ‖ s.t. yi(xi ·w + b)− 1 ≥ 0 ∀ i (31)

Minimizing ‖ w ‖ is equivalent to minimizing 1
2‖ w ‖

2. Thus, Equation 30 can be rewritten as

min
1

2
‖ w ‖2 s.t. yi(w

T · φ(xi) + b)− 1 ≥ 0 ∀ i (32)

where φ is a function that maps training data xi into a higher dimensional space. Equa-
tion 32 can be formulated using Lagrange multipliers [75] and solved using the Quadratic or Linear
Programming (QP/LP) approach to compute values of w and b. Existing general-purpose QP
algorithms like the quasi-Newton or primal-dual interior point methods are usually used for small
sized problems. For larger problems, LP solvers based on simplex or interior-point methods can be
used (Section 2.11).

For data that is not linearly separable, a kernel function, k(xi, xj), is used for mapping it to
higher dimensional space. Most current SVM algorithms use one of the following basic kernel
functions:

• Linear: K(xi, xj) = xTi xj

• Polynomial: K(xi, xj) = (γ + xi · xj + r)d, γ > 0

• Radial Basis Function (RBF): K(xi, xj) = exp(−γ ‖ xi − xj ‖
2), γ > 0

• Sigmoid: K(xi, xj) = tanh(γxTi xj + r)

2.6.3 Further Reading

Basic idea [250, 251, 19, 32, 26, 50]; Algorithms: [152, 246, 155]; Packages: R [243], Weka [89],
IBM SPSS [118], RapidMiner [208], STATISTICA [244], Oracle Data Miner [193], and SAS [218];
Applications [88, 226, 188, 106, 152, 207].
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2.7 Decision Tree Learning

Decision tree learning covers a class of algorithms that use a tree-based model (usually referred to
as a decision tree) to represent decisions and their possible consequences [258, 227]. Intuitively, a
decision tree is an encoding of all possible outcomes for a given problem scenario annotated with
their conditional probabilities. Important applications of these algorithms include marketing, fraud
detection, medical diagnostics, agriculture, and manufacturing/production [177]. For example,
decision trees are used to determine if a potential customer should get a loan or to finalize treatment
for a cancer patient. In these scenarios, the decision trees are used for classification in which the
classifier model is used to predict values of categorical variables (e.g., yes or no) or continuous
variables (e.g., amount of money a particular customer is willing to spend).

2.7.1 Basic Idea

Data classification is a two-stage process: in the first stage, a classifier model is built using a su-
pervised learning process, and in the second stage the model is used to predict decisions for the
unknown user inputs (i.e., for inputs that are not used in the training phase). The supervised learn-
ing phase uses a set of training class-labeled samples, where each sample is a n-dimensional feature
vector and is associated with the corresponding class-label attribute. The class-label attribute can
either be categorical or continuous. The distinct values of the class-label attribute define a distinct
partition or class of the data set. The result of the learning phase is a decision tree whose internal
nodes represent conjunction of feature predicates and leaves represent classifications. After the
model has been trained, it is tested for accuracy using a new set of testing samples. Once the
model’s accuracy has been validated, it is ready for general data sets.

Most algorithms build the decision trees top-down by iteratively splitting the data set using
a feature attribute at each step as the splitting parameter. Thus, as one traverses down the
tree, the partitioning becomes more refined. One of the key factors affecting the performance of
any decision tree algorithm is the selection of relevant feature attributes. Some features may be
statistically correlated, thus redundant, and only one of these features is used for splitting. Further,
some features may be irrelevant and can be completely eliminated during the splitting process.
The reduced set of attributes can then generate a probability distribution of classes that is very
similar to the original data set.

Thus, it is very important to select the feature predicates that can generate the best partitioning
of the class-labeled data set into classes. The ideal partitioning would create distinct classes, each
one would contain vectors that have the same values for the feature attributes used in the data
set splitting. Conceptually, the best partitioning matches the ideal scenario as close as possible.
Most decision tree algorithms use heuristics called attribute selection measures or splitting rules
to select the feature predicates. The most popular attribute selection measures are: Information
Gain, Information Gain Ratio, and Gini Index [91, 153, 148]. Let D be the size of the training
sample set. Let m be the number of distinct values of the class-label attribute (i.e., there are m
distinct classes, Ci). Let |D| and |Ci| be the cardinalities of the training set and a class Ci.

• Information Gain: The goal of the information gain measures is to identify the sequence of
relevant feature attributes for splitting. The most relevant feature attribute performs the
best partitioning, i.e., it requires the least additional information to finalize partitioning of
class-labeled sample vectors. Thus, the most relevant attribute creates partitions that have
least randomness or impurity [204].

The expected information needed to classify a vector from the sample D in m classes is given
by its entropy, Info(D)
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Info(D) = −
m
∑

i=1

pilog2(pi) (33)

Info(D) is the average amount of information needed to identify a class-label of a sample
vector in D, based solely on the proportion of vectors in each class ( represented using
probability pi). Let A be the feature attribute that we would like to use for partitioning the
sample set D. Let v be the number of distinct values that the attribute A can take. Thus,
A would partition the sample set D into v partitions, {D1,D2, . . . ,Dv}. Ideally, one expects
this partitioning to be the exact classification of the sample set D. However, it is more likely
that each partition Di contains a few vectors from different final classes. The amount of
additional information needed to obtain the precise classification after partitioning using the
attribute A is

InfoA(D) =
v

∑

i=1

|Di|

|D|
× Info(Di) (34)

The smaller the required expected information, InfoA(D), greater is the purity of partitions,
and better is the choice of the attribute A for partitioning. Information gain is then computed
as the difference between the information required based on the proportion of classes and
the information based on the partitioning using the attribute A as Gain(A) = Info(D) −
InfoA(D). Gain(A) presents the expected reduction in the future information requirement
given the partitioning based on attribute A. The higher Gain(A) is, better is the choice of
attribute A for partitioning. Once a top-level partitioning attribute is selected, the process
can be repeated to choose the next best partitioning choice.

• Information Gain Ratio: The information gain approach suffers from one important drawback:
it prefers attributes with the largest number of distinct values. This can sometimes lead to a
large number of classes (as many as the number of distinct values), each containing a single
vector. To avoid such cases, Quinlan [205] proposed another measure called the information
gain ratio that attempts to overcome the bias. The information gain ration normalizes the
information gain using intrinsic information value, IIVA, generated by splitting the training
set using an attribute A [205]. The intrinsic information value can be calculated as follows:

IIVA = −
v

∑

j=1

|Dj |

|D|
× log2(

|Dj |

|D|
) (35)

The gain ratio of the attribute A is then calculated as the ratio of Gain(A) and IIVA.
Algorithms that use the gain ration choose an attribute with the maximum gain ratio for
partitioning.

• Gini Index: The Gini index (coefficient) is a measure of the inequality of a distribution: a
value of 0 expresses total equality and a value of 1 represents total inequality. In decision
trees, the Gini index is used as a measure of how often the a randomly chosen vector from
the data set would be incorrectly labeled. It can be calculated by summing the probability
of each vector being chosen times the probability of a mistake in categorizing the vector.
Specifically, the Gini Index for the training set D, with m classes can be computed as
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Gini(D) = 1−
m
∑

i=1

(pi)
2 (36)

where pi is the probability that a vector in the training set belongs to a class ci and is
estimated as |Ci|

|D| .

To identify the best splitting attribute, the Gini index considers binary partition of the
training set by every attribute. Let A be a discrete-value attribute with v distinct values that
is being considered for splitting. Then there are 2v − 2 ways of forming two partitions of the
training set, based on a binary split of A. Suppose D1 and D2 are two partitions of D based
on a value of A. The Gini index of this partitioning can be computed as

GiniA(D) =
|D1|

|D|
Gini(D1) +

|D2|

|D|
Gini(D2) (37)

The change in the impurity, ∆Gini, incurred by a binary split on a discrete-valued attribute
A is Gini(D) − GiniA(D). The attribute that maximizes the reduction in impurity is then
selected as the splitting attribute.

2.7.2 ID3/C4.5

ID3 (Iterative Dichotomiser) and C4.5 are two decision tree algorithms proposed by J. Ross Quinlan
that use the entropy-based attribute selection measures [204, 205, 137]. Both algorithms use a
greedy approach to build a decision tree in a top-down recursive divide-and-conquer manner using
a class-labeled training set. Both ID3 and C4.5 algorithms require 3 parameters: the training
set, D, set of attributes of the training vectors, and the attribute selection heuristic. The ID3
algorithm uses the information gain measure for attribute selection, while the C4.5 algorithm uses
the information gain ratio.

Both algorithms build the tree starting with the root node N , that represents the entire training
dataset D. If all vectors in D fall in the same class, the node N is considered a leaf node, and
the process terminates. Otherwise, the algorithm uses the chosen attribute measure to determine
the attributes will be used for partitioning the dataset. The node N is labeled with the splitting
criterion that serves as the partitioning test for that node. For every outcome of the splitting
criterion, a branch is grown from the node N . The dataset gets partitioned as per the distinct
values of the attribute. The partitioning depends on many conditions: whether the attribute is
discrete- or continuous-valued or if a single or multiple attributes are used for partitioning. The
process terminates when all attributes have been used for partitioning or the vectors fall into the
same class.

Decision trees generated by ID3 or C4.5 suffer from the problem of over-fitting of noisy or
outliner data. To address this problem, the tree is pruned to remove the least reliable branches
after the fully grown tree has been built (called the postpruning). The C4.5 algorithm uses an
approach called pessimistic pruning [91] that uses the training dataset to determine the pruning
strategy. It use the training set to predict the error rate (i.e., the percentage of vectors misclassified
by the tree), but its adjusts the error rate using a statistical correlation test that uses the number
of errors and size of the training dataset [205]. For a training dataset of size |D|, the C4.5 algorithm
builds the decision tree in O(n× |D| × log(|D|)) time, where n is the total number of attributes in
the dataset.

31



2.7.3 C&RT

Classification and Regression Trees (CART [30] or C&RT) is a family of non-parametric recursive
tree-building algorithms for predicting continuous dependent variables (regression) and categorical
predictor variables (classification). Like ID3/C4.5, CART builds the tree top-down by recursively
partitioning the dataset. However, unlike the C4.5 algorithm, CART builds binary trees.

While building the tree, the CART uses two different measures for identifying the splitting
attribute. For regression problems, a least-squares deviation criteria is used, while for categorical
variables, impurity measures like the Gini index are employed. Once the splitting attribute is
identified, the dataset is partitioned into two groups. The process continues until the stopping
conditions are satisfied.

The CART algorithms also use a postpruning approach to manage the resultant tree size.
CART uses cost complexity to determine which part of the tree needs to be pruned [91, 260].
The cost complexity is computed as a function of the number of leaves in the tree and the error
rate, measured as the percentage of misclassified vectors. Once the tree is built, the subtrees are
processed from the bottom-up: for an internal node, the cost-complexity for the sub-tree rooted at
that node is measured and compared against a version of the tree in which the sub-tree is replaced
with a leaf. If the sub-tree pruning reduces the cost, the sub-tree is replaced with a leaf. The cost
complexity computation uses a separate set of vectors called the pruning set. This postpruning
approach generates a set of pruned trees; eventually, the tree that minimizes the cost complexity
is selected.

2.7.4 CHAID

The CHAID (CHI-square Automatic Interaction Detector) algorithm also uses a recursive tree-
building process that partitions the dataset as it build the tree [131, 182]. Unlike binary tree
created by the CART algorithm, CHAID creates a wide tree with multiple branches. As the
CHAID algorithm can represent multiple categories effectively, it has been widely applied for market
segmentation analysis.The CHAID algorithm uses the Pearson CHI -square test as the splitting
criterion for ordinal and categorical variables and for continuous variables it uses F-tests.

The CHAID algorithm first prepares the predictor variables by dividing continuous distributions
into a number of categories (binning). Internally, the CHAID algorithm only uses categorical
variables. Once the initial categories are determined, the algorithm uses the CHI -squared or F-
tests to determine statistical independence/significance of the data (Bonferroni-adjusted p-value).
This information is used for determining the number of branches at an internal tree node. If the
significance level is below a certain threshold, the branches are merged. Alternatively, a branch
is split into two. The process terminates when there are no more significant splits or merges. In
the CHAID algorithm, the last split determines the partitioning of the input dataset. A version
of CHAID, called the exhaustive CHAID, chooses a partitioning that corresponds to the most
significant split.

2.7.5 Further Reading

Basic idea [91, 153, 148, 204, 205]; Algorithms: ID3/C4.5 [204, 205, 137], C&RT [30, 91], CHAID [131,
182], and QUEST [227, 153, 148]; Packages: R [243], Weka [89], IBM SPSS [118], RapidMiner [208],
STATISTICA [244], Oracle Data Miner [193], and SAS [218]; Applications [187, 177, 91, 228].
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2.8 Time Series Processing

A time series is a sequence of observations reported according to the time of their outcome [70].
Examples of time series data are prevelent in everyday life: prices of commodities during a trading
day, daily opening and closing of stock market indexes, hourly weather reports, utility consump-
tion charts, etc. Other important application domains that use time series data include geology,
economics, control systems, medical informatics, process engineering, and social sciences [229, 52].
Study of the time series data is targeted to achieve one of the two goals: (1) Understand the basic
characteristics of the observed data (Analysis), and (2) Fit a model to the observed data set and
apply it for forecasting based on known past values (Forecasting). Both the goals require the
pattern for the time series to be identified and modeled.

2.8.1 Basic Idea

Analyzing a time series is different that the traditional data analysis as the data is not generated
independently, dispersion of data items varies in time, it is often governed by a trend, and it can
have cyclic components [70]. Thus, statistical approaches that assume independent and identically
distributed data do not apply for the time series. The time series data inherently exhibits temporal
ordering. In a time series, observations taken closer in time are more related than observations
taken further apart. Further, an observation at a given time can be potentially derived from past
observations, rather than from future observations.

In general, a time series y1, · · · , yn can be viewed as a sequence of random variables yt that
individually can be decomposed into four components:

yt = Tt + Zt + St +Rt t = 1, · · · , n (38)

where Tt is a monotone function of t, called trend, Zt and St reflect long- and short-term
nonrandom cylic influences, called seasonality, and Rt represents a random variable capturing
errors (noise) from the ideal non-stochastic model yt = Tt + Zt + St [237, 70]. Analysis of any
time series data involves identifying underlying trends and seasonalities. Time series analysis can
be carried out either in time or frequency domain.

