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Abstract

Local search with k�change neighborhoods is perhaps the oldest and most widely used heuristic

method for the traveling salesman problem� yet almost no theoretical performance guarantees for it

were previously known� This paper develops several results� some worst�case and some probabilistic�

on the performance of �� and k�opt local search for the TSP� with respect to both the quality of

the solution and the speed with which it is obtained�

� Introduction

Local search with k�change neighborhoods is perhaps the oldest and most widely used heuristic method

for the traveling salesman problem ���� ���	 Given a graph G 
 �V�E� and a tour T of G �tour�

is synonymous with Hamiltonian cycle��� a tour T � is said to be obtained from T by an improving

k�change if T � is shorter than T � and T � is obtained by removing k edges from T and adding k new

edges	 The k�opt algorithm starts with an arbitrary initial tour and incrementally improves on this

tour by making successive improving k��changes for any k� � k� terminating when no such improving

changes can be made	 This paper develops several results� some worst�case and some probabilistic�

on the performance of �� and k�opt algorithms for the TSP� with respect to the two principal criteria�

quality and speed	

Quality� how good is a locally optimal solution� The only results on this question that we are aware of

are due to Grover ���� Lueker ���� and Plesnik ����	 Grover proves that for any �symmetric� TSP instance�

any ��optimal tour has length at most the average of all tour lengths	 �This result also was credited to

Edelberg ���� page �� but without reference�	 Lueker gives a construction for which this bound is tight

when tour lengths di�er	 Plesnik shows that there are graphs with n vertices satisfying the triangle

inequality �i	e	� the distances are those in an n�point metric space�� whose worst�case performance ratio

can be as bad as �
�
p
�

p
n	 Our results regarding solution quality are�

� For TSPs satisfying the triangle inequality the worst�case performance ratio of ��opt is at most

�
p
n for all n	 The k�opt algorithm can have a performance ratio that is at least �

�n
�

�k for in�nitely

many n	
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� For TSPs embedded in the normed space IRm� the worst�case performance ratio of k�opt is

O�logn�	 If the points are embedded in IR� and the distances are Euclidean� then there is a

c � � such that the worst�case performance ratio of ��opt is at least c � logn
log logn for in�nitely many

n	

� For all norms on IRm� there exists a constant c such that any ��optimal tour on any TSP instance

in the unit hypercube �with norm�induced distances� has length less than cn����m	 A corollary

is that if points are sampled i	i	d	 uniformly from the hypercube� ��opt has O��� worst�case ratio

with high probability and the expected value of this ratio is also O���	

Speed� how many iterations does local search require� There seem to be three previous results on

this question	 The �rst two of these are worst�case	 Lueker ���� constructs a TSP instance for which

there exists an exponentially long sequence of improving ��changes	 For all su�ciently large k� Johnson�

Papadimitriou� and Yannakakis ��� and Krentel ���� prove the existence of instances and initial tours with

the stronger property that all improving sequences� starting from the given initial tour� are exponentially

long	 Krentel ���� claims to have extended this result to all k � �	

Here we extend Lueker�s construction for all k � �� giving explicit instances for which there exist

exponentially long improving sequences	

The third previously known result is probabilistic	 Kern ���� shows that for random Euclidean

instances on the unit square� the probability is at least � � c�n that the number of iterations required

by ��opt is O�n���� where c is a constant	 It was not known if the expected number of iterations is

polynomial	 Our main probabilistic results regarding speed are�

� For random Euclidean instances in the unit square� the expected number of iterations required

by ��opt is O�n�� logn�	

� For random L� instances in the unit hypercube� the expected number of iterations required by

��opt is O�n� logn�	

Taken together� our results provide the �rst theoretical proof of the quality of ��opt as a heuristic

for random TSP instances in the unit square	 In particular� the expected time is polynomial� and the

expected worst�case performance ratio is bounded by a constant	

� Preliminaries

We begin by stating some de�nitions and notation that will be used throughout the paper	

A metric space �V� d� is a nonempty set V of points and a function d � V � V � IR� called distance�

satisfying the following properties for all x� y� z � V �

�i� d�x� y� � � and d�x� y� 
 � if and only if x 
 y�

�ii� d�x� y� 
 d�y� x��

�iii� d�x� z� � d�x� y� � d�y� z�	
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A norm N on IRm is a function jj � jj � IRm � IR satisfying the following properties	

�i� For all x � IRm� kxk � � and kxk 
 � if and only if x 
 ��

�ii� kcxk 
 jcj � kxk for every c � IR and x � IRm�

�iii� kx� yk � kxk� kyk for every x� y � IRm	

A norm N induces a metric space where the distance function is de�ned as dN �x� y� 
 kx� yk	 If the
norm of a m�dimensional vector x 
 �x�� x�� � � � � xd� is de�ned as p

pjxp�j� jxp�j� � � �� jxpdj� where p is

a positive integer� then the corresponding metric is called the Lp metric	 The L� metric is called the

Euclidean metric	

A geometric graph is given by a �nite nonempty set V of points in IRm and a norm N on IRm	 The

graph is a complete weighted graph on V with the weight of edge fx� yg being dN �x� y� 
 jjx � yjj	
When the metric considered is the Euclidean metric� the graph is called a Euclidean graph�

Given a weighted graph G 
 �V�E� we refer to the weight or length of an edge e � E by wt�e�	

Given a collection of edges E� 	 E� the weight wt�E�� of E� is the sum of the weights of the edges

in E�� if the edges in E� form a tour T �� we also refer to wt�T �� as the length of the tour	 We denote

an optimal tour by OPT �G�	 Since we work only in complete graphs in a metric space �so given V �

G 
 �V�E� is completely determined�� we also abuse notation slightly and refer to OPT �V �	

Given a weighted graph G 
 �V�E� and a tour T of G� a tour T � is said to be obtained from T

by an improving k�change if T � is shorter than T � and T � is obtained by removing k edges from T and

adding k new edges	 A tour T is said to be k�optimal if for all k� � k� no improving k��change can be

made to T 	 The k�opt algorithm starts with an arbitrary initial tour T� and incrementally improves on

this tour by �nding T�� T�� � � � � Tz where Ti�� is obtained from Ti by an improving k��change for some

k� � k� and Tz is k�optimal	

The k�opt algorithm can start from many di�erent initial tours� and even starting from the same

initial tour� k�opt can end up in many di�erent k�optimal tours	 All the upper bounds in this paper

are proved for the worst possible outcome of k�opt	

� Bounds on Performance Ratios in Metric Spaces

We �rst prove that the performance ratio of k�opt cannot be bounded by a function of n if the triangle

inequality is not imposed	

Theorem ���� For all k � �� for all n � �k � ��� for all M � �� there exists a complete weighted

graph G on n vertices� with strictly positive weights� containing a k�optimal tour T � such that

wt�T ���OPT �G� � M�

Proof� We prove the result for all k even and n � �k � �	 The result will follow for k odd since

k�optimality implies �k � ���optimality	 The idea of the construction is to take a pair of Hamiltonian

cycles in G which di�er by a �k����change	 We set the weights of all edges in these cycles to �� all other

edges in G are given very large weight	 For one special edge in the �rst cycle� we change the weight to

�	 This keeps the �rst cycle k�optimal but now its weight is many times that of the second cycle	
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The graph G has n vertices denoted �� �� � � �� n	 Its edge weights are

�	 wt��� �� 
 �

�	 wt�i� i� �� 
 � for all i � �� and wt�n� �� 
 �	

�	 wt�k � �� �k � �� 
 �	

�	 wt�j� �k� �� j� 
 � for all � � j � k	

�	 All other edges have weight kn	

In general� T is �� �k � �� �k � �� �� �� �k � �� �k� �� �� �k � �� �k � �� �� � � � � k � �� k � �� k �

�� k� k � �� k � �� k � �� �k � �� �k � �� �k � �� �k � �� � � � � n � �� n� �� n	 This tour has weight n�	

For example� when k 
 � and n 
 ��� the optimal tour T is �� ��� ��� �������������� ��� ��� �� �����

��� �� �� ��������������������������	

The tour T � is �� �� �� � � �� n with weight � � �n � ���	 If we set � 
 ���Mn� the performance ratio

will exceed M as desired	 We still have to verify that T � is k�optimal	 This is straightforward and left

to the reader	

Plesnik ���� showed that for a graph with n vertices� the worst�case performance ratio of ��opt could

be as bad as
p
n

�
p
�
� and conjectured that the worst�case performance ratio for ��opt is �	 We show that

Plesnik�s bound for ��opt is tight up to a constant factor by proving an upper bound of �
p
n on the

performance ratio of ��opt	 We also disprove his conjecture for ��opt by proving lower bounds that

approach in�nity as n goes to in�nity for k�opt for all k� a lower bound for ��opt then follows as a

special case	

The upper bounds in this section and in section � use techniques similar to those of ��� ���	

Let M be any arbitrary metric space with a distance function d	 Let V be a set of points in M �

and let n 
 jV j	 Let OPT �V � be an optimal tour on V and let T �V � be any tour on V which is locally

optimal with respect to the ��opt algorithm	

We �rst state a simple fact which follows from the triangle inequality	

Fact ���� V � 	 V 
 wt�OPT �V ��� � wt�OPT �V ��	

Lemma ���� For any k � f�� �� � � � � ng� let Ek 
 fedges e � T �V �jwt�e� � ��wt�OPT �V ��p
k

g	 Then

jEkj � k	

Proof� Suppose otherwise� so for some k� r 
 jEkj � k	 Orient the edges of T �V � in a consistent

manner� i	e	� so that the directed edges form a directed Hamiltonian cycle	 Consider the directed edges

�with the above orientation� of Ek� �t�� h��� �t�� h��� � � � � �tr� hr�� where the ti�s are the tails and the hi�s

are the heads of these directed edges	

We �rst see that not too many tails can be clustered very closely together	 Consider any sphere of

radius wt�OPT �V ��p
k

around some point in the metric space	 We show that the number of tails �of edges

from Ek� in this sphere is less than
p
k	

Suppose otherwise� so that the tails ti� � ti�� � � � � tip all lie in the sphere for some p � p
k	 Let

hi� � hi�� � � � � hip be the corresponding heads	 For any u �
 v� d�tiu� tiv� � ��wt�OPT �V ��p
k

� since tiu and tiv
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lie in the sphere	 This implies that d�hiu� hiv� � ��wt�OPT �V ��p
k

� since otherwise we get a shorter valid

tour �T �V � � f�tiu� tiv �� �hiu� hiv�g� � f�tiu� hiu�� �tiv � hiv�g with a ��change operation	 But since� by

supposition� we have p � p
k heads and these heads are pairwise at a distance at least ��wt�OPT �V ��p

k

apart� the optimal tour on these heads is of length at least � �wt�OPT �V ��� which contradicts Fact �	�	

Now we show that a large number of tails have to be at a large distance apart	 Pick any arbitrary

tail ti and consider the sphere �of radius wt�OPT �V ��p
k

� centered around ti	 Kill� all the tails within this

sphere	 By the above argument� fewer than
p
k tails can have been killed	 Now pick any remaining

live� tail and kill all tails in the sphere centered at this tail	 Repeat this process until all tails have been

killed	 Since there are at least k tails and in a single iteration we kill fewer than
p
k tails� this process

can be repeated more than
p
k times	 Clearly� the tails at the center of the spheres are at a distance

greater than wt�OPT �V ��p
k

apart from each other� and there are greater than
p
k of them� therefore the

optimal tour on the tails is of length greater than wt�OPT �V ��� which contradicts Fact �	�	

Theorem ����
wt�T �V ��

wt�OPT �V �� � �
p
n	

Proof� Note that Lemma �	� implies that the weight of the kth largest edge is at most ��wt�OPT �V ��p
k

	

Hence

wt�T �V �� 

nX

k	�

wt�kth largest edge�

�
nX

k	�

� �wt�OPT �V ��p
k


 � �wt�OPT �V ��
nX

k	�

�p
k

� � �wt�OPT �V ��

Z n

x	�

�p
x


 � �wt�OPT �V �� � pn�

��� Lower Bounds for ��Opt and k�Opt

We prove a lower bound on the performance ratio of k�opt� Plesnik�s lower bound on the performance

ratio of ��opt ���� follows as a special case	

Theorem ���� For any k � �� for in�nitely many values of n� there exists a complete weighted n�node

graph Gk�n with positive edge weights satisfying the triangle inequality� and a k�optimal tour Tk�n of

Gk�n� such that
wt�Tk�n�

wt�OPT �Gk�n��
� �

� � n
�

�k if k � �� and
wt�Tk�n�

wt�OPT �Gk�n��
� �

�

p
n if k 
 �	

De�ne the girth of a graph as the number of edges in its smallest cycle� provided it is not a forest	

Lemma ��	� Suppose there exists a connected unweighted graph Gk�n�m with n vertices and m edges�

having girth at least �k� in which every vertex has even degree	 Then there is an m�vertex complete

weighted graph G� �with positive edge weights satisfying the triangle inequality� and a k�optimal tour

T of G� such that wt�T �
wt�OPT �G���

� m
�n 	

Proof� Assume we are given Gk�n�m 
 G 
 �V�E�	 Since G is connected and every vertex has even

degree� G has an Eulerian tour ET 	

�



Using G and ET � we construct a complete weighted graph G� 
 �V�� E�� and a tour T for G�	

Let V �G� 
 fx�� x�� � � � � xng	 We think of each vertex xi in G as a supervertex� corresponding to

degG�xi��� vertices in G�� so

V� 
 fx���� � � � � x��degG�x����� � � � � xn��� � � � � xn�degG�xn���g�
The number of vertices in G� is �degG�x�� � � � �� degG�xn���� 
 m	

Let dG�xi� xj� be the length of the shortest path from xi to xj in G	 The edge weights of G� are as

follows�

�	 i� s� t� s �
 t� wt�xi�s� xi�t� 
 �� where � 
 �
n�
	

�	 i� j� s� t� i �
 j� wt�xi�s� xj�t� 
 dG�xi� xj�	

By inspection� it is easy to see that the edge weights of G� satisfy the triangle inequality	

The tour T on G� is constructed as follows	 Suppose that the rth vertex of the Eulerian tour ET of

G is vertex xi	 Suppose that this is the lth time ET has entered and exited vertex xi� � � l � deg�xi���	

Then the rth vertex of tour T of G� is xi�l	 Since ET enters and exits each vertex xi of G exactly

degG�xi��� times and there are precisely degG�xi��� vertices in each supervertex� this procedure gives

us a tour T 	 Note that for all fxi� xjg � E there is a unique pair s� t such that fxi�s� xj�tg � T 	

Since the weight of the minimum spanning tree of G� is at most �n � �� � �n � n � �� 
 n� and edge

weights satisfy the triangle inequality� wt�OPT �G��� � �n	 In the tour T � there are m edges each of

weight �� and so wt�T � 
 m	 Hence we get wt�T �
wt�OPT �G���

� m
�n � so all we need to prove Lemma �	� is

Claim ��
� T is k�optimal	

Proof of claim ��
� If not� then there is a tour T � of G� which is obtained from T by a k��change
operation� k� � k� such that wt�T �� � wt�T �	

A closed walk is a walk which begins and ends at the same vertex� repeated edges and vertices

allowed	 A simple closed walk is a closed walk with no repeated edges	

Claim ���� Viewing T and T � as sets of edges� there are sets C 	 T � T � and C� 	 T � � T such that

C �C � is the edge set of a simple closed walk� jCj 
 jC�j � k� wt�C� � wt�C��� and every vertex in V�

is incident to the same number ��� �� or �� of edges of C as C�	

Proof� Let � denote symmetric di�erence	 Since for all v � V�� degT
T �v is either �� �� or �� T�T �

can be partitioned into a collection of vertex�disjoint simple closed walks P�� P�� � � � � Ps	 Further� since

wt�T � � wt�T ��� at least one of the Pi� say� P�� has to satisfy wt�P� � T � � wt�P� � T ��	 It is easy to

verify that C 
 P� � T and C� 
 P� � T � have the desired properties	

Let C�C� be as in Claim �	�	 Let G� 
 �V�E�� be a weighted multigraph with the following edges	

Between every pair of vertices there will be one edge of positive integral weight and zero or one edge of

weight ��	 Speci�cally� between xi and xj� i �
 j� there is an edge in E� of weight dG�xi� xj�� which is a

positive integer	 For that xi and xj� if there are s� t such that fxi�s� xj�tg � C� then �s and t are unique

and� in addition to the edge of positive weight between xi and xj � there is an edge in E� between xi

and xj of weight �dG�xi� xj�	 A crucial fact is that �dG�xi� xj� 
 �� in this case� because every edge

in T is of weight �	 Let us denote the set of edges of positive weight in E� as D� and let us denote the

set of edges of weight �� as D	 Each edge in C gives rise to exactly one edge in D� so jDj 
 jCj � k	

�



Note that there is an obvious correspondence between G� and G�� the vertices inside a supervertex

in G� are merged into a single vertex in G�� with the intra�supervertex edges in G� disappearing	�

Edges from C�� like arbitrary edges of G�� are either of weight � or of positive integral weight	 An

edge in C� of positive integral weight is an edge fxi�s� xj�tg for some i �
 j having weight dG�xi� xj�

and is said to correspond to the edge in D� between xi and xj of weight dG�xi� xj�	 An edge in C� of
weight � is said to correspond to nothing	 An edge in C is of unit length and is an edge fxi�s� xj�tg
such that dG�xi� xj� 
 �� i	e	� fxi� xjg � E	 Such an edge is said to correspond to the edge in D �of

weight ��� between xi and xj	 �Several edges of C
� may correspond to the same edge in D�	 However�

di�erent edges in C correspond to di�erent edges in D	� With this correspondence� the simple closed

walk in G� which uses each edge in C �C� exactly once corresponds to a closed walk P in G�	 �Edges

of weight � are not needed and do not appear	� P need not be simple since edges in D� may have

several preimages� in C �	 Since each edge in C �C� is traversed exactly once and di�erent edges in C

correspond to di�erent edges in D� it follows that no edges in D are traversed twice	 Each� in fact� is

traversed exactly once by P 	 The weight of P is at most wt�C���wt�C� � �	

Let G� 
 �V�E�� be a weighted multigraph obtained by replacing each edge from G by two edges�

one of weight �� and one of weight ��	 An edge of G� of positive integral weight is an edge between

some xi and xj with i �
 j	 Such an edge has weight dG�xi� xj� and is said to correspond to some �xed

�shortest� path in G� between xi and xj consisting of dG�xi� xj� edges of weight ��	 An edge of G� of

weight �� between� say� xi and xj� is said to correspond to the identical edge in G�	 �There will be

many more negative edges in G� than there are in G�� since C is small	� With this correspondence�

the closed walk P in G� corresponds to a closed walk W in G� of the same weight	 Edges of weight

�� may be traversed many times� but no edge of weight �� can be traversed even twice� since no

edge of weight �� is traversed twice by P 	 Let the edges of weight �� in W be edges c�� c�� � � � � cr

occurring in W m��m�� � � � �mr times� respectively	 The number of edges of weight �� in W � including

multiplicities of course� equals
Pr

j	�mj 	 Since wt�W � 
 wt�P � � � and wt�W � 
 �
Pr

j	�mj� � jDj�
we have m� �m� � � � ��mr � jDj	 Also� the number of edges in W is �

Pr
j	�mj� � jDj � �jDj � �k	

One of the following must be true�

� For every edge inW of weight ��� there is another edge in W with the same endpoints	 But since

W never has two negative edges with the same endpoints� this other edge must have weight ��	

We infer that wt�W � � �� a contradiction	

� There is some edge in W of weight �� such that there is no other edge in W with the same

endpoints	 But since W is a closed walk� this implies that there is some set of edges S 	 W such

that S is the edge set of a simple cycle	 Since S 	 W and W has fewer than �k edges� S also has

fewer than �k edges	 But then there is a cycle in G corresponding to S� and this cycle has fewer

than �k edges since S has fewer than �k edges� which is a contradiction since the girth of G is at

least �k	

Lemma ���� For all k � �� for in�nitely manyn the graphs Gk�n�m of Lemma�	� exist with m
�n � m

�

�k

� 	

Proof� In order to prove that these graphs exist for in�nitely many n� it su�ces to show that for any

n�� there exists such a graph Gk�n�m with n � n�	

We �rst present an extremal graph�theoretic lemma from ��� �Theorem ����� Chapter III�	

�



Fact ���� Let q� �� g be positive integers such that q � �����g����
���

	 Then there exists a ��regular

graph having �q vertices and girth at least g	

Let p � n� be a positive integer	 Let q 
 ��p��k��� � 
 �p and g 
 �k	 The parameters q� �� g satisfy

the hypothesis of Fact �	��� let G� be the graph from Fact �	��	 G� has �q vertices� girth at least �k�

and is ��p��regular	 Let G be the largest connected component of G�	 We claim that G has the desired

properties	

Clearly G is connected� every vertex has even degree� and the girth is at least �k	 Let n 
 jV �G�j	
Since p � n� and G is �p�regular� we get n � �p � n�	 Let m 
 jE�G�j	 Since G is �p�regular�

m 
 pn � p��q� 
 �p��p��k�� 
 ��p��k� which implies that m
�n


 p
�
� m

�

�k

�
	 This completes the proof

of Lemma �	�	

Lemma ����� For in�nitely many n the graphs G��n�m of Lemma �	� exist with m
�n 


p
m
� 	

Proof� Wewill prove the result for all values of n which are multiples of �	 Let p 
 n��	 Let G 
 K�p��p	