2.8.2 Trend Analysis

In the time-domain, trend analysis identifies the trend component of a time series. If the error com-
ponent in the time series is significant, then the data needs to be pre-processed, or smoothed. The
smoothing process involves some form of local averaging of data such that the irregular components
of the individual observations cancel each other out. The most common technique is the moving
average smoothing that replaces each element of the series by either simple or weighted average
of n surrounding elements, where n is the width of the smoothing window [27]. The smoothing
process can use medians instead of means: means can reduce the effects of the outliners, but in
absence of outliners, it can produce jagged curves. Medians also does not allow weighting during
the smoothing process. In cases where the random errors are dominant, the smoothing process can
use distance weighted least squares smoothing or negative exponentially weighted smoothing tech-
niques [237, 70]. Once the errors are smoothed, the monotonous (increasing or decreasing) trend
component of time series can be represented using linear or non-linear functions, e.g., using the
logistic function.
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2.8.3 Seasonality Analysis

The seasonality component of the time series data captures the cyclic flactuations in the data. In
the time domain, the seasonality can be measured by evaluating dependences between elements of
a time series separated with a distance or lag k. In the time-domain analysis, auto-correlation and
auto-covariances are most commonly used as measures of dependence between time series elements.
For a time series y1, · · · , yn, the auto-covariance for lag k can be computed as

c(k) :=
1

n

n−k
∑

t=1

(yt+k − y)(yt − y) with y =
1

n

n
∑

t=1

yt (39)

Using the computed auto-correlation value, c(k), auto-correlation r(k) for lag k can be computed
as

r(k) :=
c(k)

c(0)
=

∑n−k
t=1 (yt+k − y)(yt − y)

∑n
1 (yt − y)2

(40)

The graph of the function r(k) for k = 0, · · · , n − 1, is called a correlogram. The correlogram
shows how the auto-correlation value changes as the lags are varied. High values of auto-correlation
at lag positions that are multiples of k exposes a pattern that repeats after every k elements. Auto-
correlation values for consecutive lags are inter-dependent, i.e., they suffer from serial dependencies;
if the first element is closely related to the second, and the second to the third, then the first element
is related to the third element. One way to examine the serial dependencies is to use partial auto-
correlation function that excludes all elements within the lag while calculating auto-correlation
values [27]. The partial auto-correlation calculations for a lag of 1 are equivalent to computing
auto-correlation. The serial dependencies within a time series for a lag of value k can be eliminated
by differencing the series for the value k, i.e., replacing the ith element with its difference from the
(i − k)th element. This transformation can reveal hidden seasonal characteristics by eliminating
serial inter-dependencies. Secondly, the elimination of the serial dependencies can make the time
series stationary, i.e., it has constant mean, variance, and auto-correlation over time [237].

2.8.4 Spectral Analysis

As discussed earlier, a time series can be viewed as a sum of a variety of cyclic components.
These cyclic components are characterized using their wave-lengths as expressed via periods and
frequencies. The frequency of a cycle, ν, is its number of occurrences during a fixed time, while the
period, λ, is the time interval required for a cycle to complete. Thus, the frequency is the reciprocal
of the corresponding period, ν = 1

λ
. The frequency-domain (spectral) analysis of a time series aims

to decompose the original time series into its cyclic components and to compute their frequencies
to study their impact on the observed data.

The spectral analysis uses two periodic sinusoidal functions, sine and cosine, to represent the
original time series. Thus, a time series can be represented using its harmonic components as

yt = a0 +

q
∑

1

(akcos(2πµkt) + bksin(2πµkt)) (41)

where the frequency µk is computed as µ = 2πλk, and λk = k
q
. This representation can be cast

as a linear multiple regression problem, where the dependent variable is the observed time series.
The aim is fit q sine and cosine functions of different wave-lengths to the data. The paramaters,
ak and bk are regression coefficients the express the degree to which the respective sine and cosine
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functions are correlated with the data [237]. A n-element time series will be represented by n
2 + 1

cosine functions and n
2 − 1 sine functions. Thus, an n-element time series will have n sinusoidal

waves. The spectral analysis will identify correlations of sine and cosine functions of different
frequencies with the observed data. If a large coefficient is found, there is strong correlation of the
observed data with the corresponding frequency (i.e., an influential cycle with that frequency has
been found).

The results of the spectral analysis can be viewed using a periodogram, P . The periodogram
values, Pk can be computed as the sum-squared coefficients for each frequency:

P =
n

2

q
∑

k=1

ak
2 + bk

2 (42)

The periodogram values can be interpreted in terms of variances of the data at the respective
frequency. The periodogram is usually presented as a plot of the values (Pk) against the frequencies.
The periodogram plot can be used for various spectral analyses of the observed data. For example,
one can determine the most influential spectral densities, i.e., regions of similar adjacent (similar)
frequencies that have the maximum impact on the periodic features of the series. This can be
achieved by smoothing the periodogram values via a weighted moving average transformations over
a smoothing window. Commonly used smoothing transformations include equal-weight (Daniell),
Tukey, Hamming, etc. [237]. The periodogram information can also be used for identifying that
there are no cycles in the time series, i.e., each observation is independent of all other observations
(white noise series). In such cases, the periodogram values follow exponential distribution. This
test can also be performed for a particular frequency range.

Computationally, the spectral decomposition and identification of sine and cosine coefficients can
be done using Fourier Transformations. For a n-element time series, the computations involve O(n2)
complex operations. In practice, this process is implemented using the Fast Fourier Transform
(FFT) algorithm which requires O(n lg(n)) operations.

2.8.5 ARIMA

The auto-regressive integrated moving average (ARIMA) model is widely used for undestanding and
forecasting stochastic processes represented in a time series data [27]. This model is a combination
of three different time-domain models:

• Auto-regressive Model (AR): In this model, an observation in a time series can be viewed as
a composition of a random error component (a white noise process) and a linear combination
of prior observations. The auto-regressive model of order p, AR(p) is defined as

yt = c+

p
∑

i=11

φiyt−i + ǫ (43)

where φ1, · · · , φp are the parameters, c is the constant, and ǫ is the white noise error. Thus,
one can estimate consecutive elements in a time series from specific time-lagged previous
elements.

• Stationary Model (I): The stationary model assumes that the time series has constant mean,
variance, and auto-correlation over time. If the time series has serial dependencies, they can
be removed by differencing (or inverse integrating) with a lag. The stationary model is usually
characterized by the difference value, d, which signifies the number of differencing passes used.
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• Moving Average (MA): The moving average captures the effect of white noise error that
cannot be accounted by the the auto-regressive component. The moving average MA(q)
refers to the moving average of order q:

yt = µ+ ǫt + θ1ǫt−1 + · · · + θqǫt−q (44)

where µ is the mean of the series, ǫ1, · · · , ǫt−q are white noise errors, and θ1, · · · , θq, are the
moving average parameters. If the series is stationary, a moving average representation of a
time series can be inverted to an auto-regressive representation.

An ARIMA representation of a time series, ARIMA(p, d, q) uses three parameters: auto-
regressive parameters, p, number of differencing passes, d, and moving average parameters, q.
Application of the ARIMA model requires three steps: choosing the number of ARIMA parame-
ters p, d, q, and the constant factors, estimation of the parameters, and forecasting The number of
the individual ARIMA parameters can be made using the correlograms of the series. In practice,
number of parameters to be used is rarely greater than 2. Once the values of the p, d, q parameters
is fixed, the values of the auto-regression (φ) and moving average (θ) parameters is estimated using
any of the function minimization procedures that minimize the sum of squared residuals [237].
Once the parameters are estimated, they can be used for predicting future values of the time series.
If the estimation is performed on the differentiated data (i.e., d > 0), the time series is integrated
(inverse of differencing) before the forecasts are computed.

2.8.6 Exponential Smoothing

In this approach, recent observations are given relatively more weight in forecasting than the older
observations. One simple way to view a time series is to imagine each observation as consisting of
a constant (b) and an error component (ǫ), yt = b+ ǫt. The constant b is relatively stable, but may
change slowly over time. One way to isolate the relatively stable part of the series, is to compute a
moving average where younger observations are assigned greater weight than the respective older
observations. The exponential smoothing scheme assigns exponentially decreasing weights as the
observations get older [237, 52]. For any time period t, the smoothed value St is found by computing

St = αyt−1 + (1− α)St−1 0 < α ≤ 1 t ≥ 3 (45)

The smoothed series starts with the smoothed version of the second observation (S2). The value
of S2 plays an important role in computing all future observations. There are several alternatives
for assigning the value: one method is to assign it to y1, while another assigns it to the average of
first four or five observations [52]. The process recursively computes successive smoothed versions
as the weighted average of the current observation and previous smoothed observation. Thus, each
smoothed value is the weighted average of the previous observations, where weights, α(1− α)t, are
decreasing exponentially. The rate of smoothing is determined by the value of α: when α is closer
to 1, the rate of smoothing is fast, when it is closer 0, the rate is slow. Hence, identification of
the best value for α is very important. This can be done either by visual evaluation of the actual
and smoothed time series or by using various statistical measures, e.g., mean error, mean absolute
error, sum of squared error, etc.

The single exponential smoothing approach can not effectively forecast time series with trend
and seasonal components. To captures trends in the time series data, double exponential smoothing
is used as follows:
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St = αyt + (1− α)(St−1 + bt−1) 0 ≤ α ≤ 1 (46)

bt = γ(St − St−1) + (1− γ)bt−1 0 ≤ γ ≤ 1 (47)

The first equation adjusts St to the trend of the previous period, bt−1, by adding it to the last
smoothed value, St−1. The second equation updates the trend using the weighted difference of
the last two smoothed values. In the double exponential smoothing approach, m-periods-ahead
forecast is given by

Ft+m = St +mbt (48)

Finally, to capture both trends and seasonality, triple exponential smoothing is used. The set
of equations are called the Holt-Winters method [52].

St = α
yt

It−L
+ (1− α)(St−1 + bt−1) 0 ≤ α ≤ 1 (49)

bt = γ(St − St−1) + (1− γ)bt−1 0 ≤ γ ≤ 1 (50)

It = δ
yt
St

+ (1− δ)It−L 0 ≤ δ ≤ 1 (51)

The first equation performs the overall smoothing using the trend (b) and seasonal (I) factors.
The second equation performs smoothing of the trend factors, while the third smooths the season-
ality factors. The smoothed values computed by these functions can then be used for forecasting
future values assuming trend and seasonal periods (m and L):

Ft+m = (St +mbt)It−L+m (52)

2.8.7 Further Reading

Basic idea [70, 52, 237, 27]; Algorithms: ARIMA [27], Exponential Smoothing [237, 52]; Pack-
ages: R [243], Weka [89], IBM SPSS [118], RapidMiner [208], STATISTICA [244], and SAS [218];
Applications [229, 187, 228].

2.9 Text Analytics

Text analytics covers computational approaches that process structured and unstructured text
data to extract and present innate information. The text analytics approaches usually operate on a
corpus of text documents, potentially written in different languages, to transform the input data into
a form that can be consumed by an user, usually a human subject. The goals of the text mining
methods are to derive new information from data, find patterns across datasets, and separate
relevant contextual information from noise. Thus, text analytics is different from information
retrieval, which aims to find already known information from the data [98]. Text analytics is an
inter-disciplinary field that uses techniques from statistics, natural language processing, linguistics,
artificial intelligence, information retrieval, and data mining to pre-process, categorize, classify, and
summarize the input text data.

One encounters text analytics extensively in daily life: from web searches and navigation,
reading personalized online news articles, identification and filtering of e-mail spams, help desk
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communications, finding relevant references during research work, online advertisements, etc. Text
analytics has been applied to a diverse class of domains which include intelligence gathering, bio-
informatics, news gathering and classification, online advertising, medical informatics, social sci-
ences, marketing, patent searching, and web searching/navigation. Common operations performed
by text analytics tasks include pattern matching, lexical analysis, semantic analysis (e.g., synonym
identification), entity recognition, co-reference, topic-bases classification, correlation, and document
clustering, link analysis, and tagging/annotation. These capabilities are provided in most of the
commercial text analytics packages [117, 71, 58].

2.9.1 Basic Idea

The text analytics applications usually take text in its native raw format as input. The text can
be organized as either a collection of documents or as individual text files. The input text can
have imperfections like formatting, grammatical and typographical errors or contain unimportant
stop-words like an or the. Thus, text analytics methods first pre-process the input data to clean it
and prepare it for further analysis. Common steps in text pre-processing include [71]:

• Import and Parsing: The first phase involves reading the data in its native form, (usually
encoded using the Unicode UTF-8 format) and tokenize it into a set of tokens.

• Stemming: Stemming involves removing word suffixes (e.g., common morphological and in-
flectional endings (such as ed) from English words) to retrieve their radicals. This results in
reduction in processing complexity without elimination of key information.

• Whitespace elimination and case conversion

• Stopword removal: Stop-words are those words that are so common in a language such that
their entropy is very low. So they can removed without reducing the available information.
Examples of English stop-words include and, for, in, etc.

• Synonym Identification: Synonym identification is useful to find distinct words with the same
meaning. Additional tests can also be carried out to understand specific meanings of words
as inferred from their contexts.

• Tagging and Annotation: In some applications (e.g., in computational linguistics), it useful
to tag the words using a set of predefined tags identifying nouns, verbs, adjectives, adverbs,
etc.

• Other pre-processing functions include converting a document to plain text (e.g., by removing
XML/HTML tags), removing certain tokens (e.g., citations, numbers, punctuations) from the
text, and replacing words in a given phrase.

After the pre-processing stage, data from the input corpus is usually represented using spe-
cialized data structures. The most common text analytics data structure is the term-document
matrix. This approach represents the processed text as a bag of words in which the order of to-
kens is irrelevant. The term-document matrix uses document IDs as rows and terms (tokens) as
columns. The matrix element (i, j) represent different weightings of a term j for the document
i. Common weightings include term frequencies in a document, binary frequencies to represent
inclusion or exclusion of a term, and inverse document frequency weighting that gives more weight
to less frequent terms. The term-document matrix is usually sparse and processed in compressed
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format. Alternatively, the pre-processed text is maintained in the native form and processed as
strings [152].

We now overview typical applications of text mining that include count-base analysis, text
categorization, text classification, semantic analysis, sentiment and topic analyses.

• Count-based Analysis: The most common usage of count-based analysis views word fre-
quencies as a measure of importance. Given a term-document representation of a processed
dataset which uses the term frequencies as element weights, relative frequencies of the terms
can be easily computed. The frequencies can then be used for computing associations between
different terms via computing frequencies of their co-occurrences.

• Text Clustering: Clustering allows (semi)-automatic categorization of text documents accord-
ing to certain similarity measure [267, 46]. The sparse term-document representation of the
text documents can be viewed as a representation of the data corpus in a high-dimensional
space. The text data can then be clustered using traditional clustering algorithms like hier-
archical clustering [266]and k-means clustering (Section 2.2). Common similarity measures
used for text clustering include metric distance, cosine distance, Pearson Correlation and
Extended Jaccard similarities [239].

• Text Classification: In contrast to clustering, text classification organizes text documents
into pre-defined groups. The classification process uses similar metrics like clustering to
measure similarity. In practice, methods like Naive Bayes, top-k nearest neighbor search
(Section 2.3) and Support Vector Machines (SVMs) (Section 2.6) are used for classify the
text documents [126, 152].

• Semantic Analysis: Given a corpus of text documents, semantic analysis aims to elicit and
represent knowledge from the corpus, without any prior information. The common techniques
used for semantic analysis include the latent semantic analysis/indexing (LSA) or the latent
Dirichlet allocation (LDA). These techniques build a knowledge base of concepts by exploring
relationships between documents and terms [143].

• Sentiment and Topic Analysis: Sentiment analysis (opinion mining) aims to discover the
tone of a document or sentence (e.g., positive, negative, or neutral) by applying natural
language processing to the text data [197, 142]. Sentiment analysis is related to topic analysis
which aims to identify hot topics from the set of input text documents. Topic analysis uses
various transformations of the term-document matrix, in particular, the non-negative matrix
factorization, to deduce important topics.

We now overview key algorithms employed in text analytics to solve these applications.

2.9.2 Naive Bayes Classifier

The naive Bayes classifier is an example of supervised text classification method, in which the
decision criterion for classification is learned from a training set via statistical approaches. The
naive Bayes classifier is used extensively in practice for document classification, specifically for
email categorization and spam filtering [212, 228].

Given a corpus (document space), D, of documents, d ∈ D, a fixed set of classes or categories
C = {c1, c2, . . . , cj}, and a training set T of labeled documents < d, c >, where, < d, c >∈ D×C, we
want to use a supervised learning method Γ to learn a classification function γ that maps documents
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to classes, γ : D → C. The learning method Γ takes the training set T as input and generates the
learned classification function γ, Γ(T) = γ.

In the naive Bayes classifier, the naive Bayes learning method is used to generate the classifier,
γ. The learning method make certain probabilistic assumptions about the generation of data that
is being classified and it uses the training set to estimate the parameters of the generating model.
The naive Bayes model assumes that all attributes of the training examples are independent: in
case of the document classification, the attributes of the documents are words. Because of the
independence assumption, the parameters of the attributes can be learned independently. This
simplifies the learning process, in particular when the number of attributes is large [164, 158]. For
document classification, the number of attributes - words - can be very large (in thousands), and
hence, that naive bayes approach is quite appealing for document classification.

In the document classification problem, each document is associated with a class and the class of
a document is determined using properties of the document attributes, i.e., words. For a document
d, the naive Bayes classifier aims to find the best class (category), cmap, as the class with the
maximum a posteriori probability as follows:

cmap = arg max P (c|d), c ∈ C (53)

cmap = arg max
P (d|c)P (c)

P (d)
, c ∈ C (54)

cmap = arg max P (d|c)P (c), c ∈ C (55)

where P (c|d) is the probability of a document d being in class c, P (c) is the prior probability
of a document occurring in class c and P (d|c) is the conditional probability of a document d given
a class c is computed according to the model used to generate the test data [158]. The naive Bayes
approach uses two generative models:

1. The multi-variate Bernoulli event model in which a document is represented by a vector of
binary attributes indicating which words occur or do not occur in the document. Thus each
document is a binary vector over the space of words. Each dimension of the space corresponds
to a word, wt, from a vocabulary, V . The value of the tth position in the vector is 0 or 1,
indicating whether word wt is absent or present in the document, irrespective of the number
of occurrences of the word.

P (d|c) = P (< e1, . . . , ei, . . . , eM > |c) (56)

where < e1, . . . , ei, . . . , eM > is a binary vector of dimensionality M (number of words). Based
on the naive Bayes conditional independence assumption, the probability of each word being
occurring in a document is independent of the occurrences of other words in the document.
Then, the probability P (d|c) can be computed as:

P (d|c) = P (< e1, . . . , ei, . . . , eM > |c) = Π1≤i≤MP (Ui = ei|c) (57)

where Ui is the random variable for vocabulary term i and takes as values 0 (absence) and 1
(presence), and P (Ui = 1|c) is the probability that in a document of class c the word wt will
appear at any position and possibly multiple times [158].
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2. The multinomial model captures word frequency information in documents. This model
assumes that a document is an ordered sequence of word events and the lengths of documents
are independent of class. Thus, the probability P (d|c) can be computed as

P (d|c) = P (< t1, . . . , ti, . . . , tnd
> |c) (58)

where < t1, . . . , ti, . . . , tnd
> is the sequence of words as it occurs in the document d and nd

is the total number of words. Using the naive Bayes conditional independence assumption,
the probability of each word event in a document is independent of the word’s context and
position in the document. Thus, each document di is drawn from a multinomial distribution
of words with as many independent trials as the length of di. Then, the probability P (d|c)
can rewritten as

P (d|c) = P (< t1, . . . , ti, . . . , tnd
> |c) = Π1≤i≤nd

P (Xi = ti|c) (59)

where Xi is a random variable for position i in the document and takes as values terms from
the vocabulary. P (Xi = ti|c) is the probability that in a document of class c the word ti will
occur in position i.

Using the documents in the training set T, the learning method calculates the Bayes-optimal
estimates of the probabilities of a word wt being in class c and P (c), which can then be used
to compute the probability P (d|c) as shown above. The learning phase also estimates the prior
probability of a document being in class c by using the maximum likelihood estimate as Nc

N
, where

Nc is the number of documents in class c and N is the total number of documents. Then, the
classification of test documents can be performed by calculating posterior probability of each class
given the evidence of the test document, P (c|d) (Equation 53), and choosing the class with the
highest probability [164].

The time complexity of the naive Bayes classifier, for both training and testing, is linear in
the time it takes to scan the data [158], also the data needs to scanned only once. Given this
time complexity and its advantages in learning over a large number of attributes, the naive Bayes
classifier is considered a popular method for document classification.

2.9.3 Latent Semantic Analysis/Indexing

Latent Semantic Analysis (LSA) is a method for extracting and representing the innate semantic
meaning, as approximated via contextual-usage of words, by statistical and matrix computations
applied to a large text corpus [61, 144, 143]. The LSA uses matrix representation of the underlying
text documents to analyze relationships between documents and words they contain, to infer deeper
relations between different words, word and passages, words and documents, different documents,
etc. It can be viewed as a practical method for approximating the meaning of a word as its average
effect on the meaning of passages, and in converse, approximates the meaning of a passage as an
average of the meaning of their words [143].

The LSA is being primarily used in scenarios where traditional count-based information retrieval
techniques fail. For example, it has been used in the education domain for automatically grading
essays. It has been used for comparing documents across different languages using a single language
corpora that contains multiple translations of several text documents. It has been applied for
classifying books based on contextual criteria, diagnosing psychological disorders, and matching
jobs with applicant resumes [143].
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The LSA represents the input text corpus in the semantic space using a term-document matrix.
Unlike the traditional term-document matrix, the columns can stand for any units of analysis,
such as passages or documents (the rows still represent the words (terms)). The values of the
matrix can be weighted in different ways: (1) tf-idf (term frequency-inverse document frequency),
where the weight is proportional to the number of occurrences in a term in the document and rare
occurrences are over-weighed to reflect their relative importance, or (2) as log(frequency(i, j)+1),
where frequency(i, j) captures the frequency of term i in document j. Thus, each row captures the
relationship of a word to each document in the corpus (word vector), while each column captures
the relationship of the corresponding document with all the words in the corpus (passage vector).

The term-document matrix is a sparse data structure that maps the text corpus to a high-
dimensional space. The key operation of the LSA method is to perform a reduced-rank singular
value decomposition of the term-document matrix, in which the k largest singular values are retained
and rest set to 0. Let X be a rectangular t × p matrix of words and documents (passages). A
singular value decomposition (SVD) of the matrix X results into a product of 3 matrices T , S,
and P , X = T ∗ S ∗ P T , where T is a t × r matrix with orthonormal columns, P is p × r matrix
with orthonormal columns, and S is an r× r diagonal matrix with the entries sorted in decreasing
order. The entries of S are eigenvalues and are called singular values, and P and T are right and
left singular vectors corresponding to passage and word vectors.

The LSA uses the top k singular values, thus creating a low-rank approximation of the term-
document matrix X, X ≈ Tk ∗ Sk ∗ P

T
k . The rows of Tk are the term vectors in the reduced-

dimensional LSA concept space, while Pk represent the passage vectors. The rank-reduction ap-
proximation eliminates any noise in the original data and also merges the dimensions associated
with the words with similar meanings. The term and passage vectors can then be evaluated for
word-word, word-passage, passage-passage similarities by taking dot-products of corresponding
vectors and using cosine similarity metric [144].

2.9.4 String Kernel Functions

The attribute-word based classification of text documents can be viewed as a classification in a very
high-dimensional feature space (with more than 10000 dimensions), in which each distinct word
corresponds to a feature, and its occurrences as the feature value. A popular approach to classify
data in a very high-dimensional feature space uses support vector machines (SVMs) [126, 78].
The SVM-based learning algorithms are suited for text classification as (1) the SVM’s learning
approach can handle very large number of feature dimensions, with very few irrelevant features, (2)
The presumed text categories are linearly separable and can be effectively expressed using SVMs,
and (3) the SVM algorithms are well suited for applications with sparse feature vectors.

A key feature of the SVM approach is the use of kernel methods as an alternative to explicit
feature extraction. The kernel methods use a kernel function that returns the inner product between
the data points in a higher dimensional feature space. The kernel computes the inner product by
implicitly mapping the input data to the higher-dimensional feature space. Thus, for any mapping
φ : D → F , K(di, dj) = φ(di) ·φ(dj) is a kernel function. A kernel function K(di, dj) is a symmetric
function and is represented using a n× n kernel matrix that is symmetric and positive definite.

For the text classification problem, the text documents can be mapped, without explicit repre-
sentation, in such a way that inner product can be directly applied to their mapped representations.
Unlike the previous approaches that use the term-document matrix, this approach analyzes the text
documents natively using strings. Any two text documents can be compared using their constituent
substrings: the more substrings in common, the more similar they are. The substrings do not need
to be contiguous and the degree of contiguity determines how much weight it can carry in any
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comparison [152]. The generic form of the string kernel function compares two substrings x and y
as

K(x, y) =
∑

s∈Σ∗

nums(x)nums(y)λs (60)

where, Σ∗ represents the set of all strings, nums(x) represents the occurrences of a string s in x,
and λs is a weight or decay factor to represent contiguity in the strings. This generic formulation
can be extended to compare text documents using string subsequences using the following kernel
(called the string subsequence kernel (SSK)) [152]:

Kn(s, t) =
∑

u∈Σn

< φu(s) · φu(t) >=
∑

u∈Σn

∑

i:u=s[i]

λl(i)
∑

j:u=t[j]

λl(j) =
∑

u∈Σn

∑

i:u=s[i]

∑

j:u=t[j]

λl(i)+l(j) (61)

where Kn is the subsequence kernel function for strings up to the length n, s and t denote
strings from σn, the set of all finite strings of length n, and 0 ≤ λ ≤ 1 is a decay factor. u is
a subsequence of s, if there exist indices i = (i1, . . . , i|u|), with 1 ≤ i1 < · · · < iIu| ≤ |s|, such
that uj = sij , for j = 1, . . . , |u|, or u = s[i], where |s| is the length of the string, s. The length
l(i) of the subsequence in s is i|u| − i1 + 1. This kernel maps strings to a feature vector indexed
by all k tuples of characters. A k-tuple will have a non-zero entry if it occurs as a subsequence
anywhere in the string (not necessarily contiguously). The weighting of the feature vector will be
the sum over the occurrences of the k-tuple of a decaying factor of the length of the occurrence.
Thus, the inner product of the feature vectors for two strings s and t give a sum over all common
subsequences weighted according to their frequency of occurrence and lengths. These features can
be computed efficiently using a recursive formulation that uses dynamic programming. Overall,
the SSK approach measures the similarity between documents s and t in O(n|s||t|) time, where n
is the length of a sequence.

2.9.5 Non-negative Matrix Factorization

Non-negative matrix factorization (NNMF) is a family of unsupervised learning algorithms that
view an object using parts-based additive representation [145, 146]. While initially designed as an
alternative to the Principal Component Analysis (PCA), and Vector Quantization (VQ) for image
processing, NNMF is now extensively used for text analytics problems such as document clustering
and topic sentiment analysis [102, 261, 197].

Basic Idea The parts-based representation views an object as an additive sum of component
parts [102]:

Objecti = bi1 ∗ Part1 + bi2 ∗ Part2 + ...., where bij ≥ 0
Thus an object is viewed as a linear combination of basic components using only non-negative

weights. The non-negative weights mimic the intuitive interpretation of a object using presence or
absence of key parts (features). Hence, this model differs from the holistic learning strategies used
in the PCA and VQ approaches. More generally, NNMF models generation of directly observable
visible variables from a set of hidden variables [145]. Each hidden variable co-activates a subset of
visible variables or parts. Activation of a set of hidden variables combines these parts additively to
generate the whole object.