G is connected� every vertex has even degree and G has no cycles of length �	 G has exactly m 
 �p�

edges so m�n 
 p 

p
m��	

Theorem �	� now follows from Lemmas �	�� �	� and �	��	

� Bounds on Performance Ratios for Geometric Graphs

In the previous section we found that the triangle inequality by itself ensures a ��
p
n� worst�case

performance ratio	 Now we put stronger conditions on the distances� requiring them to be induced by

a norm on IRm� and show the worst�case performance ratio is between c logn� log logn and O�logn�	

��� The Upper Bound

We �nd an upper bound on the performance ratio of any ��optimal tour for geometric graphs� under

any norm and in any dimension	 A large portion of this subsection is based on concepts presented in

���	

We begin by stating a well�known property about norms and introducing a few de�nitions	 Consider

any positive integer d � � and any norm N on IRm	 Let dN �x� y� denote the distance between x and

y in the metric generated by N 	 Let d�x� y� denote the Euclidean distance between x and y	 By the

well�known comparability of norms ���� page ����� there exist lN � uN � � such that for every x and y�

lN � dN �x� y� � d�x� y� � uN � dN �x� y�� ���

In this section we use the concept of angles	 As usual� angles are de�ned by the inner product and

the Euclidean metric	 The angle between a and b in IRm is

arccos
a � b

jjajj�jjbjj� �

which we take to be in the interval ��� 	�	
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Figure �� Illustration for Lemma �	�	

Consider any norm N on IRm	 For lN and uN satisfying ���� let �N 
 arctan� lN
�uN

�	 De�ne the

angle between directed line segments ��uv and ��wx to be the angle between the vectors v � u and x� w

�
��
ab denotes a line segment directed from a to b�	 Two directed line segments ��ux and ��vy are said

to be similar�directional �with respect to N � lN and uN � if the angle between them is at most �N 	

More intuitively� similar�directional means that the two directed line segments point in almost the same

direction� since the angle �N is small	 Note that for �N � 	��� if ��ux and ��vy are similar�directional� then
��ux and ��yv are not similar�directional	 N � lN and uN will be implicit when we write similar�directional

instead of similar�directional with respect to N � lN and uN �

Let V be a �nite nonempty set of points in IRm with norm N 	 Let G be the geometric graph

induced by V 	 Let T � be a ��optimal tour of G with �directed� edge set E� ���optimality is with respect

to distances on the metric induced by N �	

Build a set E� of directed line segments in IRm corresponding to E� as follows	 Suppose the tour

T � 
 �v�� v�� � � � � vn� v��	 Then E� 
 f���v�v�����v�v�� � � � ������vn��vn�
���vnv�g	 Every vertex is the tail of exactly

one line segment in E� and the head of exactly one line segment in E�	

We now present an important technical lemma	 Intuitively� this lemma says that if there are two

similar�directional directed line segments ��uw and ��vx in E�� then u and v must be separated by a

distance greater than half the length of the shorter segment	 Consequently� the originating points of

two similar�directional segments cannot be too close together	

Lemma ���� Let G 
 �V�E� be a geometric graph in IRm under norm N 	 Let T � be a ��optimal tour

of G having �directed� edge set E�	 Let ��ux and ��vy be any two similar�directional segments in E�	 If

dN �u� x� � dN �v� y�� then dN �u� v� � �
� � dN �u� x�	

Proof� Let lN � uN � � be the constants de�ned in ��� and �N 
 arctan lN
�uN

	 Let 
 be the angle

between directed segments ��ux and ��vy 	 To prove the lemma we assume that

dN �u� x� � dN �v� y�� 
 � �N � and dN �u� v� � �

�
� dN �u� x� ���

and we derive a contradiction	

Note that since lN � uN � tan �N 
 lN
�uN

� �	 So� if 
 � 	��� 
 � �N 	 Thus� we may assume that

�




 � 	��	

Consider the con�guration obtained by translating ��vy in space such that v coincides with u	 Let

 v 
 u be the translate of v� and let  y be the translate of y	 Points u 
  v� x�  y lie in a ��dimensional

plane	 The situation is illustrated by Figures � and � 	

Throughout this proof we use primed lower case letters� a�� b�� c�� � � �� to denote distances in the N

metric� while unprimed lower case letters denote distances in the Euclidean metric	 For example� if

a� 
 dN �x� y�� then a 
 d�x� y�� and vice�versa	

Let a� 
 dN �v� y�� b� 
 dN �u� x�� c� 
 dN �x�  y�� and g� 
 dN �x� y�	 �Recall that a 
 d�v� y��

b 
 d�u� x�� c 
 d�x�  y�� and g 
 d�x� y� are the corresponding Euclidean distances	� Using this

notation� ��� implies that

b� � a� and dN �u� v� � �

�
b�� ���

Claim� g� � a�	

Proof� Suppose otherwise	 We �rst see that jfu� x� v� ygj 
 �	 Clearly� u �
 x and v �
 y	 Clearly

u �
 v� since otherwise u is the tail of two line segments in E�� ��ux and ��uy	 Similarly� x �
 y	 If u 
 y�

then dN �u� v� 
 dN �v� y� and dN �u� v� � �
�dN �u� x� � �

�dN �v� y�� which is a contradiction	 If v 
 x�

then dN �u� v� 
 dN �u� x� and dN �u� v� � �
�dN �u� x�� which is a contradiction	 Hence� jfu� x� v� ygj
 �	

By assumption� dN �u� v� � �
�dN �u� x� � dN �u� x�� and g� � a�� so dN �u� v� � dN �x� y� � dN �u� x� �

dN �v� y�	 Also� �u� v� is not in E�� because if it was� either ��uv � E� or ��vu � E�	 But if ��uv � E� then
the vertex u is the tail of two line segments in E�� namely ��ux and ��uv� and if ��vu � E� then the vertex

v is the tail of two line segments in E�� namely ��vy and ��vu	 Similarly� �x� y� �� E�	 But� now we can

interchange two edges from the tour T �� �u� x� and �v� y�� with the two edges �v� u� and �y� x� which are

not in the tour� to get a smaller valid tour� which contradicts the ��optimality of T �	

We now consider two cases� a � b and a � b	

The case in which a � b is illustrated in Figure �� where z is the orthogonal projection of x onto the

segment  v y� d� 
 dN �x� z�� e� 
 dN � v� z�� and f � 
 dN �z�  y�	 Since 
 � 	�� and a � b� z does belong to

the segment  v y	

The case in which a � b is illustrated in Figure �� where z is the orthogonal projection of  y onto the

segment ux� d� 
 dN � y� z�� e� 
 dN �u� z�� and f � 
 dN �z� x�	 Since 
 � 	�� and a � b� z does belong to

the segment ux	

Case �� a � b �a and b are Euclidean distances�	 See Figure �	

Using ��� and the triangle inequality several times� we obtain

g� � c� � dN �y�  y� 
 c� � dN �u� v� � c� �
�

�
b� � d� � f � �

�

�
b�

implying

d� � g� � �

�
b� � f � � a� � f � � �

�
b� 
 e� � �

�
b� � e� � �

�
�d� � e��

implying

d��� �
�

�
� � e���� �

�
��

��
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Figure �� Illustration for Lemma �	�	

Using ��� we have that
�� �

�

� � �
�

� d�

e�
� uNd

lNe



uN
lN

tan 
�

implying

tan
 � lN ��� �
��

uN �� � �
� �



lN
�uN

�
lN
�uN


 tan �N �

Since tan 
 � tan �N � we have that 
 � �N � a contradiction	

Case �� a � b �a and b are Euclidean distances�	 See Figure �	

Using ��� and the triangle inequality several times� we obtain

g� � c� � dN �y�  y� 
 c� � dN �u� v� � c� �
�

�
b� � d� � f � �

�

�
b�

implying

d� � g� � �

�
b� � f � � b� � f � � �

�
b� 
 e� � �

�
b� � e� � �

�
a� � e� � �

�
�d� � e��

�the second inequality follows from g� � a� � b�� implying

d��� �
�

�
� � e���� �

�
��

As in Case �� we obtain 
 � �N � a contradiction	

This completes the proof of Lemma �	�	

We now analyze the weight of the tour T �	 In IRm� for any angle � � �� consider a cover of IRm by

some �nite number B�d� �� of circular �overlapping� cones� all having the same origin P � such that two

distinct points di�erent from P in the same cone form� at P � an angle at most �	 We use in Theorem �	�

the well�known fact that B�d� �� is �nite for every � � � and every d	 This covering problem has been

extensively studied	

��



We mention the following upper bound due to Rogers �����

B�m��� is O

�
m���

�
log

m

sin�����

��
�

sin�����

�m�
�

Theorem ���� Fix m and a norm N on IRm	 Let G 
 �V�E� be an n�vertex geometric graph in IRm

under norm N 	 Let OPT be the weight of the optimal tour on G	 Let T � be any ��optimal tour of G	

Then the weight of T � is O�logn� �OPT 	 �The constant implicit in the big O depends on m and N 	�

Proof� Let �N 
 arctan� lN
�uN

�� where the constants lN � uN � � are according to ���	 At some arbitrary

point P in IRm� we cover the space by a constant number of circular cones C�� C�� � � � � CB�m��N �� such

that every two line segments containing P and lying within the same cone subtend� at P � an angle at

most �N 	 As noted� B�m� �N � depends only on d and N 	

Call these the original cones	 Construct B�m� �N � congruent cones around each of the n vertices

of G by translating each original cone so that its origin shifts from P to that vertex	 Hence� corre�

sponding to each vertex of G are B�m� �N � cones� one cone corresponding to each of the original cones

C�� C�� � � � � CB�m��N �	 Let Cji be the cone with its origin at vertex j that is a translate of original cone

Ci	

Let E� be the edge set of the ��optimal tour T �	 Let E� be the set of directed line segments

corresponding to E�	 Let E�
i be the set of directed line segments in E� that appear in �jCji	 We claim

that the sum of the weights of the segments in E�
i is bounded by O�logn� � wt�OPT �� for � � i �

B�m� �N �	 Since the sets E�
i cover the set E� and the number of cones is a constant� proving this claim

is enough to prove the lemma	

Clearly all the directed line segments in E�
i are similar�directional	 Hence by Lemma �	�� if ���u�v�

and ���u�v� are two directed line segments in E�
i� and if the former one is shorter� then dN �u�� u�� �

�
�dN �u�� v��	

Let T be an an optimal tour on G� so wt�T � 
 OPT 	 We are now going to account for the length

of the line segments in E�
i using the length of the edges in the T 	 Consider a walk along the the edges

of T starting from an arbitrary vertex� and ending at the same vertex	 As we walk along the path

we encounter the originating points of the line segments in E�
i	 Let the order of the line segments

encountered from E
�
i be

��e� � � � � ���eq 	
We claim that there exist bq��c line segments in E�

i with total length at most � �OPT 	 Consider a
pair of consecutive directed line segments ��ej ����ej��	 By Lemma �	�� the distance between the originating

points of ��ej and ���ej�� is longer than �
�
times the length of the shorter segment	 Hence the distance

along T between the originating points of ��ej and ���ej�� is also longer than �
� times the length of the

shorter segment	 We may charge the length of the shorter line segment to the length of the section of

T between the originating points of ��ej and ���ej��	 The charge is at most two times the length of the

path	 Taking the bq��c disjoint consecutive pair of segments� f��e� ���e�g� f��e� ���e�g� � � �� and charging the

shorter line segment of each pair to the corresponding path in T between the originating points� each

section of the path T is charged at most once	 Thus� the total length of the shorter line segments of

the chosen pairs is at most � �OPT 	
Now we consider only edges in E�

i that have not been charged yet� and repeat the same process	

After O�logn� steps� each edge in E�
i is charged� giving the bound of O��logn� � OPT � for the total

weight of the edges in E�
i	

��



Since B�m� �N � is constant �dependent only on m and N �� we conclude that wt�E�� is O��logn� �
OPT �� and therefore O�logn� �OPT 	

��� A Lower Bound for ��Opt Under L�

Theorem ���� There exists a constant c � � such that for in�nitely many values of n� there exists a

n�node graph Gn embedded in the Euclidean plane under the L� metric and a ��optimal tour Tn of Gn

such that wt�Tn�
wt�OPT �Gn��

� c � logn
log logn

	

We will prove the result for those values of nwhich satisfy n 
 ����p��p��p��� � ��p�p���p�p�p��

for any positive odd integer p � �	 Note that p � c� logn
log logn � for some c� � �	

We exhibit a set of n vertices V �all lying on the n � n grid in the Euclidean plane� such that

wt�OPT �V �� is at most �� � p�p	 We then construct a ��optimal tour T on V of weight at least

�p � p�p � �c� logn
log logn � p�p	 Hence� we will get that wt�T �

wt�OPT �V �� � c�

� � logn
log logn 	

Our construction is a modi�cation of a construction due to Bentley and Saxe ��� and Alon and Azar

��� and is shown in Figure �	 We construct V in three parts� V�� V� and V�	 The vertices in V� are in

p � � layers� where each layer is a set of equally spaced points on a horizontal line of length p�p	 The

coordinates of the points in level i� � � i � p� are �jai� bi� where ai 
 p�p��i and � � j � p�p�ai� and

bi will be de�ned later	 Thus a� 
 p�p� a� 
 p�p��� � � �� and ap 
 �	 Hence in layer � there are only

two points� in layer � there are p� � �� in layer i there are p�i � � 
 p�p

ai
� � points� up to layer p which

contains p�p�� points	 Let b� 
 �	 The vertical distance between layer i and layer i�� �i	e	� bi��� bi�

is ci 
 p�p����i� for all i	 Note that p � ai�� 
 p � p�p��i�� 
 ci 

p�p��i

p

 ai

p
�

V� is a copy of V� shifted to the right	 For every vertex in V� with coordinates �e� f�� there is a

vertex in V� with coordinates �e � �p�p� f�	 These are the only vertices in V�	

Finally� we �ll in the gaps in the topmost layer to get V�	 Since ap 
 �� let V� 
 f�j� bp�jp�p � j �

� � p�pg	 The set of all the vertices is V 
 V� � V� � V�	 Note that jV j 
 n	

Claim ���� wt�OPT �V �� � ��p�p	

Proof� Since wt�OPT �V �� is no more than twice the weight of the optimal spanning tree� it su�ces to

show that there is a spanning tree of weight at most �p�p	 Consider the spanning tree built as follows�

for every point in every layer� other than the bottom layer� draw a vertical line to the point directly

above it in the next higher layer	 Also draw the horizontal line in the topmost layer �layer number p�	

The total length of this tree is at most

�p�p � �

p��X
i	�

ci�
p�p

ai
� �� � ��p�p�� �

p��X
i	�

�ci�ai�� 
 ��p�p�� � p
�

p
�� 
 �p�p�

De�ne the tour T on V to be as shown in the Figure �	 Note that since p�� is even� we can always

construct this tour	

Claim ���� wt�T �V �� � �p � p�p	

Proof� Consider just the horizontal edges in T 	 Each layer has horizontal edges whose combined

weight is at least �p�p and there are p � � layers	

��
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Figure �� The tour T

Claim ��	� T is ��optimal	

We �rst present some simple notation	 For any point A� let Ax� Ay be its x and y coordinates	 We use

AB to refer both to the edge �line segment� and its length	 �AB�x is the length of the projection of AB

onto the x�axis� i	e	� �AB�x 
 jAx � Bxj	 We de�ne �AB�y similarly	 Note that AB � �AB�x� �AB�y	

We say that two edges AB and CD� which are either both vertical or both horizontal� overlap if the

following holds� let the projection of AB onto the in�nite line containing CD be A�B�	 Then A�B��CD
consists of more than a single point	

We next state and prove a simple geometric lemma	

Lemma ��
� Let EF and GH be horizontal line segments in the Euclidean plane� Gx � Ex � Fx �
Hx	 Let EF 
 �� GH 
 q�� q � �� so Gx � Ex � Hx � �	 Let the vertical distance between EF and

GH be z	 If z � q� then minfEG� FH�EH � FGg � EF � GH	

Proof� Let z � q	 Clearly� EH �FG � EG�FH so all we need to prove is EG�FH � EF �GH	

For � � a � q�� �� de�ne f�a� 

p
a� � q��

p
�q� � �� a�� � q�	 Let a 
 Ex�Gx	 Then Hx�Fx 


�q� � ��� a	 EG� FH 

p
a� � z� �

p
�q� � �� a�� � z� �

p
a� � q� �

p
�q� � �� a�� � q� 
 f�a�	

Since EF � GH 
 q� � �� in order to show that EG � FH � EF � GH� it su�ces to show that for

� � a � q� � �� f�a� � q� � �	

We will show that the minimum value of f�a� in the interval ��� q� � �� occurs at a 
 �q� � ����	

��



This su�ces since f� q
���
� � 
 q� � �	

f ��a� 

ap

a� � q�
� �q� � �� a�p

�q� � �� a�� � q�



�p

� � � qa �
�
� �q

� � � q
q����a�

�
�

In the interval ��� q
���
� �� a � q� � � � a� and hence f ��a� � �	 In the interval � q

���
� � q� � ���

a � q� � �� a� and hence f ��a� � �	 Hence the minimum value of f�a� in the interval ��� q�� �� occurs

at a 
 �q� � ����	

Proof of Claim ��	 �

Suppose otherwise	 So� in a single ��change operation� from T we can get another tour T � such that

wt�T �� � wt�T �	 Label the four vertices involved as A�B�C�D so that E�T � � E�T �� 
 fAB�CDg�
E�T �� �E�T � 
 fAC�BDg and AC � BD � AB � CD	 Note that the vertices A�B�C�D have to be

distinct� since in a single ��change operation we cannot replace two edges out of one vertex	

Since all edges in E�T � are either horizontal or vertical� there are three cases�

Case �� AB and CD are both vertical edges	 If AB and CD overlap� then they are the two vertical edges

which face each other	 But then �AC�x � �BD�x � �p�p � AB � CD	 If AB and CD don�t

overlap� assume without loss of generality that Ay� By � Cy � Dy	 If Ay � By then �AC�y � AB

and �BD�y � CD	 If Ay � By then �BD�y � AB �CD	

Case �� One of AB or CD is horizontal and the other is vertical	 Assume without loss of generality that

AB is horizontal and CD is a vertical	 By construction� and since A�B�C�D are all distinct�

exactly one of the following has to be true�

Subcase �i�� Either Cy 
 Ay 
 By or Dy 
 Ay 
 By 	 Then� by construction� Ax� Bx � Cx 
 Dx or

Ax� Bx � Cx 
 Dx	 If Cy 
 Ay then �BD�y 
 CD and� by construction� �AC�x � AB	

Similarly� if Dy 
 By then �AC�y 
 CD and �BD�x � AB	

Subcase �ii�� Cy� Dy � Ay 
 By	 Since AB is horizontal �Ax �
 Bx� and CD is vertical �Cx 
 Dx� either

Cx �
 Ax or Dx �
 BX 	 If Cx �
 Ax then� by construction� �AC�x � AB and� by construction�

�BD�y � CD	 Similarly� if Dx �
 Bx then �BD�x � AB and �AC�y � CD	

Subcase �iii�� Cy� Dy � Ay 
 By 	 If Cy � Dy then �AC�y 
 �AD�y �CD� and� by construction� �AD�y �

AB� implying �AC�y � AB � CD	 Similarly� if Dy � Cy then �BD�y � AB �CD	

Case �� AB and CD are both horizontal edges	

Subcase �i�� AB and CD are non�overlapping	 Assume without loss of generality that Ax� Bx � Cx � Dx	

If Ax � Bx then �AC�x � AB and �BD�x � CD	 If Bx � Ax then �BD�x � AB � CD	

Subcase �ii�� AB and CD are overlapping	 Assume without loss of generality thatAB is the smaller� higher

edge and that Cx � Dx so Cx � Ax� Bx � Dx	 Suppose AB is l levels above CD� l � �	 Then

CD 
 p�l �AB	 The di�erence in height between them is AB � �p�p�� � � ��p�l��� � AB �pl	
Scaling all three quantities so that AB 
 �� we see that the hypotheses of Lemma �	� are

satis�ed� and hence AC � BD � AB � CD	

��



� Bounds on the Length of ��Optimal Tours in the Unit Hy�

percube

In this section we show that for every m and every norm on IRm there is a O�n����m� upper bound

on the length of any ��optimal tour on n points in the m�dimensional unit hypercube	 �The constant

implicit in the big O depends on m and the norm	�

Notation� an arc is an ordered pair �h� t�	 The distance between h and t is denoted d�h� t�� and the

�directed� line segment between them is denoted ht	 The orientation of an arc �h� t� is the �Euclidean�

unit�length vector �h�t��jjh�tjj�	 The di�erence between two orientations r and s is the angle between

them as de�ned in section �� i	e	 arccos�r � s�	 Thus the orientations of �h� t� and �t� h� di�er by 		

Initially we work with the Euclidean norm	

Theorem ���� For any dimensionm � � there exists a constant cm such that all Euclidean ��optimal

tours on all con�gurations of n points in the unit hypercube have Euclidean length less than cmn
�� �

m 	

For any � � � de�ne the long arcs in T as those of length at least �	 For each long arc �h� t�� de�ne

the heart of the arc as the interior of the hypercylinder of radius ��� and length d�h� t���� with the

height oriented parallel to ht� and with the center of the hypercylinder at the midpoint of segment ht	

In the ��D case the heart is a rectangle of width ���	

Formally� suppose without loss of generality �h� t� is a vertical arc of length k with endpoints t 