The NNMF formulation is inherently suited for solving the classification problems in text anal-
ysis such as semantic topic (or sentiment) analysis. Specifically, a document can be viewed as a set
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of words combined with their number of occurrences. Given a corpus of documents, one wants to
automatically discover hidden classifications, e.g., using topics as a classifier. The task is then to
explain a document i as a linear combination of topics:

Documenti = bi1 × Topic1 + bi2 × Topic2 + ......
where bij can be considered as the similarity or participation of topic j to a document i. Topics

are characterized by a list of keywords, which describe their semantics. In reality, a document can
belong to a number of topics. This feature can be reflected in the above formulation using different
non-negative weights, higher weights reflecting those topics that strongly influence the document.
For the topic analysis application, a corpus of documents can be summarized by a matrix V , where
Vij is the number of times the ith word in the vocabulary appears in the jth document. The
word counts can be regarded as a set of visible variables and modeled as being generated from
an underlying set of hidden variables. Application of the NNMF involves finding an approximate
factorization of this matrix V ≈ W ∗ H, where all three matrices are non-negative. If the same
hidden variable is active for a group of documents, they are semantically related, because they have
similar frequencies of word counts. Consequently, hidden variables are called semantic variables
and each column of W , a semantic feature, consists of word frequencies of corresponding semantic
variables. In each semantic feature, the NMF algorithm groups together semantically related words,
the frequencies of these words represents their influence. Each document in the corpus, can be then
reconstructed by additively combining these features.

Core Algorithms Formally, the NNMF algorithms can be defined as algorithms for solving the
following problem: Given a non-negative matrix V , find non-negative matrix factors W and H such
that: V ≈W ∗H.

Given a set of multivariate n-dimensional data vectors, the vectors are placed in the columns
of an n × m matrix V where m is the number of examples in the data set. This matrix is then
approximately factorized into an n × r matrix W , and an r ×m matrix H. Usually, r is chosen
to be smaller than n or m, so that W and H are smaller than the original matrix V . Thus, each
data vector v of V is approximated by a linear combination of the columns of W , weighted by the
components of corresponding columns h of H.

The non-negative matrix factorization can be implemented using three classes of algorithms:
multiplicative update algorithms, alternating least squares methods, and gradient-based meth-
ods [102]. We focus on the multiplicative update algorithms of Lee and Seung [146, 145] as they
are most widely used in practice.

The multiplicative update algorithms aims to optimize an objective function via an iterative
algorithm. Every iteration of the algorithm, the new value of W or H is found by multiplying the
current value by a factor that depends on the quality the approximation. One version of the algo-
rithm aims to minimize the euclidean distance ‖ V −W ∗H ‖2 using the following multiplicative
rules:

Wij ←Wij

∑

k

Vik

(WH)ik
Hik (62)

Wik ←
Wik

∑

jWjk
(63)

Hjk ← Hjk

∑

i

Wij
Vik

(WH)ik
(64)
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As the solution to the objective function is not unique, several constraints are added to the
matrices W and H, e.g., the euclidean distance of the column vectors in W is 1 or an orthogonality
constraint HTH = I [129, 65, 261].

When non-negative matrix factorization is used for document clustering, a non-negative matrix
V (w, d), where w is the number of words, and d is the number of documents, is factorized into two
factors, W (w, c) and H(c, d), where c is the number of clusters. Each column of V contains word
counts of for a particular document and each row of V contains the counts for a particular word.
After factorization, document dj is assigned to a cluster k if Hkj = max{∀iHij}. Each element wij

of W represents the degree to which a word ti belongs to cluster j, while each element hij of H
indicates to which degree a document j belongs to a cluster i [129].

2.9.6 Further Reading

Basic idea [71, 158]; Algorithms: Naive Bayes [164, 158], Latent Semantic Analysis [61, 144, 143],
String Kernel Functions [152], and Non-negative Matrix Factorization [145, 146, 102, 261, 129,
65]; Packages: R [71], SPSS Modeler [117], STATISTICA [244], RapidMiner [208], Oracle Data
Miner [193], and SAS [58]; Applications: [267, 46, 126, 152, 197, 212, 126, 78].

2.10 Monte Carlo Methods

The Monte Carlo method refers to a class of algorithms that employ repeated statistical sampling
to compute approximate solutions to quantitative problems. These techniques are widely used for
the applications with inherent uncertainty, such as pricing of various financial instruments, or for
simulating systems with many coupled degrees of freedom, e.g., simulating behaviors of different
materials. While the Monte Carlo methods had been originally designed for solving problems with
probabilistic outcomes, they have also been applied to solve deterministic problems with infeasible
computational requirements, e.g., solving multi-dimensional definite integrals with a large number
of dimensions or with difficult boundary conditions.

The first application of the Monte Carlo methods was to understand behavior of nuclear reac-
tions (e.g., neutrino travel patterns) [167]. Over the years, the Monte Carlo methodology has been
applied to a wide array of applications domains including different physical sciences, engineering,
finance, numerical analysis, and mathematical optimization [74]. Some well-known applications in
the physical sciences domain include liquid simulation and other molecular modeling problems, un-
derstanding many-body interactions and quantum chromo dynamics (QCD) in quantum mechanics,
simulation of protein membranes and other biological simulations, etc. Monte Carlo methods are
being used for sensitivity analysis in process engineering or for simulating defects in VLSI designs.
These methods are also being used in computational numerical analysis, e.g., for solving partial
differential and integral equations, linear algebraic equations, and matrix inversion [90]. Perhaps
the most popular application of monte carlo methods is in financial engineering where they are
extensively used for insurance risk modeling, pricing various types of options and derivatives, e.g.,
European and American style options, mortgage-backed securities, and portfolio analysis (e.g.,
calculating Value-At-Risk (VaR)) [81, 29].

2.10.1 Basic Idea

The Monte Carlo method is defined as an approach that represents an approximate solution of
a problem as a parameter of a hypothetical population, and using a random sequence of values
to construct a sample of the population, from which statistical estimates of the parameter can be
obtained [90]. For a problem, the Monte Carlo method repeatedly generates independent identically
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distributed random variables from the same distribution as the problem, and then uses them in
either deterministic or stochastic model to compute the solution.

In its simplest formulation, the Monte Carlo method can be viewed as an approach that uses
statistical sampling to compute a numerical integral. For example, the first moment of the uniform
distribution over the interval [0, 1] can be computed via the integral

∫ 1
0 xdx, with the analytical

solution of 0.5. The Monte Carlo method estimates the integral value by using random variables
drawn repeatedly from a uniform distribution, and then computing their mean [220]. Formally,
for an integral Ψ =

∫ 1
0 f(u)du, the Monte Carlo method approximates a solution by introducing

a random vector U that is uniformly distributed in the region of distribution. After applying the
function f to U, one gets a random variable f(U) with expectation

E[f(U)] =

∫ 1

0
f(u)φ(u)du (65)

where φ is the probability density function of U. As φ equals 1 on the region of integration,
the expectation matches the value of the determinist integral, Ψ =

∫ 1
0 f(u)du.

Ψ = E[f(U)] =

∫ 1

0
f(u)du (66)

The random variable f(U) has mean Ψ and standard deviation σ. Ψ can be also viewed as a
probabilistic expression for the given integral. Thus, Ψ can be estimated with standard deviation
σ using an unbiased estimator H = f(U[1]). To improve the approximation, one can generalize the
estimator to accommodate a larger sample, {U[1],U[2], . . . ,U[m]}, selected from the same distribu-
tion. Applying the function f to each of these variables yield random variables, f(U[1]),f(U[2]),..
f(U[m]), each with expectation Ψ and standard deviation σ. Then, the generalized estimator of
Ψ, H, with standard error, σ√

m
, can be defined as

H =
1

m

m
∑

k=1

f(U[k]) (67)

H is called the crude Monte Carlo estimator. The standard error of a Monte Carlo estimation
decreases with the square root of the sample size [211]. Secondly, the standard error is independent
of the dimensionality of the integral. Unlike the conventional numerical integration approaches
which suffer from the curse of dimensionality, the amount of work required by the Monte Carlo
approach does not increase exponentially in the number of dimensions. Unfortunately, to improve
the estimation quality, the Monte Carlo approach usually requires a large number of samples. One
way to improve the efficacy of the Monte Carlo methods is to use one of the variance reduction
methods, e.g., importance or stratified sampling. In general, the Monte Carlo methods are suitable
for software/hardware-based implementations that can efficiently generate random samples.

Sawilowsky [220] classifies applications of Monte Carlo methods into three types: (1) Using
stochastic techniques for solving deterministic problems, e.g., Monte Carlo integration for solving
multi-dimensional integral problems, (2) Using stochastic techniques for solving problems with
probabilistic outcomes (e.g., pricing of financial instruments), usually referred to as the Monte
Carlo Simulation, and (3) Using the Monte Carlo method as a tool for generating samples of a
particular probabilistic distribution. However, in many practical scenarios, this distinction gets
blurred. Algorithms that emply the Monte Carlo methods use the following methodology:

1. Identify a probability distribution function that mimicks the problem under consideration
(e.g., normal distribution for option pricing)
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2. Generate samples from the probability distribution function using a pseudo-random number
generator

3. Pass the sample values through a deterministic or stochastic models (for simulation and
sampling) to get the final result.

Irrespective of how the Monte Carlo methods are used in practice, all Monte Carlo implementa-
tions rely on techniques to generate good random number generators. In practice, it is not possible
to generate pure random numbers, so Monte Carlo algorithms use pseudo-random good implemen-
tation of a Monte Carlo method [220] number generators. Sawilowsky lists the following conditions
for a good implementation of a Monte Carlo method:

• The pseudo-random number generator produces repeated values separated by a long period.

• The pseudo-random generator generates values that pass tests for randomness.

• The experiment uses enough samples so as to minimize the approximation errors.

• Proper sampling of the random values is used.

• The Monte Carlo approach is valid for the scenario being modeled.

• The model simulates the scenario in question.

2.10.2 Random Number Generators

Pseudo-random number generators (PRNG) refer to a class of computational algorithms that can
generate a sequence of numbers that mimic random numbers. Usually, the numbers generated by
these algorithms repeat after a certain time which called the period of the PRNG algorithm. A
PRNG algorithm usually requires a seed number as its initial state. For a particular seed, the
PRNG algorithm would produce the same sequence of numbers. The length of the seed determines
the period of the PRNG algorithm: for a n-bit seed, the period is always less than 2n.

Most PRNG algorithms use bit manipulation and shuffling (e.g., the multiply-with-carry, xor-
shift, subtract-with-borrow, etc.) combined with recurrence strategies to incorporate pseudo-
randomness into the generated sequences. One of the widely used PRNG (used for implement-
ing the rand() function in most compiler libraries) uses a recurrent generator, called the linear
congruential generator (LCG). The LCG is defined by the following recurrent relation:

Xn+1 ≡ (aXn + c) (mod m) (68)

where X0 is the seed, m, 0 < m is the modulus, a, 0 < a < m is the multiplier, and c,
0 ≤ c < m, is the increment. Usually, the parameters c and m are relatively prime. The pseudo-
random sequence Xn has period of at most m. However, the period of the LCG generator depends
on the choices of the parameters and in practice, m is usually 232, 248, or 264. Unfortunately,
random values generated from LCG suffer from serial correlation and hence, it is not ideally suited
for the Monte Carlo computations.

The Mersenne Twister (MT) generator [162, 163, 214] has been designed applications for like the
Monte Carlo methods that need random sequences with very long periods. For a k-bit word, the MT
algorithm generates integers with uniform distribution in the range [0, 2k−1]. The MT algorithm’s
period is chosen to be one of the Mersenne prime numbers: the most commonly used variant of
the MT algorithm, MT19937 generates 32-bit pseudo-random integers over [0, 232] with the period
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of 219937 − 1. The numbers generated by the MT algorithm are free of long-term correlations. The
MT algorithm uses a recurrence formulation that mimics operations of a large linear-feedback shift
register via a matrix-vector multiplication over a finite binary field F2, in which the vector is built
using bit manipulations (namely, xor and ordered concatenations) over initial integer seeds and
computed values.

Another relevant PRNG family of algorithms is the Multiply-with-Carry approach [160] that
uses the following recurrence:

Xn = a×Xn−1 + (carry mod)232 (69)

where a can be any numbers for which both (a × 232) − 1 and (a × 231) − 1 are prime. The
computation is performed using modulo base b arithmetic, where b = 232. Along with its version, the
Complimentary-Multiply-with-Carry algorithm [51], this approach can generate random numbers
with very large periods.

2.10.3 Monte Carlo Variants

In practice, different variants of the original Monte Carlo algorithm are also used. One popu-
lar variant, the Markov Chain Monte Carlo (MCMC) [166] is used for generating samples from
a probability distribution by using a Markov Chain whose stationery distribution is the desired
distribution. The MCMC algorithm is used for solving multi-dimensional integral problems and it
has been also applied to scenarios that exhibit random walk behavior, e.g., in statistical physics or
graphics applications. Another version, the Quasi-Monte Carlo method, low-discrepancy samples
that are deterministically chosen based on equi-distributed sequences. The low-discrepancy sam-
ples often lead to faster solution time and/or higher accuracy. The Quasi-Monte Carlo methods
are used for solving multi-dimensional integration problems, e.g., pricing financial derivatives like
Collateralized Mortgage Obligation (CDOs) [200].

2.10.4 Further Reading

Basic idea [167, 90, 220, 166]; Algorithms [162, 163, 214, 51, 160]; Applications [167, 74, 90, 81, 29,
200].

2.11 Mathematical Programming

In a mathematical optimization or programming problem, one seeks to find an optimal solution
for a problem scenario as defined by its constraints using a mathematical formulation. Specifically,
solution of a mathematical programming problem aims to minimize or maximize a real objective
function of real or integer variables, subject to constraints on the variables [104, 85]. The math-
ematical programming approach is usually applied to cases where a closed-form solution is not
(easily) found and one has to settle for the best available solution. It forms the cornerstone of
methods used in operations research and other related disciplines like industrial engineering, so-
cial sciences, economics, and management sciences. It has also been applied in a wide variety of
domains including scheduling problems (e.g., transportation), manufacturing (e.g., steel produc-
tion [66]), supply-chain management, product portfolio optimizations, workforce management, and
product configuration selection.

2.11.1 Basic Idea

A mathematical program is an optimization problem of the form
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Maximize f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0 (70)

where X is a subset of Rn and is in the domain of the functions, f, g and h, which map into
real spaces. The relations, x ∈ X, g(x) ≤ 0, and h(x) = 0 are called constraints, and the function
f is called the objective or cost function [104]. The domain X of the objective function is called
the search space. A point x is feasible if x ∈ X and it satisfies the constraints: g(x) ≤ 0 and
h(x) = 0. A point x∗ is optimal if it is feasible and if the value of the objective function is not less
than that of any other feasible solution: f(x∗) ≥ f(x), for all feasible x (also called candidate or
feasible solutions). This description uses maximization as the sense of optimization. The problem
could be easily restated as a minimization problem by appropriately changing the meaning of the
optimal solution: f(x∗) ≤ f(x), for all feasible x.

The mathematical programming broadly covers approaches used for solving and using mathe-
matical programs. It includes theorems to govern the form of the solutions, algorithms to seek a
solution or ascertain none exists, formulations of problems as mathematical programs and theorems
about quality of results, etc. In practice, mathematical programming approaches are classified ac-
cording to the properties of the objective function, constraints, and candidate solutions. We now
discuss important classes of mathematical programming.

2.11.2 Linear Programming

Linear programming approach is a special case of convex programming in which the the object
function f is both linear and convex and the associated set of constraints are specified using only
linear equalities or inequalities. Linear programming is used for modeling problems from operations
research such as network flow, production planning, financial management, etc. Canonically, the
linear programs can be expressed in matrix form as

Maximize cTx subject to Ax ≤ b x ≥ 0 (71)

where x represents the vector of variables to be determined, c and b are vectors of known
coefficients and A is a known matrix of coefficients. The set of constraints, Ax ≤ b, form a
convex polytope and any linear programming method would traverse over its vertices to find a
point where the function, cTx, has the maximum (or minimum) value, if such point exists. This
formulation of the linear programming problem is called the standard form. This form can be
converted into an augmented form that uses slack variables to convert inequalities into equalities in
the constraints. Every linear programming problem, referred as a primal problem, has an equivalent
dual formulation. For example, the formulation presented in Equation 71 can be also expressed in
its symmetric dual form as

Minimize bT y subject to AT y ≥ c y ≥ 0 (72)

The dual of a dual linear program is the original primal linear program and every feasible
solution for a linear program (LP) gives a bound on the optimal value of the objective function of
its dual.

Most approaches for solving the linear programming problems explore the feasible region over a
convex polytope defined by the linear constraints of the problem. The simplex method [53] is one
of earliest, but still widely used, methods for solving LP problems. The simplex method constructs
a feasible solution at a vertex of the polytope and then tests adjacent vertices by traversing a
path on the edges of the polytope such that the objective function is improved or is unchanged.
The simplex algorithm is very efficient in practice, requiring 2n to 3n iterations, where n is the
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number of equality constraints and is known to run in polynomial time in certain random inputs.
The worst-case complexity of the simplex algorithm is exponential in the problem size. This
problem was addressed by the Ellipsoid method [223, 245] that uses an iterative approach to
generate a sequence of ellipsoids whose volumes uniformly reduce at every step, thus enclosing a
minimizer of the convex objective function. The Ellipsoid method was the first solution to the linear
programming problems that ran in worst-case linear time. The Karmarkar’s algorithm [130, 245]
that uses a interior-point projection method improves on the Ellipsoid method’s complexity bounds
and runs in polynomial time for both average and worst cases. Unlike the simplex method, the
primal-dual (they can simultaneously optimize primal and dual versions of the feasibility functions)
interior point methods construct a sequence of feasible points lying in the interior of the polytope,
but not on the boundary of the polytope. For n variables and L bits used for encoding the input,
Karmarkar’s algorithm requires O(n3.5L) operations as compared to O(n6L) operations required
by the Ellipsoid method.

It has been shown that computations in Karmarkar’s primal-dual interior point method are
similar to numerically solving the nonlinear equations for the unconstrained minimization prob-
lem [79, 161, 245, 165, 256]. For example, the minimization problem (Equation 72) can be repre-
sented as a family of unconstrained problems that use the logarithmic barrier function using the
positive barrier parameter µ:

B(x|µ) = f(x)− µ

n
∑

j=1

log(xj) (73)

Lets x(µ) be the minimizer for B(x|µ). It can be shown that as µ → 0, x(µ) → x∗, where x∗

is the constrained minimizer. The set of minimizers, x(µ) is called the central trajectory (path).
The following steps give an outline of the path finding barrier algorithm using a logarithmic barrier
function [161]:

1. set k = 0. Choose µ0 > 0

2. Find xk(µk), the minimizer of B(X|µ) by using Newton’s method to solve the system of n
equations in n variables:

∂B(x|µ)

∂xj
=

∂f(x)

∂xj
−

µ

xj
= 0 for j = 1, · · · , n (74)

3. If µk < ǫ stop. Otherwise, choose µk+1 < µk.

4. Set k = k + 1 and go to 2.

This algorithm terminates as µk → 0 and xk(µk)→ x∗.
Most existing implementations of the interior point algorithms follow the path-following based

approaches, e.g., the predictor-corrector approach [165].

2.11.3 Integer Programming

Integer programming (IP) family covers the set of linear programming applications that require
values of the unknown variables to be integer. If only some of the variables are required to be
integers, the problems are called mixed-integer programming (MIP) problems. Another version
of the integer programming problem, 0-1 or binary integer programming, requires values of the
unknown variables to be either 0 or 1.
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Integer programming formulations are used in a wide array of business problems that require
integer solutions, e.g., in a capital budgeting situation, one wants to distribute a fixed amount of
money across different portfolios so as to maximize the profits. Integer programming problems
often observed in scheduling scenarios, e.g., house building with workers with specific skills [111]
and in assignment-related problems, e.g., airline fleet assignment for optimal utilization or profit
maximization [1]. Integer programming is also used in the distribution or network flow optimization
problems that include transportation problems (e.g., optimizing the movement of goods from man-
ufacturing plants to distribution centers to minimize shipping costs), to minimize cost or maximize
profits), shortest-route problems (e.g., the traveling salesman problems (TSP)), and maximal flow
problems (e.g., to determine the maximum amount of flow (e.g., vehicles, network packets, or oil)
can enter and exit a network system in a given period of time [7].

Multiple variants of the IP problems are generally NP-Hard and usually solved using two classes
of techniques: cutting planes and branch-and-bound. The cutting-plane methods work by first solv-
ing the linear programs generated via linear program (LP) relaxation (that drops the requirement
that the unknown variables must be integers) of the IP problems. The modified program is then
solved using traditional LP means (e.g., simplex method) to find a basic feasible solution. It is
known that the optimum solution to the relaxed IP problem is an upper bound for the optimal
integer solution. This solution represents a vertex of the convex polytope of all feasible points. If
this solution is integer-valued, then the process terminates. Else, the method finds a linear inequal-
ity that separates the vertex from all feasible integer values. The linear inequality corresponds
to an hyperplane that cuts the feasibility space (commonly called as a Gomory cut). A modified
linear program is then created by introducing the new inequality into the program. This modified
program is then solved and the process repeats until the solution is found.

The branch-and-bound (BB) methods are a general class of search techniques that can be applied
to a variety of optimization problems including integer programming, quadratic programming, and
combinatorial optimizations [258]. The BB methods systematically enumerate feasible solutions
in the search space and prune them using upper and lower bounds of the cost function being
optimized. The BB methods focus on the minimization version of the optimization problem (any
maximization problem can be easily recast in this formulation). In the first step, a set S of feasible
solutions is split into smaller sets S1, · · · , Sn, whose union covers S. Each subset represents answer
to a sub-problem of the original problem. The minimum value of the cost function f(x) over S
is min(v1, · · · , vn), where vi is the minimum of f(x) within Si. Usually, the sub-problems are
enumerated using a search tree, whose root represents the original problem and each tree node
represents a sub-problem. The next step, termed bounding, computes upper and lower bounds for
the minimum value of f(x) for each sub-problem. The final step prunes the candidate solutions
using the computed bounds. If the lower bound for a solution set (that corresponds to a tree node)
is higher than the upper bound of another solution set, then the former set can be discarded, and the
search tree can pruned at that node. The pruning process is usually implemented by maintaining
a variable to represent the global minimum upper bound. Then, any sub-problem that has a lower
bound higher than the global minimum can be safely discarded. This process recursively traverses
the tree until the candidate set of feasibility solutions contains one element or when the upper
bound for a solution set matches the lower bound. Performance of the BB methods depend on
splitting procedure and how the bounds are computed.

The basic branch-and-bound methods can be generalized to incorporate LP relaxation tech-
niques. The resultant approach, called branch-and-cut, first solves the relaxed form of the original
IP problem using the cutting plane method. Once the integer solution is found, the problem is split
into two versions, one specifying that the variables are greater than the intermediate results, and
the other specifying that the variables are less than the intermediate results. These two modified
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problems are again individually solved using the cutting plane methods. The process repeats until
an integer solution for all constraints is found. Thus, this method uses cutting and branching
throughout the search tree. Another generalization, branch-and-price, also combines the branch-
and-bound approach with LP relaxation [15]. In the branch-and-price approach, first a modified
program with LP relaxation is solved using the simplex approach. Then to check the optimality
of the solution, additional constraints (or columns in Equation 72) are introduced using a pricing
problem. If there are new columns, the problem is re-optimized. If there are no columns to be
introduced, and the solution does not satisfy the integrity constraints, the problem is branched.
Similar to the branch-and-cut approach, the branch-and-price algorithm uses pricing and branching
throughout the search tree.

2.11.4 Combinatorial Programming

Combinatorial programming (or optimizations) cover methods that aim to optimize a cost function
based on selection of objects from a set of objects [198]. Let N = {1, · · · , n} be a set of objects and
let {S1, S2, · · · , Sn} be a finite collection of subsets. These subsets are characterized by inclusion
and exclusion of objects based on certain conditions. Let each subset, Sk, be associated with a cost
function, f(Sk). The combinatorial optimization problem aims to select the subset of objects so
as to maximize(minimize) the cost function. This formulation can be viewed as a special case of
integer programming, whose decision variables are binary valued: x(i, k) = 1 if the ith element is
in the kth set, Sk, otherwise, x(i, k) = 0 [104].

Broadly, the combinatorial programming approaches can be classified based on the problem for-
mulation and the associated data structures. The most common problem formulations include path
traversals, flow and circulation, matching and covering, trees and branching, cliques and coloring,
matroids, packing (e.g., knapsack and cutting stock), sequencing/scheduling, and graph partition-
ing/cuts [198, 224]. In practice, combinatorial optimization techniques are applied to a wide array
of problems such as optimizing vehicle routing, VLSI circuit design, oil/gas pipeline design, steel/-
paper manufacturing, and matching factories with markets via intermediate warehouses (i.e., the
transshipment problem).

Unlike linear programming, the feasibility space of the combinatorial algorithms is not con-
vex; one needs to determine a global optimal point from several possible local optimal solutions.
Although most combinatorial programming approaches are either NP-Hard or NP-Complete, in
practice, many of these approaches can be solved in reasonable time by either choosing alternative
formulations or exploiting specific features of a problem to compute its exact results [103]. While
special cases of some problems can be solved in polynomial time, most common approaches for
solving combinatorial problems use either approximation algorithms that find a solution that is
provably close to the optimal in polynomial time or use heuristics that search the feasibility space
to compute sub-optimal solutions.

The approximation approach has been shown to work for several combinatorial programming
problems that include vertex cover, variants of the traveling-salesman problem (e.g., Euclidian
TSP), set-covering, graph coloring, maximum clique and subset-sum [252]. The approximation al-
gorithms are particularly suited for NP-Hard optimization problems, e.g., the bin packing problem,
which may not have any efficient polynomial-time exact algorithms. For the NP-Hard problems
that can be formulated via integer programming, linear programming relaxation is used to generate
variants which then can be solved using approximation algorithms. Alternatively, the combinatorial
optimization problems can be solved using heuristics that can search the space of feasibility solu-
tions in a reasonable time, but provide no guarantee that an optimal solution can be found. Most
common combinatorial heuristics include greedy strategy, simulated annealing, search methods
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(e.g., backtracking), stochastic optimizations, genetic algorithms, and tabu search.
The greedy strategy is the simplest heuristics to be applied for combinatorial optimizations. This

strategy always follows locally optimal choice at every step to find the global optimum. This strategy
assumes that the target problem exhibits optimal sub-structure, i.e., computing optimal solutions
to sub-problems leads to finding the global optimal solution. Unlike dynamic programming, which
reevaluates its decision at every step and if required, backtracks, the greedy strategy does not
reconsider its decisions. This often results in the greedy strategy computing sub-optimal solutions.
In spite of its disadvantages, the greedy approach is popular in practice mainly due to its faster
execution.

The simulated annealing [132] approach takes inspiration from the metallurgical annealing tech-
nique that uses repeated heating and slow, controlled cooling to form structurally strong materials.
When a material is heated, the atoms get activated and randomly move through the states with
higher energy. Upon slow controlled cooling, they are more likely to find configurations with in-
ternal energy lower than the original configuration. The simulated annealing algorithm applies
similar approach for moving from a state to another. Given a state, the algorithm chooses another
random state with a probability that is a function of the current state and a parameter called
temperature. At each stage, the algorithm probabilistically decided whether to move or stay at the
existing state. The temperature is initially kept high and slowing reduced to zero as the algorithm
progresses. At higher temperature, there are more random changes; as the temperature reduces the
system slowly reaches a steady state. Higher temperature increases the chances of state changes
and protects the algorithm in getting stuck in the local minima, as in the greedy strategy. Note that
when the temperature is 0, the algorithm reduces to the greedy strategy. The execution time of
the simulated annealing approach depends on the initial temperature and the associated annealing
schedule. Often heuristics like the steepest descent are used to accelerate the execution.

The search algorithms are targeted for combinatorial formulations that use graphs or trees
to represent the underlying computations, e.g., shortest path, maximum clique, etc. The search
algorithms include exact enumeration approaches such as depth-first or breadth-first traversals
that are used to solve combinatorial problem that search for sub-structures (e.g., cycles, cliques)
within a graph model. Search algorithms also support search pruning methods like backtracking
and branch-and-bound approaches for optimizing cases where graphs or trees are used to maintain
state during execution of algorithms.