��� �� � � � � �� and h 
 ��� �� � � � � �� k�	 Let B 
 fx � IRmj jjxjj � ����xm 
 �g� so B is the interior of

a m � ��dimensional ball of radius ��� in the subspace xm 
 � of IRm	 Let M be the interior of the

middle half of the segment ht� M 
 f��� �� � � �� �� �jk�� �  � �k��g	 Then the heart H��h� t�� is the

set sum B �M 	

We say that arc �h�� t�� attacks arc �h�� t�� i� the line segment h�t� intersects the heart of �h�� t��	

Note� attacking is not a symmetric relation	

At times it will be convenient to refer to the heart of a segment� or to say that a line segment attacks

another� even if the segment�s endpoints are not tour points	 The intended meaning is obvious	

Let � 
 arccos �������	 A family of arcs is any collection of long arcs in IRm whose orientations

di�er pairwise by at most �	

Lemma ���� No arc attacks another arc in the same family	

Proof� We prove the lemma in three steps	 First� it su�ces to consider the case where arcs have length

exactly �	 Second� if two arcs are parallel and one attacks the other� then they violate ��optimality by

more than ���	 Third� if two arcs are oriented within � and one attacks the other� then they can be

made parallel while still attacking� without changing things by more than ���	

Step � begins with a simple geometric de�nition	

De�nition �� If the line segment HT contains the line segment ht� and their orientations are con�

sistent �so d�H�h� � d�H� t��� then we say HT is an extension of ht	

For any four points h�� t�� h�� t�� de�ne the function

G�h�� t�� h�� t�� 
 d�h�� t�� � d�h�� t��� d�h�� h��� d�t�� t���

��



The function G measures the decrease in tour length if arcs �h�� t�� and �h�� t�� were removed in a

��change operation	 The two arcs cannot both be in a ��optimal tour if G is strictly positive	 �If G

is positive� we can swap out arcs �h�� t��� �h�� t�� and swap in arcs �h�� h��� �t�� t��	 The tour remains

connected� because the original tour included h� just before t�� and h� just before t�� in that order	�

The following sub�lemma implies that if a pair of arcs has positive G value� then so does any pair of

extensions of these arcs	

Lemma ���� Suppose HiT i is an extension of hiti for i 
 �� �	 Then G�H�� T ��H�� T �� �
G�h�� t�� h�� t��	 The result holds in IRm with respect to any norm	

Proof� Observe how G changes as the shorter segments are stretched by extending the endpoints in

turn	 Because H�� h�� and t� are collinear and any norm scales� d�H�� t�� 
 d�H�� h�� � d�h�� t��	 By

the triangle inequality d�H�� h��� d�h�� h�� � d�H�� h�� 
 d�H�� t�� � d�h�� t��	 Thus extending h� to

H� cannot decrease G	 By a symmetric argument the other components of G are nondecreasing as the

segments are extended and the claim follows	

Suppose long arc �H�� T �� attacks long arc �H�� T ��	 Obviously the segment H�T � is an extension

of some segment h�t� that has length � and that also attacks �H�� T ��	 Now consider all segments

that are of length � and can be extended to H�T �	 The union of the hearts of these segments is a

hypercylinder of radius ��� and length d�H�� T �� � ��� � d�H�� T ����� with the same center as the

heart of �H�� T ��� so it contains the heart of �H�� T ��	 Therefore �at least� one of these segments is

attacked by h�t�	 Denote the attacked segment by h�t�	

By lemma �	�� if G�h�� t�� h�� t�� � � then G�H�� T ��H�� T �� � �� To prove our lemma it therefore

su�ces to consider the case d�h�� t�� 
 d�h�� t�� 
 �	 This completes step one of the proof	

For step two� suppose a segment attacks a parallel segment� and that both segments have length �	

Our aim is to show G exceeds ���	

Consider the ��dimensional �a�ne� subspace �plane� spanned by the four endpoints of the two

parallel segments	 Now the intersections of the hypercylindrical hearts of the segments with this plane

are precisely the ��dimensional rectangular hearts of segments in the ��D case	 Therefore� for the

remainder of step � we work in ��D	

Also without loss of generality �but assuming Euclidean distances� take the second �attacked� seg�

ment to be vertical� with x and y coordinates h�x 
 t�x 
 t�y 
 �� and h�y 
 �	 We can further take the x

and y coordinates of the �rst �attacking� segment�s endpoints as all nonnegative	 Geometrically we are

placing the attacking segment above and to the right of the other	 The attacking segment is parallel�

hence vertical� so h�y � �	 Since the �rst segment attacks the second� we must have h�x 
 t�x � ���� and

also t�y � ����� whence h�y � ���� �since the �rst segment has length ��	 �The inequalities are strict

because the heart is the interior of the rectangle	� Now

d�t�� t�� � jt�y � t�yj� jt�x � t�xj 
 t�y � t�x � t�y � ����

Similarly d�h�� h�� � h�y � h�y � ��� 
 h�y � ����	 Thus

G�h�� t�� h�� t�� � ��� t�y � ���� h�y � ���� � ���� ���� ���� ��� � ���� 
 ����

This completes the second step of the proof of the lemma	

For the third step� suppose two segments of length � have orientation di�ering by at most �	 Without

loss of generality assume that the �rst attacks the second	

��



Let p � h�t� �H��h�� t��� be a point of intersection of the �rst arc and the second arc�s heart	 Hold

h�t� tacked at p and rotate it to be parallel with �h�� t��	 Call the new segment !h�� !t�	

The new segment attacks the second arc because of p	 Thus the new segment and the second segment

meet the conditions of part two	 Therefore�

G�!h�� !t�� h�� t�� � ����

We next claim that when the attacking arc is rotated� the value of G does not change by more than

���� i	e	�

jG�h�� t�� h�� t��� G�!h�� !t�� h�� t��j � ����

Observe that d�h�� t�� 
 d�!h�� !t�� by construction	 Therefore the value of G changes for only two

reasons� d�t�� t�� is replaced by d�!t�� t��� and d�h�� h�� is replaced by d�!h�� h��	 Recall that we set the

value of � so cos��� 
 �����	 The idea is that for small rotations !t� cannot be too far from t�	

By the law of cosines� at any angle � � ��

d�t�� !t��� 
 d�t�� p�� � d�!t�� p�� � �d�t�� p�d�!t�� p� cos���


 �d�t�� p����� cos���� � �d�t�� p���� � cos���� 
 �d�t�� p����� ��

��
� 
 d�t�� p������

Therefore d�t�� !t�� � d�t�� p���	

By properties of similar triangles� we also have d�h�� !h�� � d�h�� p���	 Putting all this together

with the triangle inequality� we �nd that rotation changes G by at most d�p� t���� � d�p� h���� 
 ���	

Therefore

G�h�� t�� h�� t�� � ��

This completes the third and �nal step of the proof of lemma �	�	

De�nition �� The soul of an arc is the hypercylinder de�ned exactly as the heart of the arc but with

radius and length half that of the heart	

The soul therefore has radius ����	

Lemma ���� If the souls of two long arcs intersect� then they attack each other	

Proof� Let p be a point of intersection of the souls of �h�� t�� and �h�� t��	 Let pi denote the nearest

point on segment hiti to p	 Then pi is in the soul of �hi� ti� and d�p� pi� � ����� for i 
 �� �	 By the

triangle inequality we have d�p�� p�� � ���	

On the other hand� the heart of �h�� t�� has radius ���� and it extends d�h�� t���� � ��� beyond the

soul along the arc in both directions as well	 Therefore� for any point of the arc that is in the soul� its

open ball of radius ��� �the set of points at distance less than ���� is completely contained in the heart	

Taking p� as this point� it follows that p� is in the heart of �h�� t��	 Therefore �h�� t�� attacks �h�� t��	

By symmetry� �h�� t�� attacks �h�� t��	

Fix the dimensionm	 Any soul is contained in the slightly�larger�than�unit hypercube of side length

� � ����� and volume at most k� 
 �����m �if � � ��	 By Lemmas �	� and �	� the sum of the volumes

of the souls in a family F is at most k�	

��



Now� the volume of the soul of arc �h� t� is k��
m��d�h� t� for some constant k�	 So

k��
m��

X
�h�t��F

d�h� t� � k� 


X

�h�t��F
d�h� t� � k��

��m�k��

This bounds the sum of the lengths of long arcs in a single family	

For every possible orientation jjujj� 
 � de�ne a corresponding set Fu 
 fvjv �u � cos�����g	 Notice
that for any T � the set Fu induces a family of arcs of T 	 The set of all Fu is an open cover of the compact

unit sphere fuj jjujj� 
 �g	 Extract a �nite subcover of cardinality k�	 Note that k� is independent of

T and n	

For all T the subcover provides a �nite collection of families whose union is the set of all long arcs

in the tour T 	 Therefore� the sum of the lengths of all long arcs in T is bounded by k��k����m�k��	

The total length of all short arcs is obviously bounded by n�	 Choose � 
 n�
�

m 	 The sum of lengths

of all arcs in T is less than n�� k�k�
k�

���m 
 n��
�

m � k�k�
k�

n�
��m
m 
 cmn

�� �

m and Theorem �	� is proved	

For the ��D case we can use a region larger than the soul� and change a few other details to get an

explicit bound on tour length	

Corollary ���� In the two�dimensional Euclidean case� the length of any ��optimal tour is less than

�
p
��
p
n � ���	

Proof�

De�ne the left heart of a large arc as that half of the arc�s heart which lies strictly to the left the

arc� when walking from tail to head	

Lemma ��	� The left hearts of arcs in a family are all mutually disjoint	

Proof� Suppose two long arcs �h�� t�� and �h�� t�� have intersecting left hearts	 Suppose further that

the two arcs� orientations di�er by � where j�j � 	�� 
 arccos ���	 We show that one of the arcs attacks

the other� and the result follows from Lemma �	�	

Let q be a point of intersection of the left hearts	 Drop a perpendicular from q to segment hiti at

intersection point qi� i 
 �� �	 Consider without loss of generality the case d�q� q�� � d�q� q��	 We prove

in this case arc �h�� t�� attacks �h�� t��	

Extend the line segment qq� to point q�� so that q� is the midpoint of the other points� q� 


�q � q�����	 Observe that the entire segment qq�� is within the heart �not necessarily the left heart�

of �h�� t��	 Therefore� all we have to do to prove �h�� t�� is attacked� is to verify that the segment h�t�

intersects this segment qq��	

Let p denote the point of intersection of the �in�nite� lines h�t� and qq��	 The intersection p is sure

to exist because � � 	��	 First we show that p is between� q and q��� or simply that d�q� p� � d�q� q���	

Since � � 	��� we have

d�q� q��

d�q� p�

 cos � � cos	�� 
 ����

Hence d�q� p� � �d�q� q�� � �d�q� q�� 
 d�q� q��� as desired	

��



Second we show that p is between h� and t�	 Now�

d�q�� p�

d�q� q��

 tan� � tan	�� 


p
��

Also� q is in the left heart of �h�� t�� and q� lies on that arc	 Therefore d�q� q�� � ���	 Finally� recall

that the arc �h�� t�� is long� whence d�h�� t�� � �	 Putting these inequalities together� we �nd that q�

and p are near each other�

d�q�� p� �
p
�d�q� q�� � �

p
��� � ��� � d�h�� t�����

Since q� is in inner half of the arc� the above implies that p lies in the arc �h�� t��	 So p is the desired

point of intersection of the two segments� �h�� t�� is attacked� and the lemma is proved	