Simulated annealing can be considered as a special case of techniques, called stochastic op-
timizations, that employ probabilistic approaches for either formulating or solving combinatorial
problems [233]. Other examples of stochastic optimizations include genetic or evolutionary algo-
rithms and swarm intelligence. Genetic algorithms take an evolutionary view of the optimization
process: initial random population of solutions are chosen and from this set, a new set of solutions
is stochastically selected using a fitness function. This set and the fitness function are mutated
to create a new population for the next iteration (generation) of the algorithm. The algorithms
terminate when the number of generations reaches a limit or the fitness function reaches a suitable
level. The swarm intelligence algorithms approach the optimization process as a de-centralized
self-organized system. In this formulation, several independent agents stochastically explore the
feasibility space and collaborate with other agents via shared state variables. The shared state
helps the agents to iteratively improve their selections; finally leading to emergence of the optimal
solution.
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2.11.5 Constraint Optimizations

Constraint optimization (satisfaction) is a family of optimization problems that has a constant
objective function with a set of constraints that impose conditions on the solution variables. A
solution to a constraint satisfaction problem is a set of variables that satisfy all of the specified
constraints.

The constraint satisfaction problems (CSPs) are characterized by constraints that are defined
over a finite domain [60, 9]. Most CSPs problems occur in scenarios that require solutions from
combinatorial, logic programming or artificial intelligence (AI) fields. Examples of CSPs include:
(1) the boolean satisfiability problem that aims to determine if variables of a given formula can
have values in the boolean domain such that the formula evaluates to TRUE (e.g., the 3-SAT
problem), (2) the graph coloring problems, e.g., to determine the minimum number of vertex colors
such that no two adjacent connected vertices share the same color, and (3) resource allocation and
scheduling problems, e.g., the steel mill slab scheduling problem that computes the optimal weight
and width of the steel slabs to minimize the losses. In practice, CSPs has been used for scheduling
problems, circuit layout in VLSI chips, DNA sequencing, production planning, computer vision,
and computer games (e.g., sudoku) [174, 49].

Formally, a CSP problem involves a set of variables X1.X2, · · · ,Xn, where a variable Xi is
defined within a domain Di. The problem is associated with a set of constraints, C1, C2, · · · , Cm,
such that a constraint Ci imposes a constraint on the possible values in the domain of some subset
of the variables. A solution to a CSP is an assignment of every variable with some value from
the corresponding domain such that every constraint is satisfied [49]. In general, a constraint can
involve n variables. Depending on a constraint’s arity, different optimization strategies can be used,
e.g., expressing a constraint with arity > 2 using binary constraints. The CSP constraints can be
also expressed using the integer programming formulation: first, the multi-variate constraints are
expressed using equations, and a corresponding objective function is then defined. This formulation
is termed as the constraint optimization problem, and its solution is the one that optimizes the
objective function.

The most common approach to solve the CSP problem is searching through different possi-
ble alternative solutions. Unlike the generalized search algorithms used in AI, the CSP search
algorithms can use heuristics that exploit the problem structure and also perform search in any
order. Searching in a CSP algorithm involves first choosing a variable and assigning a value for
it. If the search states are represented as a tree, a variable would be assigned a node with edges
that represent possible values assigned to that variable. With n variables, one gets a search tree
of depth n, where a path from root to the leaves represents a search state with an ordering of n
variables with associated values. Performance of any search algorithm depends on ordering of the
variables and choices of their values. Two commonly used heuristics for variable ordering include
the minimum-remaining values (MRV) that chooses a variables with the least number of possible
values from its domain and the degree heuristic which chooses a variable that is involved in most
constraints. Once a variable is selected, the next step is to choose its value. The most common
heuristic, LCV (least constraining value) is to choose a value that eliminates fewest options for the
other variables.

Most CSP algorithms use depth-first search to traverse the search tree. Often, the traversals
reach a node where a node cannot be updated as the domain is empty. In such cases, the search
algorithms backtrack to the previous assignment (i.e.. a node at a higher level in the search) and
restart the search with a new assignment. Further, value assignments to the search tree nodes are
made such that the assignments are consistent as per the associated set of constraints. Consistency
can be maintained using the forward consistency approach that given a value assignment, can
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predict the set of assignments that can lead to a failure. Thus, the forward consistency approach can
be used for intelligently pruning search paths. The forward consistency approach is a special case
of k-consistent constraint propagation that ensure that assignment to any subset of k− 1 variables
allows a consistent assignment to the kth variable. Other approaches for preserving consistency
include node consistency that checks consistency of a single assignment, arc consistency that checks
consistency for any pair of variables, X and Y , for both assignment orders (i.e., X followed by Y , and
vice versa), and path consistency that uses groups of 3 variables to validate value assignments [49].

One of most widely used CSP search algorithms is the A* algorithm [185, 173]. The A* algo-
rithm uses the best-first strategy to choose the next search node to traverse. However, unlike the
traditional greedy best-first strategy, the A* algorithm uses a heuristic cost function that encodes
(1) the cost of reaching the current node, n, from the starting node g(n), and (2) an admissible
(i.e., does not overestimate) estimate of the cost of reaching the goal from the current node, h(n).
The cost function f(n) can be then computed as g(n) + h(n). The A* algorithm for any node
n, computes its cost function f(n), and adds it to a priority queue with the priority f(n). For
every child n′ of the node n, the A* algorithm computes its cost function f(n′), and adds it to the
priority queue if n′ wasn’t traversed before or it was analyzed with a higher cost. Once a node is
completely expanded (i.e., its children are traversed), it selects the node with the lowest priority
from the queue, and the process repeats. The algorithm terminates when the goal is reached. The
A* algorithm only considers acyclic paths and since the search tree has only finite acyclic paths,
the A* algorithms is designed to terminate. If the A* algorithm implementation uses an admissible
heuristic, then it is guaranteed to identify optimal path. The time complexity of the A* algorithm
depends on the heuristic being used in the cost function. In the worst case, it can run in expo-
nential time. As A*’s runtime is O(number − of − states), it can consume lots of memory. For
memory-constrained scenarios, memory bounded search algorithms like the iterative deepening A*
(IDA*) are preferable [173].

2.11.6 Nonlinear Programming

The nonlinear programming (NLP) can be viewed as a generalization of different mathematical
programming formulations. In an NLP formulation, either or both the objective function or the
constraints can be nonlinear. An NLP problem has the following form: minimize f(x), subject
to gi(x) = 0, for i = 1, . . . ,m1 and hj(x) ≥ 0, for j = m1 + 1, . . . ,m, m ≥ m1 ≥ 0. Depending
on the non-linearity, multiple special cases arise. Foe example, a scenario where the objective
function is non-linear, but the constraint functions g and h are linear, is called a linearly constrained
optimization. If the objective function and the constraints are linear, an NLP problem reduces to a
linear programming problem. When only the objective function is quadratic, the problem is termed
quadratic programming. If the objective and constraint functions are defined over a convex set,
the problem is called convex optimizations [28]. Finally, when both the objective function and
constrains are non-linear, the problem is called unconstrained optimization [180].

As many situations that we encounter in everyday life do not behave linearly (e.g., doubling the
number of people does not guarantee that the project would be completed in half the time), NLP
models have become prevalent in practice. Nonlinear programming has been routinely used to solve
both discrete and continuous optimal control problems. Nonlinear programming models have been
applied to determine how to clean up pollution in the underground water system; for designing
trusses that can withstand different loads, for choosing a portfolio investment mix that maximizes
return while minimizing risks, for choosing the width and length of devices in an electronic circuit,
for modeling traffic patterns to capture congestion and travel times, and for choosing resources to
satisfy project deadlines [179].
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The difficulty in solving an NLP problem arises from the fact that NLP problems have non-
convex object function or constraints. Such problems can have multiple feasible regions and multiple
locally optimal points within each regions. Consequently, the non-convex NLP problems can ex-
hibit solutions with local optima: they are spurious solutions that satisfy the requirements on the
derivatives of the constraint functions. To determine if an NLP problem is infeasible (e.g., the ob-
jective function is unbounded) or a solution is the global optimum can require time exponential in
the number of variables and constraints. The complexity of solving an NLP problem varies accord-
ing to its type: in general, problems with convex objective function or constraints (e.g., quadratic
programming) are easiest to solve, while problems that aim to find the global optimal are much
harder to solve.

A quadratic programming (QP) problem can be formalized as

Minimize f(x) = cx+
1

2
xTQx subject to Ax ≤ b and x ≥ 0 (75)

where c is an n-element row vector representing the coefficients of the linear objective function,
Q is a n× n symmetric matrix representing the quadratic coefficients. The m× n matrix A, along
with the n-element column vector x of decision variables and the m-element column vector b of
coefficients, represent the linear inequality constraints (a QP problem can optionally have equality
constraints as well). If the objective function is strictly convex, i.e., the matrix Q is positive definite
(negative definite for the maximization case), then the QP problem has an unique local minimum
which also in the global minimum. In general, a QP problem can be evaluated for feasibility of a
global optimal solution by checking the Karush-Kuhn-Tucker (KKT) conditions [83]. Most common
QP problems (e.g., portfolio optimization) can be viewed as a special case of the second-order cone
programming and can be solved using extensions to the Simplex or Interior-point methods. In cases
where the nonlinear function is smooth, i.e., its derivatives with respect to each decision variable
(function gradient) are continuous, gradient methods can also be applied.

The convex optimization problem is an NLP problem in which the objective and constraint
function satisfy the following convex inequality [28].

fi(αx+ βy) ≤ αfi(x) + βfi(y) (76)

where x, y ∈ Rn and α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0. While there are no algorithms
specifically designed for solving the convex optimization problems, most convex optimization prob-
lems are easier to tackle as (1) any local optimum is necessarily a global optimum, (2) one can
easily check the infeasibility of the objective function, and (3) efficient numerical solutions exist for
solving large problems [100]. In practice, well-known methods like the Interior-point or gradient
method and its variants are used to solve the convex optimization problem.

Finally, the global optimization aims to find the absolutely the best solution for the objective
function under given constraints. As mentioned earlier, the worst case complexity of the global
optimization methods grows exponentially with the problem size and constraints. In spite of the
execution cost, there are scenarios where an exhaustive search for the best solution is indispensable.
Many well-known problems from from graph theory (e.g., the traveling salesman or maximum clique
problem), packing, scheduling, chemistry (e.g., the chemical equilibrium problem), verification
(computer-assisted proofs), protein folding, robotics, and even numerical analysis (nonlinear least
squares fitting problem) use the global optimization approach [181]. In practice, most solutions use
complete methods that aim to achieve global optimum with certainty, assuming exact computations
and indefinitely long run time, but within a finite time, determine that an approximate global
optimal has been found [181]. Most complete algorithms use the branching principle that recursively
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splits the original problem into subproblems, that are addressed separately. The search space
can be controlled either by using the branch-and-bound approach or by propagating constraints.
Alternatively, the original problem can be converted via outer approximation of the constraints and
underestimation of the objective function to generate a relaxed version that is convex and can be
solved by convex optimization methods.

2.11.7 Further Reading

Basic idea [104, 85, 180]; Algorithms: Linear Programming [53, 223, 245, 79, 161, 245, 165, 256, 165],
Integer Programming [15], Combinatorial Programming [198, 224, 103, 252, 132, 233], Constraint
Optimizations [60, 9, 185, 173], Non-linear Programming [28, 180, 83, 181]; Packages: IBM ILOG
CPEX [111], COIN-OR [45], Gurobi [87]; Applications [66, 111, 1, 7, 174, 49, 198, 224, 11];

2.12 On-line Analytical Processing (OLAP)

On-line analytical processing or OLAP refers to a broad class of analytics techniques that process
historical data using a logical multi-dimensional data model [43, 44, 39]. Over the years, OLAP
has emerged to become the key business intelligence (BI) technology for solving decision support
problems like business reporting, financial planning and budgeting/forecasting, trend analysis and
resource management. OLAP technologies usually operate on data warehouses which are collec-
tions of subject-oriented, integrated, time-varying, non-volatile, historical collection of data [39].
Unlike on-line transaction processing (OLTP) applications that support repetitive, short, atomic
transactions, OLAP applications are targeted for processing complex and ad-hoc queries over very
large (multi-Terabyte and more) historical data stored in the data warehouses.

2.12.1 Basic Idea

OLAP applications are targeted for knowledge workers (e.g., analysts, managers) who want to ex-
tract useful information from a set of large disparate data sources stored in the data warehouses.
These sources can be semantically or structurally different and can contain historical data consol-
idated over long time periods. OLAP workloads involve queries that explore relationships within
the underlying data and then exploit the acquired knowledge for different decision support activi-
ties such as post-mortem analysis/reporting, prediction, and forecasting. The OLAP queries tend
to invoke complex operations (e.g., aggregations, grouping) over a large number of data items or
records. Thus, unlike the OLTP workloads, where transaction throughput is important, query
throughput and response times are more relevant for OLAP workloads. Thus, an OLAP system
needs to support a logical model that can represent relationships between between records suc-
cinctly, a query system that can explore and exploit these relationships, and an implementation
that can provide scalable performance.

2.12.2 Logical Data Model

Most OLAP systems are based on a logical data model that views data in the warehouse as multi-
dimensional data cubes. The multi-dimensional data model grew out of the two-dimensional array-
based data representation popularized by the spreadsheet applications used by business analysts [39,
84, 96]. The data cube is typically organized around a central theme, e.g., car sales. This theme
is usually captured using one or more numeric measures or facts that are the objects of analysis
(e.g., number of cars sold and the sales amount in dollars). Other examples of numerical measures
include budget, revenue, retail inventory. The measures are associated with a set of independent

57



dimensions that provides the context. For example, the dimensions associated with the car sales
measure can include the car brand, model and type, various car attributes (e.g., color), geography,
and time. Each measure value is associated with an unique combination of the dimension values.
Thus, a measure value can be viewed as an entry in a cell of a multi-dimensional cube with a
specified number of dimensions.

In the multi-dimensional OLAP model, each dimension can be further characterized using a
set of attributes, e.g., the geography dimension can consist of country, region, state, and city.
The attributes can be viewed as sub-dimensions and can themselves be related in a hierarchical
manner. The attribute hierarchy is a series of parent-child relationships that is specified by the order
of attributes, e.g., year, month, week, and date. A dimension can be associated with more than
one hierarchy, e.g., the time dimension can be characterized using two hierarchies: year, quarter,
month, and date, and year, quarter, week, and date. The parent-child relationship represents the
order of summarization via aggregation: the measure values associated of a parent are computed
via aggregation of measures of its children. Thus, the dimensions, along with their hierarchical
attributes, and the corresponding measures, can be used to capture the relationships in the data.

2.12.3 OLAP Queries

Typical OLAP analytics queries perform two main functions: reporting and presentation. Report-
ing involves organizing dimensions and performing computations on the corresponding measures.
Presentation involves selecting dimensions and measures from the original or computed versions of
the data, and preparing them for display. Functionally, OLAP queries can be classified into what-
now (post-mortem analysis), what-if (prediction), and what-next (forecasting). To support these
analyses, an OLAP engine supports a number of operators. Some of the key operators include:

• Group-by: The group-by operation collates the measures as per the unique values of the
specified dimensions. For example, in case of the car sales scenario, one may want to analyze
the impact of car color on the sales numbers by organizing the sales data according to the
colors. The collated values can then be sorted in increasing or decreasing order. In cases
with multiple dimensions, data can be collated across multiple dimensions in some order,
e.g., grouping the sales by car brand and color would first collate sales of cars as per the
make and within the make, the sales would be organized as per the car color (for different
car types, e.g., passenger cars, SUVs, etc.).

• Slice and dice: The slice and dice operation involves reducing the dimensionality of the
dataset by taking a projection of the data on a subset of dimensions for selected values
of the other dimensions. For example, one can slice and dice the car sales data for a car
brand (e.g., Toyota) for particular region (e.g., Eastern United States) for the winter season.
The slice and dice operation creates another cube that is a projection of the original cube.

• Pivoting: The pivoting or rotating operation re-orients the original cube to visualize the data
using new relationships. For example, an analyst may want to analyze the car sales using cities
and car brands as the pivot dimensions. The pivoting operation would then create another
cube with cities as one dimension and car brands as the other dimension. The corresponding
measures, car sales in units and dollars, would be re-computed via summarization in the new
dimensions. Thus the pivoting operation creates another cube from the original dataset with
new dimensions and hierarchies.

• Rollup and Drill-down: The rollup and drill-down operators support aggregation across hi-
erarchies within one or more dimensions. The aggregation operation can invoke different
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computational operators, e.g., sum, max or min. For example, the car sales measures can
be aggregated up within the time dimension (e.g., day, week, month, and year) to compute
the total sales per every year and over all years maintained in the data warehouse. This sum
can then be rolled over another dimension, e.g., geography, to find out sales over years in
each geography, and finally over all geographies and years in the data warehouse. The order
of rollup is specified by the analyst and it results in different intermediate sub-totals. The
drill-down operation produces the opposite effect: given a summarized value, the drill-down
operation finds out the contributions of the hierarchies and dimensions.

• Cube: The cube is a generalization of the roll-up operator, i.e., it computes summarization of
measures across all hierarchies and dimensions in the data warehouse. For example, the cube
operator can calculate sales of a car brand over all car types, car colors, and over geographies,
and time dimensions. The order of the aggregation can specified by the analyst. The cube
operator follows the all possible relationships as defined by the lattice of relationships among
the hierarchies [84]. The result of a cube operation is a list of summarizations across all
hierarchies, dimensions, and finally over the entire dataset.

• Computational Operators: OLAP analysis involves invoking a variety of analytical functions
on measure values. The OLAP analytical functions can be broadly classified into aggregation,
scalar, and set functions. The aggregation functions operate on a set of values to compute
a scalar result. Examples of the aggregation functions include sum, average, correlation,
count, etc. The scalar functions operate on individual measure values and compute a new
set of measures. The set functions operate on a set of measure values and return a new
set. Examples of the set functions include sorting, predicated selection, and ranking. These
functions can be either user-defined or pre-defined by the underlying system.

2.12.4 OLAP Servers Implementations

In practice, the multi-dimensional OLAP model is usually implemented using one of the three
approaches: Relational OLAP (ROLAP), Multi-dimensional OLAP (MOLAP), and Hybrid OLAP
(HOLAP) [39].

• ROLAP: In the ROLAP approach, a relational database system is used for storing and pro-
cessing data in the multi-dimensional OLAP model. The data warehouse is implemented as
relations stored in tables and queried using SQL-based OLAP queries.

Most relational data warehouses build the multi-dimensional OLAP models from data stored
as dimension and fact tables. These tables are related via referential relationships. The most
common schema used for representing a OLAP cube is the star schema. In this approach,
there is a single fact table containing the measures and a single table for each dimension of
the cube. Each dimension table consists of attribute columns that correspond to attributes of
the dimension. The fact table is related to the associated fact tables via the primary-foreign
key relationships. The star schema does not provide support for attribute hierarchies. A
refinement of the star schema called the snowflake schema enables attribute hierarchies by
using normalized dimension tables. Complex data warehouses can require multiple fact tables
to share dimension tables. This schema is called a fact constellation.

In addition to the dimension and fact tables, the relational database can also maintain ma-
terialized views to represent pre-computed OLAP data. For example, a materialized view
can represent summarized results of a rollup operation over a dimensional hierarchy. The
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materialized view can be stored using separate shrunken dimension and fact tables or can
be represented in the same table space using an additional attribute, e.g., a level field that
represents the degree of summarization [39].

The relational database also provides in-built support for querying OLAP data via extensions
to the SQL language [37]. Specifically, SQL enables key OLAP operations using clauses like
ROLLUP, CUBE, GROUP BY, and ORDER BY. The slice and dice operation can be implemented
using the SQL WHERE clause. Finally, SQL supports many computational operators natively,
e.g., sum, min, max, average, etc. Additional computational operations can be implemented
by invoking user-defined functions (UDFs).

• MOLAP: The MOLAP approach stores and processes the multi-dimensional OLAP cubes
as multi-dimensional arrays. In most cases, the MOLAP cubes are sparse multi-dimensional
arrays that are stored using specialized data structures to optimize data access costs. The
MOLAP approach is suitable for scenarios that process low-dimensional data, have repeated
queries that touch the same data, and require fast query performance. Examples of MOLAP-
based systems include the SAP Hana [215], IBM PowerCube and TM1 [110] and Microsoft
SQL Server OLAP Services [170].

Data stored in the MOLAP fashion is queried using languages that can express data access
using the multi-dimensional array model. An example of such languages is Microsoft’s Multi-
dimensional Expressions (MDX) language [170]. MDX views the OLAP data as an instance of
a multi-dimensional cube. A basic MDX query follows the SELECT FROM WHERE structure of
the SQL queries. Logically, a MDX query selects different axis from a data cube, with optional
dimensional slicing specified by the WHERE clause. In MDX, a member is an item in a dimen-
sion representing one or more occurrences of data. The basic unit of representation in a MDX
query is a tuple that can encompass members in multiple dimensions as well members from
the same dimension. MDX organizes tuples into sets which are ordered collections of zero, one
or more tuples. The set dimensionality is determined by the dimensionality of the contained
tuples. MDX provides explicit syntactical support for navigation within and across OLAP
cube dimensions and hierarchies using members, tuples, and sets, e.g., MEMBERS, CHILDREN,
and DESCENDANTS. Finally, MDX provides support for a set of computational functions, e.g.,
sum, min, max, and average.

• HOLAP: The hybrid OLAP strategy uses a combination of relational amd multi-dimensional
OLAP implementations to store and process OLAP data. There are two ways for partitioning
data between ROLAP and MOLAP stores: the first strategy stores the materialized view for
a query workload in the MOLAP format and maintains the raw, detailed data in the ROLAP
format, while the second stores some section of the data (e.g., most recent or most commonly
used) in the MOLAP format, while maintaining the remaining data in the ROLAP format.
Examples of systems that use the HOLAP approach include OLAP servers from Microsoft,
Oracle and SAP [33].

2.12.5 Further Reading

Basic Idea [43, 44, 39, 84], Algorithms [39, 84, 96, 259]; Packages: Microsoft SQL [169, 170], IBM
DB2 and Cognos TM1 [110, 37], Oracle [192], Teradata [240], HP Vertica [253], IBM Netezza [116],
SAP [215, 122] and Palo [125]; OLAP Applications [33, 39].
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2.13 Graph Analytics

Graphs and related data structures (e.g., trees and directed-acyclic graphs (DAGs)) form the fun-
damental tools used for expressing and analyzing relationships between entities. Relationships
modeled by graphs include associations, hierarchies, sequences, positions, and paths [36, 13, 184].
Graphs have been used in a wide array of diverse application domains: from biology, chemistry,
pharmacology, linguistics, economics, operations research to different problems in computer science.

2.13.1 Basic Idea

Formally, a graph G = (V,E) is described using a set of vertices (or nodes) V and the edges E
that connect them. The graph vertices or edges can be weighted, and the edges can be directed
or undirected. Graph vertices can also support additional attributes, e.g., a color. Usually, the
graph is traversed in a pattern which is determined by either the graph characteristics or external
constraints. This basic formulation of the graphs can be used for building complex data models.
For example, molecular structure of chemical compounds is usually represented using graphs whose
nodes represent atoms and edges represent bonds; a node- and edge weighted graph can represent a
transportation system between cities of a region, where the node weight represents city population
and edge weight represents transportation density; a tree can represent an XML document with
nodes the represent XML elements and have edges that connect them to attributes or hierarchical or
sibling elements (in general, a tree is used to represent any dataset with hierarchical relationships);
a program task graph in which the nodes represent tasks and edges represent task dependencies,
and node colors denote tasks can be executed concurrently, and finally, entities (e.g., webpages or
social network contacts) linked on the internet are usually modeled by a graph in which the nodes
represent entities and edges represent connections [206]. Other applications of graphs include
biological modeling, sociology (e.g., social network analysis), linguistics (e.g., expressing language
syntax and semantics), electrical circuit design, combinatorial optimizations (e.g., flow problems),
and neuroscience (e.g., modeling brain’s cognitive connections [249]).

Graph analytics refers to a class of techniques that either use graph models to solve a prob-
lem (e.g., the traveling salesman and other optimization problems), or to analyze and exploit
inherent graph structures of a problem (e.g., identifying sub-graphs with a well-defined structure,
motifs [172], from graphs representing chemical compounds). Broadly, the graph algorithms can be
classified into three overlapping categories: structural algorithms that analyze and exploit different
topological properties of a graph, traversal algorithms that navigate different paths in a graph,
and pattern-matching algorithms that find instances of different graph patterns (e.g., cycles) in a
graph. These algorithms are characterized by how the graph data is interpreted and analyzed, and
how the graphs are represented. Common graph representations include directed and undirected
graphs, graphs with weights on the edges and vertices, rooted graphs, commonly called trees, and
their variants. A directed graph is usually referred as the digraph; its most popular variants include
directed acyclic graph (DAG) and network graph which is a digraph with weighted edges. In prac-
tice, the graphs are represented using two different formulations: the first one enumerates the graph
edges using lists, while the second uses matrices to capture the graph structure. The list-based
data structures include adjacency list that colocates a vertex with its neighbors (i.e., vertices with
direct connections), and incident list that lists all edges as pairs or tuples (for directed graphs).
The list-based representation is popular in the algorithms that navigate the graph structure. The
matrix formulation is used to provide a concise representing of different structural attributes of a
graph, e.g., connectivity, weights, direction, etc. In most situations, the graph matrices are sparse
and are implemented using compact array-based data structures.
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2.13.2 Structural Algorithms

Graph structural algorithms, commonly known as network analysis algorithms, analyze symmetric
and asymmetric relationships between networked entities by exploring structure of the underlying
graph. Usually, the networked data is represented via digraphs or networks [184, 13, 36]. These
networks can be structurally classified into the following categories:

• Small-world Networks: The small-world network is a type of digraph in which distance be-
tween any two randomly chosen vertices grows proportional to the logarithm of the total
number of vertices in the network [255]. In other words, in the small-world network, most
vertices may not be directly connected to each, but they can reached from each other in a small
number of steps. These graph exhibit vertices (hubs) with large degrees (high connectivity)
and sub-networks with high clustering coefficients.

• Scale-free Networks: In the scale-free network, the degree distribution follows the power
law [14]: the fraction P (k) of vertices with k connections to other nodes, for large values of
k, has the following characteristics: P (k) ∼ ck−γ , where 2 < γ. The scale-free network has
the following properties: (1) it exhibits fault tolerant behavior as most nodes have smaller
connectivity and probability of all hubs failing is very low, (2) clustering coefficient of a
scale-free graph also follow power law. That means, vertices with low degrees are a part
of a dense sub-graph which are connected via high degree nodes (hubs). Many small-world
networks exhibit scale-free properties, but there are scale-free networks that do not have the
small-world properties.

It has been observed that graphs exhibited by many real-world problems exhibit small-world or
scale-free properties. Examples include sociological networks (e.g., actors or research collaborators),
protein regulatory networks, neuron network in the visual cortex of the brain, cell phone call graphs,
transportation (air and road) networks, power grids, internet connectivity graph, and web-page
connection graph [249, 35].

Graph structural algorithms are designed to understand and exploit inherent abstract structural
properties of a network. Such structural information can be used for different purposes, for example,
telecom companies can use the structural information of the call graphs to identify customers most
likely to switch carriers (also called churn analysis) [178, 54, 210]. The following list enumerates
some of the important properties of a network:

• Order and Size: For a graph, the number of vertices is its order and the number of edges is
its size.

• Degree: For a graph, the degree (or valency) of a vertex is the number of edges incident on
that vertex. For a digraph, the degree can be further classified as the in-degree which is the
number of edges incident on a vertex, and the out-degree is the number of edges emanating
from a vertex.

• Distance: For a graph, the distance between any two vertices is a number of edges (or the
length) in the shortest path between those vertices.

• Diameter: For a graph, its diameter is defined as the longest of all shortest paths between
pairs of its vertices (or the maximum among all distances).

• Girth: The girth of a graph is the length of the shortest cycle in the graph.
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• Connectivity coefficients: For a graph, the vertex (edge) coefficient represents the minimum
number of vertices (edges) whose removal will disconnect the graph.

• Chromatic numbers: The chromatic numbers measure the number of graph structures (e.g.,
edges, vertices, faces) that have different color under the constraint that no two connected
structures (e.g., edges or vertices) have the same color.