Any left heart is contained in the square of side � � ��� and area at most � � ����� �since � � ��	

By Lemma �	� the sum of the areas of the left hearts in a family F is at most � � �����	

The area of the left heart of arc �h� t� is �d�h� t����	 So

������
X

�h�t��F
d�h� t� � � � ����� 



X
�h�t��F

d�h� t� � ����� ��

The number of families needed to cover the circle is d ��
arccos �������e 
 ��	 Therefore� the sum of

lengths of all long arcs in T is bounded by �������� �� 
 ������ ���	

Choose � 

p
����

p
n	 The sum of lengths of all arcs in T is less than

p
���

p
n �for the short arcs�

plus
p
���

p
n� ��� 
 �

p
��
p
n� ��� and corollary �	� is proved	

It is also easy to generalize theorem �	� to arbitrary norms on IRm	 The trick is to do most of the

work with respect to the Euclidean norm and switch norms later	

Theorem ��
� For any dimension m � � and any norm N on IRm there exists a constant cm�N such

that all ��optimal tours on all con�gurations of n points in the unit hypercube have length less than

cm�Nn
�� �

m 	

The proof is a modi�cation of the proof of theorem �	�	

Proof� Choose m and N 	 As in section �	�� by the comparability of norms� there exists a constant

KN � � bounding the ratio �and reciprocal of the ratio� between the N �induced distance and the

Euclidean distance between any pair of distinct points in IRm	 De�ne G with respect to norm N 	

De�ne long arc as one whose Euclidean length is at least �	 De�ne heart as before� except with radius

����K�
N �	 De�ne attack as before	 De�ne family as before� except choose � so that cos � 
 �� �

��K�

N

	

Lemma ���� No arc attacks another arc in the same family	

Proof� Sub�lemma �	� has already been proved for the general case	

For step �� our aim is to prove G exceeds �
�KN

� if h�t� and h�t� are parallel� both have length ��

and h�t� attacks h�t�	 Let d�� denote Euclidean distance� let dN �� denote distance induced by N 	 As

before it su�ces to work in ��D	 Let pt and ph denote the respective projections of t� and h� on the

line through h�� t�	 Then� since d�h�� t�� 
 � and d�t�� pt� � �
���

d�h�� t�� � d�t�� pt� � ����

��



Now� because all these points are collinear� and all norms scale� we have

dN �h�� t��� dN �t�� pt� � ����KN ��

By the triangle inequality� dN �t�� t�� � dN �t�� pt� � dN �pt� t��	 By comparability� dN �pt� t�� �
KNd�pt� t

�� � KN � ����K�
N � 
 ����KN �	

Putting these inequalities together�

dN �h�� t�� � dN �t�� t�� � �dN �h�� t��� dN �t�� pt��� dN �pt� t�� � ����KN � � ����KN � 
 ����KN ��

By a similar argument� dN �h�� t�� � dN �h�� h�� � ����KN �	 Hence G � ����KN � in the norm N 	

For step �� the reader can verify that � was chosen so that rotating a line segment of length � through

an angle � cannot move the endpoints by more than ����K�
N �� with respect to Euclidean distance	 Then

the same rotation does not change endpoint distances in the norm N by more than ����KN �	 By the

triangle inequality� G does not change by more than ����KN �	 Therefore G remains strictly positive in

the norm N 	 This proves lemma �	�	

De�ne the soul as having half the length and radius of the smaller heart used in this proof	 The rest

of the proof of theorem �	� goes through without change� in the Euclidean metric� At the end we have

a bound of the form cn��
�

m on the Euclidean length of T �although T is ��optimal with respect to the

norm N �	 Multiplying this bound by KN gives a bound for the norm N and the proof is complete	

� Expected Value of Performance Ratio in the Unit Hyper�

cube

In this section we combine Theorem �	� with well�known distributional properties of optimal tour

lengths to show that the expected performance ratio is bounded by a constant	

Let Sn be any set of n points in the d�dimensional unit hypercube ��� ��d � IRd	 Let OPT �Sn� be

an optimal tour �under norm N � on Sn� and let T �Sn� be a ��optimal tour �under norm N �	 Let In be

n points picked i	i	d	 from the d�dimensional unit hypercube under the uniform distribution	

As an immediate corollary to Theorem �	� and a lower bound of "�n
d��

d � on E�OPT �In�� ���� we

infer that there exists a constant 
d�N such that E�wt�T �In���
E�OPT �In ��

� 
d�N for all n� the ratio of the expected

values is bounded	 We can also show that wt�T �In��
wt�OPT �In��

is O��� with high probability and that the

expected value of this ratio is O���	

The following is easily obtainable from Lemma � in ��� p	 �����

Fact 	��� There exist constants FN � � and � � � � � such that for all n � ��

P
h
wt�OPT �In�� � FN � n d��

d

i
� �n�

From this and Theorem �	� we get

Theorem 	���

P

�
wt�T �In�� � cm�N

FN
�wt�OPT �In��

�
� �n�

��



Corollary 	��� For all m and all norms N on IRm there exists a constant c�m�N such that

E

�
wt�T �In��

wt�OPT �In��

�
� c�m�N �

where T �In� �respectively OPT �In�� is the length of the longest ��optimal tour �respectively the shortest

tour� on the points In with respect to N 	

Proof� We �rst note that for any set of points Sn�
wt�T �Sn��

wt�OPT �Sn��
� n� this follows since if the diameter

�under norm N � of Sn is D� then wt�T �Sn�� � nD and wt�OPT �Sn�� � D	

Let n� be such that n � n�� n�
n � �	 Let �N 
 max��n�n� E

h
wt�T �In��

wt�OPT �In��

i
	 Now consider

n � n�	

E

�
wt�T �In��

wt�OPT �In��

�


 P �wt�T �In�� �
cm�N

FN
� wt�OPT �In���

�E
�

wt�T �In��

wt�OPT �In��

���� wt�T �In�� � cm�N

FN
�wt�OPT �In��

�

� P �wt�T �In�� � cm�N

FN
� wt�OPT �In���

�E
�

wt�T �In��

wt�OPT �In��

���� wt�T �In�� � cm�N

FN
�wt�OPT �In��

�

�
cm�N

FN
� n�n

� cm�N

FN
� ��

Taking c�m�N 
 maxf�N � cm�NFN
� �g� we are done	

� Expected Running Time of ��Opt

This section gives polynomial upper bounds on the average number of iterations of ��opt under the L�

and L� norms	

��� The L� metric

In the �rst subsection� we prove that the average number of iterations done by the ��opt local�

improvement algorithm on n random points in the Euclidean unit square is O�n�� logn�	 Prior to

this paper� no polynomial upper bound on the expected time was known	 However� W	 Kern proved a

related result �����

Theorem 
��� There is a c such that the probability that ��opt does more than n�� iterations is at

most c�n	

Kern�s proof allows the possibility that ��opt does exponentially many iterations with probability

"���n�	 Kern himself writes� Our approach does not seem to yield interesting results about average

running times	� We will prove that the expected time is polynomial and we will rely heavily on Kern�s

lemmas in doing so	

��



The basic idea of Kern�s proof is to show that with probability at least � � c�n� every iteration

decreases the cost by at least ��n� � �� the initial tour being of length at most
p
�n� the number of

iterations can then not exceed
p
�n

��n� 	

To prove that the expected number of iterations is polynomial� we need the following de�nitions and

lemma from ����	

De�nition �� Given points P�Q�R� S � ��� ���� de�ne G�P�Q�R� S� 
 �d�P�Q��d�R�S��� �d�P�R��

d�Q�S��	

De�nition �� Given three points P�Q�R in the unit square and � � �� de�ne B��P�Q�R� to be the

set of points S in the unit square such that jG�P�Q�R� S�j � �	

Lemma 
��� ���� There is aK � � with the following property	 For any three points P�Q�R in the unit

square with P �
 Q� the area ofB��P�Q�R� �which is the conditional probability that jG�P�Q�R� S�j � ��

given P�Q�R� is bounded above by K
p
��d�P�Q�	

Let X�� X�� ���� Xn be points chosen independently and uniformly at random from the unit square	

De�nition �� If i� j� k� l are distinct elements of f�� �� ���� ng� de�ne F �i� j� k� l� 
 G�Xi� Xj � Xk� Xl�	

De�nition 	� De�ne Q 
 f�i� j� k� l� i�� j�� k�� l�� such that i� j� k� l� i�� j�� k�� l� � f�� �� ���� ng�
jfi� j� k� lgj
 jfi�� j�� k�� l�gj 
 �� and fi� j� k� lg �
 fi�� j�� k�� l�gg�

De�nition 
� Given n random points X�� X�� ���� Xn in the unit square� de�ne

#F 
 minfF �i�� j�� k�� l��j�i� j� k� l� i�� j�� k�� l�� � Q and � � F �i� j� k� l� � F �i�� j�� k�� l��g�

De�nition �� Let N 
 minfn$� �� #Fg	

We now give a very rough road map of the proof that the expected number of iterations done

by ��opt is O�n�� logn�	 It is not hard to see that any two consecutive improving ��changes involve

distinct ��sets of vertices	 By the de�nition of #F � ��opt must decrease the cost of the tour by at least
#F in any two consecutive iterations	 The cost of the initial tour being at most

p
�n� the number of

iterations cannot exceed �
p
�n� #F 	 Clearly the number of iterations never exceeds n$	 Thus the number

of iterations done is at most minf��np�� � n$� �np�� #Fg 
 ��n
p
��N� Our goal is therefore to bound

E�N �	

Notice that if #F � � �� � ��� then N � which is at least �
�n
p
�
times the number of iterations� is bounded

by �
� 	 The chance that #F is in this interval is bounded by Cn�� since P � #F � �� � Cn� �this is Lemma

�	��	 Hence the contribution to the expected value of N due to � �� � �� is bounded by �Cn	 Since N 
 n$

if #F � �
n�

and #F � � always� we need consider only lgn$ � O��� intervals� each of which contributes at

most �Cn to E�N �	 Thus E�N � is O�n lgn$�� and the expected number of iterations is O�n�� logn�	

Now we continue with the proof	

Lemma 
��� Let � � �	 Choose points X�� X�� ���� Xn in the unit square independently and uniformly

at random	 Let �i� j� k� l� i�� j�� k�� l�� � Q	 Suppose that l �� fi�� j�� k�� l�g and that l� �� fi� j� k� lg	 Then

�	 If fi� jg �
 fi�� j�g� then P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �� � ��	�K���

�	 If fi� jg 
 fi�� j�g� then P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �� � ��	K�� � lg �
� if � � �

� 	

��



Proof� From Lemma �	� we have

P �Xl � B��Xi� Xj � Xk�jXi� Xj� Xk� 
 P �jF �i� j� k� l�j � �jXi� Xj� Xk� � K
p
�

d�Xi� Xj�
�

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �jXi� Xj� Xk� Xi�� Xj� � Xk��

�notice that l and l� must be distinct from each other and from i� j� k� i�� j�� k�� though the latter six need

not be distinct�


 P �Xl � B��Xi� Xj� Xk�� Xl� � B��Xi� � Xj� � Xk��jXi� Xj� Xk� Xi�� Xj� � Xk�� � K
p
�

d�Xi� Xj�

K
p
�

d�Xi� � Xj��



K��

d�Xi� Xj�d�Xi� � Xj��
�

Therefore

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �jXi� Xj� Xk� Xi� � Xj� � Xk�� � K��

d�Xi� Xj�d�Xi� � Xj��

and therefore

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �jXi� Xj� Xi� � Xj�� � K��

d�Xi� Xj�d�Xi� � Xj��
� ���

If fi� jg �
 fi�� j�g� then
P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � ��



�X
r	�

�X
s	�

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �jd�Xi� Xj� � ���r� ��r���� d�Xi� � Xj�� � ���s� ��s����

�P �d�Xi� Xj� � ���r� ��r���� d�Xi� � Xj�� � ���s� ��s����

Now

P �d�Xi� Xj� � ���r� ��r���� d�Xi� � Xj�� � ���s� ��s���� � P �d�Xi� Xj� � ��r��� d�Xi�� Xj�� � ��s���

and

P �d�Xi� Xj� � ��r��� d�Xi�� Xj�� � ��s��� � 	���r����	���s����

since fi� jg �
 fi�� j�g	 So
P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � ��

�
�X
r	�

�X
s	�

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �jd�Xi� Xj� � ���r� ��r���� d�Xi� � Xj�� � ���s� ��s����

�P �d�Xi� Xj� � ��� ��r���� d�Xi�� Xj�� � ��� ��s����

�
�X
r	�

�X
s	�

K��

��r��s
	���r����	���s����


 ��	�
�X
r	�

�X
s	�

K���r�s���r���s

��




 ��	�K��

�X
r	�

�X
s	�

��r��s


 ��	�K���
�X
r	�

��r��
�X
s	�

��s�


 ��	�K���

If instead fi� jg 
 fi�� j�g� we have

P �Xl � B��Xi� Xj � Xk�jXi� Xj� Xk� 
 P �jF �i� j� k� l�j � �jXi� Xj� Xk� � K
p
�

d�Xi� Xj�
�

Equation ��� tells us that

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �jXi� Xj� � K��

d�Xi� Xj��
�

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � ��



�X
s	�

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �jd�Xi� Xj� � ���s� ��s����P �d�Xi� Xj� � ���s� ��s����

Since

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �jd�Xi� Xj� � ���s� ��s���� � min

�
K��

���s��
� �

�


 minfK����s� �g�
we have

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �� �
�X
s	�

P �d�Xi� Xj� � ���s� ��s���� �minfK����s� �g

�
�X
s	�

P �d�Xi� Xj� � ��s��� �minfK����s� �g

�
�X
s	�

�	���s �minfK����s� �g

Now K����s � � if and only if s � �
� lg

�
K�� � So the quantity is at most

b �
�
lg �

K��
cX

s	�

�	���sK����s �
�X

s	d �
�
lg �

K��
e
�	���s � �

� �	K���� �
�

�
lg

�

K��
� � �	K���

If � � �
� � then since K � � we have

�	K���� �
�

�
lg

�

K��
� � �	K�� � ��	K�� � lg �

�
�

Lemma 
��� Let � � �	 Let �i� j� k� l� i�� j�� k�� l�� � Q	

��



�	 If jfi� j� k� lg� fi�� j�� k�� l�gj � �� then P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �� � ��	�K���

�	 If jfi� j� k� lg � fi�� j�� k�� l�gj � � and � � �
� � then P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �� �

��	�K�� � lg �
� 	

Proof� By the symmetry in F � we have F �a� b� c� d� 
 F �c� d� a� b� 
 F �b� a� d� c�	 This means that it is

possible to move any one of the indices into the �nal position without changing the value of F �a� b� c� d�	

Formally� if x � fa� b� c� dg� then there is a permutation �a�� b�� c�� d�� of fa� b� c� dg such that d� 
 x and

F �a�� b�� c�� d�� 
 F �a� b� c� d� always	

Since fi� j� k� lg �
 fi�� j�� k�� l�g� we can �nd an x in fi� j� k� lg�fi�� j�� k�� l�g and a y in fi�� j�� k�� l�g�
fi� j� k� lg	 By moving x and y to the last position� without loss of generality we may assume that

l �� fi�� j�� k�� l�g and l� �� fi� j� k� lg	
Now we invoke Lemma �	�	 If jfi� j� k� lg � fi�� j�� k�� l�gj � �� clearly fi� jg �
 fi�� j�g	 Lemma �	�

implies that P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �� � ��	�K���

If jfi� j� k� lg� fi�� j�� k�� l�gj � �� then possibly fi� jg 
 fi�� j�g and possibly not	 In the former case�

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �� � ��	K�� � lg �
� � ��	�K�� � lg �

� �if � � �
� �	 In the latter�

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � �� � ��	�K���

Recall the de�nition of #F �

#F 
 minfF �i�� j�� k�� l��j�i� j� k� l� i�� j�� k�� l�� � Q and � � F �i� j� k� l� � F �i�� j�� k�� l��g�
Lemma 
��� Let n � � and let C 
 ����	�K�	 Let ��n

� � � � �
� 	 Then P � #F � �� � Cn��

In P � #F � �� � Cn�� the n comes from the fact that Q in the de�nition of #F has at most n

��tuples	 The � comes from Lemma �	�� which has a
p
�	 Very roughly� because #F involves two ��tuples�

we can replace the
p
� in Lemma �	� by an �	

Proof� In this terminology� #F � � if and only if there is an ��tuple �i� j� k� l� i�� j�� k�� l�� � Q such that

� � F �i� j� k� l� � � and � � F �i�� j�� k�� l�� � �	

P � #F � �� �
X

P �jF �i� j� k� l�j � �� jF �i�� j�� k�� l��j � ���

where the summation is over Q	 There are at most n ��tuples �i� j� k� l� i�� j�� k�� l�� � Q such that

jfi� j� k� lg�fi�� j�� k�� l�gj � �	 There are at most ���n� ��tuples such that jfi� j� k� lg�fi�� j�� k�� l�gj � �	

By Lemma �	�� if � � � � �
� � then

P � #F � �� � n���	�K��� � ���n����	�K�� lg
�

�
��

Since ��n
� � � � �

� �
�
�
� �n

�

and lg �
�
� n�	 So the expression above is no more than n���	�K����

���n����	�K�n��� 
 n�����	�K���� Let C 
 ����	�K�� Therefore P � #F � �� � Cn� if ��n
� � � � �

�

and n � �	

Recall that N 
 minfn$� �� #Fg	

Lemma 
�	� E�N � � �Cn� lgn if n � �	

Proof� We have

E�N � �
dlgn�eX
r	��

P � #F � ���r� ��r���� � �r � P � #F �
�

n$
� � n$

��



�
dlg n�eX
r	��

P � #F � ��r����r � P � #F �
�

n$
�n$�

So

E�N � �
�X

r	��

P � #F � ��r����r �

dlgn�eX
r	�

P � #F � ��r����r � P � #F �
�

n$
�n$

� �
�

�
� � � �� �

dlgn�eX
r	�

�Cn��r����r � Cn
�

n$
n$


 ��� � �Cn�dlg n$e � �� � Cn

� ��� � �Cn�n lgn�

� �Cn� lgn

since we are assuming n � �	

Theorem 
�
� The average number of ��changes made by algorithm ��opt when run on n random

points in the Euclidean unit square is at most ��C
p
��n�� lgn� for any n � �	

Proof� If a ��change is made� replacing edges �xi� xj� and �xk� xl� by �xi� xk� and �xj � xl�� then the

same four vertices fi� j� k� lg cannot be used in an improving ��change in the next iteration	 Therefore�

any two consecutive improving ��changes involve distinct ��tuples of vertices	

By the de�nition of #F � ��opt must decrease the cost of the tour by at least #F in any two consecutive

iterations	 The cost of the initial tour being at most
p
�n� the number of iterations cannot exceed

�
p
�n� #F 	 Clearly the number of iterations never exceeds n$	

The number of iterations done is at most

minf��n
p
�� � n$� �n

p
�

#F
g


 ��n
p
�� �minfn$� �

#F
g


 ��n
p
��N�

So the average number of iterations is at most ��n
p
��E�N � � ��C

p
��n�� lgn for all n � �	

��� The L� metric

In this subsection we bound the expected number of iterations of ��opt under the L� norm	 In contrast

with Theorem �	� the proof is somewhat nonconstructive� but it is fairly short and the polynomial is

of lower order	

Theorem 
��� Let n points be independently sampled from the uniform distribution in the m�

dimensional unit hypercube	 Let ��opting be performed with respect to the L� norm	 Then the

expected number of iterations required is O�n� logn�	

��



Proof� Let Im denote the unit hypercube	 Suppose v�� v�� v�� v� are four points sampled independently

from the uniform distribution on Im	 Let Z denote the random variable equal to G�v�� v�� v�� v�� 


jjv�� v�jj�� jjv�� v�jj�� jjv�� v�jj�� jjv�� v�jj�	 Note that distances are computed according to the

L� norm	

We study the distribution of Z	 For clarity we focus on the case m 
 �� and use parenthetical

remarks to extend the proof to the m�dimensional case	

The four points in I� are de�ned by eight ��m� random variables� denoted xi� yi � i 
 �� � � � � ��

drawn independently from the uniform distribution on ��� ��	 Let g�x�� � � � � x�� 
 jx��x�j� jx��x�j �
jx� � x�j � jx� � x�j	 Then Z is the sum of the independent and identically distributed variables X

and Y where X 
 g�x�� x�� x�� x�� and Y 
 g�y�� y�� y�� y��	 The key is to understand the distribution

of X� because X � Y will have a distribution found as the convolution of two i	i	d	 variables with this

distribution	 �In m dimensions Z is the m�fold convolution of i	i	d	 variables with this distribution	�

Lemma 
��� With probability ��� the variable X 
 �� with probability ��� the variable X is dis�

tributed according to a continuous density function  h on ��� ��	

Proof� Consider the conditional distribution ofX� conditioned on the event 	� 
 fx� � x� � x� � x�g	
Notice that X 
 �x� � �x� under this condition	 Now if we take four samples i	i	d	 from the uniform

distribution� and let W equal the di�erence between the �rd and �nd largest� then obviously W has a

continuous density function	 Therefore X has continuous conditional density function conditioned on

event 	�	 We denote the conditional probability density by h�� 	

By symmetry� for seven other 	�s we can make the same argument� and for each we get a continuous

conditional probability density function h�i 	 For eight additional 	i the conditional distribution is like