• Clustering coefficients: The clustering coefficient of a graph is a measure to represent how
vertices of a graph tend to cluster together. For a vertex, the clustering coefficient is calculated
as the ratio of the number of edges in its neighborhood (defined as a set of vertices directed
connected to the vertex) to the number of all possible edges in the neighborhood.

• Centrality: The centrality measure determines the importance of a vertex in a graph. There
are four different types of centrality measures: degree, closeness, betweenness, and eigenvec-
tor. The degree centrality of a vertex is the its degree normalized with the total number
of edges in the graph. The closeness measure for a vertex is defined as the mean geodesic
distance (i.e., the shortest path) between that vertex and all other vertices in that graph. The
betweenness measure of a vertex is the fraction of the number of shortest paths of a graph
passing through that vertex against the total number of shortest paths in that graph. The
eigenvector centrality is a recursive version of the degree centrality: a vertex has a high value
if it is connected to another vertex with the high value (i.e., connections to other highly rated
vertices value more than connections to low rated vertices).

One representative example of the network analysis algorithms is the eigenvector centrality
algorithm [183]. The Google PageRank algorithm uses its variant [196, 206] for ranking web pages.
It has also been applied to other domains such as studying fMRI brain scans [154]. The eigenvector
centrality assumes that not all connections between vertices are equal. Specifically, connections with
important vertices will lend a vertex more influence than connections to less important vertices.
The eigenvalue centrality algorithm uses the adjacency matrix A to represent a graph: the entry
Aij is 1 if vertices i and j are connected. For undirected graphs, the adjacency matrix is symmetric,
but for directed graph the matrix is asymmetric. The adjacency matrix can be generalized to store
edge weights as well. If xi is the centrality of a vertex i, then xi can be computed as an average of
the centralities of i’s neighbors:

xi =
1

λ

n
∑

j=1

AijXj (77)

where λ is a constant. Defining the vector of centralities x = (x1, x2, . . .), we cab rewrite the
equation in the matrix form as

λx = Ax (78)

Hence, the centrality vector x can be computed as an eigenvector of the adjacency matrix with
eigenvalue λ. The eigenvector computations can use any of the known eigenvector algorithms, e.g.,
the power iteration algorithm. In general, there can be many different eigenvalues for which an
eigenvector exists. However, to compute positive centrality values, only the eigenvector correspond-
ing to the largest eigenvalue is needed [183]. The ith entry in the eigenvector gives the centrality
value of the ith vertex. The eigenvector centrality captures both the number and quality of its
connections: a vertex with a small number of high-quality contact may get higher score than a
vertex with a higher number of connections. The eigenvalue approach used in this algorithm is an
example of the spectral graph methods [6, 63].
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2.13.3 Traversal Algorithms

The second class of graph algorithms involves traversing edges of a graph to find solution of the
associated problem. Graph traversal algorithms operate on graphs that either capture the structure
of some underlying physical network (e.g., roads, pipes, etc.) or capture the abstract model of a
problem (e.g., a tree representing an XML document, or a graph representing cities and distances in
a traveling salesman problem). The traversal algorithms are used to solve: (1) route problems which
aim to optimize path lengths under different constraints, (2) flow problems that investigate flow
of material (e.g., oil, gas, cars, etc.) over a network that is represented by the underlying directed
graph, (3) coloring problems that label graph elements (e.g., vertices) to satisfy certain constraints,
and (4) searching problems that find a problem solution by traversing vertices which encode the
problem states. Unlike the structural algorithms where in many cases, analytical solutions are
computable via matrix formulation, problems addressed using traversal algorithms are notoriously
complicated to solve - many of them are NP-Complete, and thus the algorithms must make extensive
use of heuristics.

The route problems focus on optimizing graph traversals such that certain conditions are met,
e.g., the first route problem, Euler’s Seven Bridges problem, investigates if it is possible to visit every
vertex of a graph by traversing each edge only once. A version of this problem aims to determine if
there is exists a path or cycle in a undirected graph that visits each vertex exactly once (Hamiltonian
Path problem). Another version, the minimum spanning tree, tries to find a tree that spans (i.e.,
connects all vertices) an entire graph (directed or undirected) with the minimum cost: path length
or weights if the edges have weights. These problems have several practical applications, e.g., the
minimum spanning tree (MST) is used to lay out electric power generation grid and the Hamiltonian
path problem is a special case of the traveling salesman problem. While efficient polynomial greedy
algorithms exist for the MST problem (e.g., Kruksal, Prim, and Boruvka), the Hamiltonian path
problems are NP-complete, and need heuristics to solve even its simplest variants. Most solutions
to the route problems exploit non-matrix based data structures (e.g., queues, lists) to navigate the
graphs.

The second type of traversal algorithms focus on various notions of the network flow: the
underlying graph is a directed graph whose each edge has a capacity that limits the amount of
flow over that edge. Each node of the graph receives an amount of flow, and except for special
cases (source and sink nodes), for every node, the amount of incoming flow must match the amount
of outgoing flow. The flow problems can model flow of current in an electric circuit using the
Kirschoff’s Law, or model road traffic over a network of roads. One popular version of the flow
problem tries to identify the maximum flow from a source node to a sink node in a network under
the capacity constraints. This formulation can be solved in polynomial time via using the Ford-
Fulkerson algorithm, that iteratively finds possible flows on the paths between the source and sink
nodes by either depth- or breadth-first traversals. Another version, called the Max-Flow Min-Cut
problem, aims to find the maximum flow through the graph when the graph is cut by removing
certain edges. This problem is solved by formulating it as an optimization problem and solved
using linear programming approaches.

The coloring problem refers to a broad set of problems that try to partition a set of related
entities represented in the graphical format (e.g., nodes represent entities and edges represent rela-
tions) into a set of sets, where each set contains independent entities. The graph coloring problem
is used as a fundamental tool for applications that need to identify non-conflicting entities, e.g.,
in multi-processor scheduling for avoiding memory conflicts or in register allocation in compilers.
In the graph formulation, the independence is represented using a color (or a label): entities of
the same color are independent of each other (note that the coloring problem can also be used for
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representing the dependent relationships). For a problem, its associated graph can be partitioned
by coloring its elements - nodes, edges, or faces - such that no two elements of the same color
touch each other. Each graph is associated with a chromatic number which determines the small-
est number of colors needed to color that graph [94]. The problem to find the chromatic number
for a graph is NP-Complete, and in practice, the modified versions of the problem are solved using
heuristics, e.g., greedy coloring.

The final application of the traversal algorithms is in searching. Graphs, trees and their variants,
are used extensively to express temporal, hierarchical and associative relationships. To answer any
query about these relationships requires traversal over the associated data structures. For example,
trees are used extensively to represent language semantics in linguistics and compilers. A specific
example is the XML data model which uses a rooted tree to represent an XML document [254].
To recreate any XML document, the associated tree needs to be traversed in a in-order depth-first
manner. Further, to answer any XML queries, written using either XPath [47] or XQuery [48],
the XML tree edges are first traversed as per the query semantics, and then the XML tree nodes
are evaluated for answering any associated predicates [47, 48]. Directed graphs are also used to
represent temporal (before or after) relationships: vertices denote events and directed edges denote
their temporal order. In these cases, a topological sort-based traversals are used to list nodes in a
specific order. Another important application of trees is for representing intermediate states in the
program execution: each node represents a state and its descendants denote dependent states. Thus,
exploration of a programs solution space requires systematic traversal of this tree. Examples of this
approach include decision trees (Section 2.7), search trees used in branch-and-bound algorithms for
integer programming, and A*-based search algorithms for constraint optimizations (Section 2.11).

2.13.4 Pattern-matching Algorithms

The final class of graph algorithms focuses on finding different patterns in an input graph. Most
common graph patterns include cycles, various types of cliques (an undirected graph formed using
a subset of vertices such that every two vertices are connected), sub-graphs with certain proper-
ties (e.g., isomorphic with some other sub-graph), and network motifs [36]. Important practical
applications of pattern matching include: (1) social analytics: cliques in a graph denoting social
connections represent a community of people interacting with each other [36, 203], (2) Organization-
al/project/team analytics: identifying communities with particular interests and practices [40, 139],
(3) epidemiology: to understand spread of viruses for diseases like the SARS or AIDS [13], (4) finan-
cial network modeling: to analyze systemic risk across different institutions by identifying cliques
and cycles (e.g., mortgage securities that were bought and sold with each other) [138], (5) phar-
macology: identifying and classification of chemical compounds by identification of cliques and
subgraphs [202], (6) neuroscience: to diagnose diseases like Alzheimer’s disease or Schizophrenia by
studying motifs in a graph of the cerebral network [168, 235]. Graph pattern matching also forms
the basic tool for clustering nodes from a graph based on a similarity metric [221].

The generalized combinatorial problems of enumerating or identifying structural patterns (e.g.,
finding maximal sub-graphs) in a graph are NP-Complete. Hence, these problems are solved ap-
proximately by using heuristics or their constrained versions are solved in polynomial time. For
example, finding cliques of different types (e.g., N -clique, N -clan, etc. [36]) is a very useful problem
for many domains. While the general problems of clique identification are NP-complete, practi-
cal solutions for finding cliques exist. For example, the Bron-Kerbosch algorithm finds maximal
cliques in an undirected graph via recursive backtracking; although its exhibits theoretical expo-
nential complexity, it runs efficiently in practice, and it has been extensively used in chemical
informatics [31]. The clique problem can be also solved by using constraint programming or using
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approximation algorithms. Similarly, the problem to discover network motifs of a given size in a
graph runs in time exponential in the number of nodes in the subgraph [86]. The motif discovery
problem requires solving the graph isomorphism problem, which is NP-Complete. Thus, practical
approaches to solving the motif discovery problem use different heuristics, e.g., using sub-graph
sampling techniques [16] or using graph partitioning approaches.

While a majority of graph pattern-matching algorithms use traversal-based approaches to reach
at the solution, some pattern-matching problems can be solved using the matrix representation (e.g.,
using adjacency matrix) of a graph. In particular, in certain scenarios, the clique discovery problem
can be viewed as a graph partitioning or clustering problem and solved using spectral clustering
techniques [221], including the non-negative matrix factorization approach [64].

2.13.5 Further Reading

Basic Idea [36, 184, 94]; Algorithms: Structural [255, 14, 196, 6, 63], Traversal [94, 47, 48], and
Pattern-matching [36, 31, 86, 16, 221, 64]; Packages: SPSS Modeler [118] and R [243]; Applica-
tions [36, 13, 206, 249, 172, 178, 54, 210, 249, 35, 154, 203, 138, 202, 168, 235].

3 Summary and Future Work

A key goal of this work is to study the functional flow across multiple stages from the user to the
hardware levels of different analytics applications and use this analysis to identify and characterize
repeated design and computational patterns (e.g., algorithms, data structures, operators, and data
types). We use this characterization to understand how the analytics applications could be most
effectively mapped onto various parallel systems. Towards this goal, we have identified a set of
13 exemplars that capture key algorithmic, functional, and runtime features that appear across
multiple application domains. This report presents an overview of these 13 exemplars by describing
their core ideas, algorithmic methodologies, and usage patterns. In the next phase of our study,
this chosen set of exemplars will be used to identify opportunities in parallelization and acceleration
of analytics applications. We will report the results of our investigation in a follow-on report.
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Appendices

A Examples of Industrial Sectors and associated Analytical Solu-
tions

1. Financial Services

• Core Banking: Customer Insight, Product Recommendation, Fraud Detection and Pre-
vention, Underwriting, KYC, Credit Scoring

• Payments: Fraud Detection and Prevention, Anti-Money Laundering, Underwriting

• Financial Markets: Pricing, Risk Analysis, Fraud Detection and Prevention, Portfolio
Analysis, Product Recommendation, Merger and Acquisition Analytics

• Insurance: Risk Analysis, Cause and Effect Analysis, Underwriting, Claims Analysis

• Financial Reporting: Revenue Prediction, Regulatory/Compliance Reporting, Score-
card/Performance Management

2. Healthcare

• Drug Interactions, Disease Management, Preliminary Diagnostic Analysis, BioMedical
Statistics

• Healthcare Payer: Insurance Fraud, Clinical Cause and Effect, Medical Record Manage-
ment, Network Management Analytics

• Healthcare Provider: Employer Group Analytics, Patient Access Management, Clinical
Resource Management, Patient Throughput, Quality and Compliance

3. Retail: Promotions, Inventory Replenishment, Shelf Management, Demand Forecasting, Price
and Merchandising Optimizations, Real-estate optimizations, Workforce Efficiency Optimiza-
tions

4. Manufacturing: Supply Chain Optimizations, Demand Forecasting, Inventory Replenishment,
Warranty Analysis, Product Customization, Product Configuration Management

5. Transportation: Scheduling, Routing, Yield Management, Traffic Congestion Analysis

6. Hospitality: Pricing, Customer Loyalty Analysis, Yield Management, Social-media marketing,
Workforce Scheduling

7. Energy: Trading, Supply-demand Forecasting, Compliance, Network Optimizations

8. Communications: Price Plan Optimizations, Customer Retention, Demand Forecasting, Ca-
pacity Planning, Network Optimizations, Customer Profitability

9. Integrated Supply Chain: Scheduling, Capacity Planning, Demand-Supply Matching, Loca-
tion Analysis, Routing,

10. Marketing and Sales Analytics: Customer Segmentation, Co-joint Analysis, Lifetime Value
Analysis, Topic/Trend Analysis, Market Experimentation, Yield (Revenue) Analysis

11. Legal Analytics: eDiscovery, Identification, Collection, Record Management
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12. Customer Analytics: Customer Retention/Attraction, Pricing Optimizations, Brand Man-
agement, Customer Life Cycle Management, Customer-specific Content Specialization, Call
Center Voice Analytics

13. Life Sciences: Gene Pool Analysis, Drug Discovery, BioInformatics

14. Human Resources: Churn Analysis, Talent Management, Benefits Analysis, Workforce Place-
ment Optimizations, Call Center Staffing,

15. Government: Fraud Detection, Crime Prevention Management, Revenue Optimizations, Tax
Compliance and Recovery Strategies, Transportation Planning

16. eCommerce: Web Metrics, Web-page Visitor Analysis, Customizable Site Designs, Customer
Recommendations, Online Advertisements, Online Trend Analysis, BLOG Analysis
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