�W � i	e	� twice the di�erence between the �nd and �rd largest	

For the last eight 	i� the conditional distribution of X is degenerate with all its mass at zero	 This

occurs when the projections of the arcs on the x�axis overlap and have opposite orientations	

The unconditional density function of X is

h 

��X
i	�

�

��
h�i �

Therefore X has a hybrid distribution	 It has a mass point of weight ���� 
 ��� at �	 The remaining

�%� of the mass has continuous density because each of the �� contributing h�i �s is continuous	

When the distribution ofX is convolved with itself to get Z� the result is a hybrid distribution� Z 
 �

with probability ���� Z is distributed according to a continuous density� denoted  h�� with probability

���	 This is because X and Y are independent	 �In higher dimensions each additional convolution

is of two independent hybrid distributions� each containing one mass point at zero� and continuous

everywhere else� and these properties are obviously preserved in the sum of the distributions	� In m

dimensions� the probability is �����m that a given random ��tuple of points has Z 
 �� Z is distributed

according to a continuous density� denoted  hm� with probability �� �����m	

A local improvement algorithm will not make any of the ��changes corresponding to ��tuples where

Z 
 �	 The algorithm will be fast if there are no very small positive Z values	

Now consider the density function  hm	 It is continuous everywhere on ���m� �m� and is symmetric

around �	 Since a continuous function on a compact set attains its maximum�  hm has a maximumM 	

��



This implies that

P �� � jZj � �� � �M� � � ��

Now let S denote a sample of n points on Im	 Let � denote the smallest of all non�zero absolute

di�erences in tour length from ��changes�

� 
 min
v�� v�� v�� v� � S

G�v�� v�� v�� v�� �
 �

jG�v�� v�� v�� v��j

�where the minimum is over distinct points�	 Since the minimum is taken over fewer than n� ��tuples�

we get

P �� � �� � n���M�� 
 cn���

By exactly the same argument as lemma �	� with an n� instead of an n term� we have

E�minfn$� ���g� � �cn� logn	 The cost of the initial tour being at most �n� the expected number

of iterations is at most ��n��cn� logn� which is O�n� logn�	

	 Extending Lueker
s Construction

In ����� G	 Lueker ���� constructed� for each n � �� a family of n�node weighted cliques � Gn � on

vertex set fx�� x�� x�� ���� xn��g with the property that the naive ��opt algorithm can do at least �bn��c��

iterations	 Although the only thing we need from his construction is that each of the tours includes the

edge fx�� xn��g� we give Lueker�s �unpublished� construction here	

Here is Lueker�s construction	 For each � � i � j � n � �� de�ne the weight wij of edge fxi� xjg as

follows	

�	 j is even	

�a� If i
�� then wij 
 ��j	

�b� If i is positive and odd� then wij 
 ��i��	

�c� If i is positive and even� then wij 
 ��i	

�	 j is odd	

�a� If i
�� then wij 
 ��j��	

�b� If i is positive and odd� then wij 
 ��i��	

�c� If i is positive and even� then wij 
 ��i��	

Let ak 
� x�� x�� x�� ���� x�k � and let a�k be its reverse	 Lueker proves the following theorem	

Theorem ���� Let T be a tour of Gn that contains the block � x�� ak� x�k�� �	 Then there is

a sequence of at least �k�� improving ��changes which lead to the replacement of this block by �

x�� a
�
k� x�k�� � �and which leaves the rest of the tour unchanged�	

��



We refer the reader to ���� for a proof	 The proof converts the string � x�� ak� x�k��� x�k��� x�k�� �

to � x�� a
�
k� x�k��� x�k��� x�k�� � in at least �k�� steps by induction� then to �

x�� a
�
k� x�k��� x�k��� x�k�� � in one step� then to � x�� x�k��� x�k��� ak� x�k�� � in one step� then

to � x�� x�k��� x�k��� a
�
k� x�k�� � in at least �k�� steps by a clever use of the inductive assertion� and

last to � x�� x�k��� x�k��� a
�
k� x�k�� �	 Notice that� as claimed� edge fx�� xn��g is in all tours	

It is now our job to extend the result to all k � �	 Since k � � is easy� we do that case �rst	

Theorem ���� For any k � �� for any N � �k� there is an N �vertex weighted graph on which there

exists a sequence of at least �bN��c�k improving k�changes	

Proof� The idea is to take Gn and add ��k � �� new vertices at distance one from each other and

from the original vertices	 Any ��change in the original proof can be converted to a k�change in the

new graph� by &ipping two original edges and k � � new ones	

Let l 
 k � � and add to Gn �l new vertices�

s� t� y�� z�� y�� z�� ���� yl��� zl���

The distance between any pair of these vertices� as well as that between these new vertices and the n

old ones� is �	 Let

A 
 ffy�� z�g� fy�� z�g� fy�� z�g� ���� fyl��� zl��gg�
let

L 
 ffs� y�g� fz�� y�g� fz�� y�g� ���� fzl��� tgg�
and let

R 
 ffs� z�g� fy�� z�g� fy�� z�g� ���� fyl��� tgg�
The key fact is that A � L is the edge set of a Hamiltonian path from s to t among the new vertices�

A�R is the edge set of a Hamiltonian path from s to t among the new vertices� and A�L�R are pairwise

disjoint	 Furthermore� A � L and A �R di�er in exactly l edges	

Now let S� T be the edge sets of any two tours of Gn that both contain edge fx�� xn��g and

that share exactly n � � edges	 Let S� 
 �S � fx�� xn��g� � �ffx�� sg� fxn��� tgg � A � L� and let

T � 
 �T � fx�� xn��g� � �ffx�� sg� fxn��� tgg � A � R�	 S� induces a tour of the new graph� and T �

induces a tour of the new graph as well� and S� and T � di�er in exactly � � l 
 k edges	 Since all the

new edges have weight �� if moving from S to T on the original graph is a cost�decreasing ��change�

then moving from S� to T � in the new graph is a cost�decreasing k�change	 �In the next step� we can

interchange the roles of the y�s and z�s� since they are symmetric	�

Lueker�s proof gives a sequence of at least �bn��c�� cost�decreasing ��changes on an n�vertex graph

�if n � ��	 The new graph we built has N 
 n � �l 
 n � ��k � �� 
 n � �k � � vertices� and there

is a sequence of �bn��c�� cost�decreasing k�changes	 In terms of the number N of vertices in the new

graph� the number of k�changes is at least �bN��c�k�

Now we tackle k 
 �	

Theorem ���� For each even N � �� there is an N �vertex weighted graph on which there exists a

sequence of at least �bN��c�� improving ��changes	

��



Proof� We use wij to denote the weight of fxi� xjg in Gn	 Let wii 
 � for all i	 Take two copies

of Gn	 One copy has vertex set V 
 fx�� ���� xn��g� the other has vertex set V � 
 fx��� ���� x�n��g	 The

weight of edge fx�i� x�jg� i �
 j� and that of fxi� x�jg equals wij	 Call the new �n�node graph Hn	

Let S be the edge set of any tour in Gn containing edge fx�� xn��g	 There is an obvious associated

tour of Hn� Let A 
 S � ffx�� xn��gg	 Let A� 
 ffx�i� x�jgjfxi� xjg � Ag	 Then the associated tour

contains edges S� 
 ffx�� x�n��g� fx��� xn��gg �A �A�	 It is not hard to see that S� is the edge set of a

tour in Hn	

We will prove the following	 Let S be any tour of Gn containing fx�� xn��g� and let S� be the

associated tour of Hn	 Let T be a tour of Gn obtained from S by one cost�decreasing ��change	 Then

the tour T � of Hn associated with T can be obtained from S� via two cost�decreasing ��changes	 �We

are implicitly identifying tours with their edge sets	�

Consider the tour S as directed from x� to xn��	 Suppose that the ��change involves swapping

out the edges fxi� xjg� fxk� xlg� where� in S� the vertex xi is the �rst among the four visited by S� xj

is second� xl is third and xk� fourth	 Since the ��change results in a tour T � it must replace the two

missing edges by fxi� xlg� fxk� xjg	 �If they were replaced by fxi� xkg� fxl� xjg� then the new tour�

would be disconnected	�

Let S� and T � be the tours of Hn associated with S and T � respectively	 S� and T � di�er only in

that to get from S� to T � one drops the four edges fxi� xjg� fx�i� x�jg� fxk� xlg fx�k� x�lg� and adds fxi� xlg�
fx�i� x�lg� and fxk� xjg� fx�k� x�jg	

We know that switching from S to T decreased the cost� thus �wij �wkl�� �wil � wkj� � �	 In S��
we have the four edges fxi� xjg� fxk� xlg� fx�i� x�jg� fx�k� x�lg	 We leave the last one unchanged and we

change the �rst three to fxi� xlg� fxk� x�jg� fx�i� xjg	 It is easy to see that the new tour� is indeed a

tour� so this is a valid ��change provided that we have decreased the cost	 The decrease in cost is

�wij �wkl � wij�� �wil � wkj �wij� 
 �wij �wkl� � �wil �wkj��

which we know to be positive	 The next ��change leaves edge fxi� xlg unchanged	 It &ips

fxk� x�jg� fx�i� xjg� fx�k� x�lg to fxk� xjg� fx�i� x�lg� fx�k� x�jg	 The decrease in cost is

�wkj �wkl � wij�� �wil � wkj �wkj� 
 �wij �wkl�� �wil � wkj��

which we know to be positive	 The resulting edge set contains fxk� xjg� fx�k� x�jg� fxi� xlg� fx�i� x�lg� and
is otherwise the same as S�� so it is T �� and therefore a tour	

Lueker�s proof gave �bn��c�� ��changes on an n�vertex graph� n � �	 We have N 
 �n� and we make

two ��changes for each original ��change	 In terms of N � we have �bN��c�� ��changes� if N � � is even	

� Open Problems

� One of the best TSP algorithms in actual experiments ��� is the Lin�Kernighan algorithm �����

a local search algorithm with a more complex neighborhood structure	 Since a Lin�Kernighan

optimal tour is also ��optimal� all the upper bounds on the performance ratio of ��opt also hold

for Lin�Kernighan	 Can one do better for Lin�Kernighan�

��



� Our lower bounds on the performance ratio of k�opt are obtained by showing that there is some

k�optimal tour of large weight	 Suppose we start with a random tour and then deterministically

make improving k�changes	 Can we get better performance guarantees�

� Can Lueker�s results be extended to the Euclidean plane� i	e	� is there a graph in the Euclidean

plane for which there exists an exponential number of improving ��changes�

� Can Theorem �	� be generalized to any k�opt algorithm� i	e	� for arbitrary metric spaces can one

prove that as k increases� the performance guarantee of the k�opt algorithm improves�
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