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Abstract

Local search with k-change neighborhoods is perhaps the oldest and most widely used heuristic
method for the traveling salesman problem, yet almost no theoretical performance guarantees for it
were previously known. This paper develops several results, some worst-case and some probabilistic,
on the performance of 2- and k-opt local search for the TSP, with respect to both the quality of
the solution and the speed with which it is obtained.

1 Introduction

Local search with k-change neighborhoods is perhaps the oldest and most widely used heuristic method
for the traveling salesman problem [13, 17]. Given a graph G = (V, E) and a tour 7" of G (“tour”
is synonymous with “Hamiltonian cycle”), a tour 7" is said to be obtained from 7' by an improving
k-change if T" is shorter than T, and T" is obtained by removing k edges from T and adding ¥ new
edges. The k-opt algorithm starts with an arbitrary initial tour and incrementally improves on this
tour by making successive improving k’-changes for any ¥’ < k, terminating when no such improving
changes can be made. This paper develops several results, some worst-case and some probabilistic,
on the performance of 2- and k-opt algorithms for the TSP, with respect to the two principal criteria,

quality and speed.

Quality: how good is a locally optimal solution? The only results on this question that we are aware of
are due to Grover [7], Lueker [16] and Plesnik [18]. Grover proves that for any (symmetric) TSP instance,
any 2-optimal tour has length at most the average of all tour lengths. (This result also was credited to
Edelberg [16, page 7] but without reference). Lueker gives a construction for which this bound is tight
when tour lengths differ. Plesnik shows that there are graphs with n vertices satisfying the triangle
inequality (i.e., the distances are those in an n-point metric space), whose worst-case performance ratio

can be as bad as ﬁ\/ﬁ Our results regarding solution quality are:

e For TSPs satisfying the triangle inequality the worst-case performance ratio of 2-opt is at most
4+/n for all n. The k-opt algorithm can have a performance ratio that is at least %nﬁ for infinitely

many n.
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e TFor TSPs embedded in the normed space IR™, the worst-case performance ratio of k-opt is
O(logn). If the points are embedded in IR? and the distances are Euclidean, then there is a
¢ > 0 such that the worst-case performance ratio of 2-opt is at least ¢ - %‘5"— for infinitely many

glogn

n.

e For all norms on IR™, there exists a constant ¢ such that any 2-optimal tour on any TSP instance

1=1/m A corollary

in the unit hypercube (with norm-induced distances) has length less than en
is that if points are sampled i.i.d. uniformly from the hypercube, 2-opt has O(1) worst-case ratio

with high probability and the expected value of this ratio is also O(1).

Speed: how many iterations does local search require? There seem to be three previous results on
this question. The first two of these are worst-case. Lueker [16] constructs a TSP instance for which
there exists an exponentially long sequence of improving 2-changes. For all sufficiently large &, Johnson,
Papadimitriou, and Yannakakis [8] and Krentel [11] prove the existence of instances and initial tours with
the stronger property that all improving sequences, starting from the given initial tour, are exponentially
long. Krentel [12] claims to have extended this result to all £ > 8.

Here we extend Lueker’s construction for all & > 2, giving explicit instances for which there exist

exponentially long improving sequences.

The third previously known result is probabilistic. Kern [10] shows that for random Euclidean
instances on the unit square, the probability is at least 1 — ¢/n that the number of iterations required
by 2-opt is O(n'®), where ¢ is a constant. It was not known if the expected number of iterations is

polynomial. Our main probabilistic results regarding speed are:
e For random Euclidean instances in the unit square, the expected number of iterations required
by 2-opt is O(n'%logn).
e For random L; instances in the unit hypercube, the expected number of iterations required by

2-opt is O(n®logn).

Taken together, our results provide the first theoretical proof of the quality of 2-opt as a heuristic
for random TSP instances in the unit square. In particular, the expected time is polynomial, and the

expected worst-case performance ratio is bounded by a constant.

2 Preliminaries

We begin by stating some definitions and notation that will be used throughout the paper.

A metric space (V,d) is a nonempty set V of points and a function d : V x V' — IR, called distance,
satisfying the following properties for all z,y,z € V:

(i) d(x,y) > 0 and d(z,y) = 0 if and only if z = y;
(ii) d(z,y) = d(y, z);

(iii) d(z,z) < d(x,y) + d(y, 2).



A norm N on IR™ is a function || - || : R™ — IR satisfying the following properties.

(i) For all z € R™, ||z|| > 0 and ||z]| = 0 if and only if z = 0;
(ii) ||lex|| = |e| - ||x|| for every ¢ € R and x € IR™;

(iil) [z + yl] < ||=|| + ||y|| for every z,y € R™.

A norm N induces a metric space where the distance function is defined as dy(x,y) = ||# — y||. If the

norm of a m-dimensional vector # = (21, 2s,...,24) is defined as ¢/|2][+ |25 + - - - + [2])], where p is
a positive integer, then the corresponding metric is called the L, metric. The L, metric is called the

Fuclidean metric.

A geometric graph is given by a finite nonempty set V of points in IR™ and a norm N on IR™. The
graph is a complete weighted graph on V with the weight of edge {z,y} being dn(z,y) = ||z — y||.
When the metric considered is the Euclidean metric, the graph is called a Fuclidean graph.

Given a weighted graph G = (V| E) we refer to the weight or length of an edge e € E by wt(e).
Given a collection of edges E' C FE, the weight wt(E’) of E’ is the sum of the weights of the edges
in B'; if the edges in B’ form a tour 7", we also refer to wt(7T") as the length of the tour. We denote
an optimal tour by OPT((). Since we work only in complete graphs in a metric space (so given V,

G = (V, E) is completely determined), we also abuse notation slightly and refer to OPT(V).

Given a weighted graph G = (V, E) and a tour T of GG, a tour 7" is said to be obtained from T
by an improving k-change if T is shorter than T', and T’ is obtained by removing k edges from T' and
adding k new edges. A tour 7' is said to be k-optimalif for all ¥’ < k, no improving k’-change can be
made to T'. The k-opt algorithm starts with an arbitrary initial tour 7y and incrementally improves on
this tour by finding 77,75, ..., T, where T;41 is obtained from T; by an improving k’-change for some
k' <k, and T, is k-optimal.

The k-opt algorithm can start from many different initial tours, and even starting from the same
initial tour, k-opt can end up in many different k-optimal tours. All the upper bounds in this paper

are proved for the worst possible outcome of k-opt.

3 Bounds on Performance Ratios in Metric Spaces

We first prove that the performance ratio of k-opt cannot be bounded by a function of n if the triangle

inequality is not imposed.

Theorem 3.1. For all £ > 2, for all n > 2k + 10, for all M > 0, there exists a complete weighted
graph G on n vertices, with strictly positive weights, containing a k-optimal tour 7” such that

wt(T")/OPT(G) > M.

Proof. We prove the result for all £ even and n > 2k + 8. The result will follow for k& odd since
k-optimality implies (k — 1)-optimality. The idea of the construction is to take a pair of Hamiltonian
cycles in G which differ by a (k4 1)-change. We set the weights of all edges in these cycles to ¢; all other
edges in G are given very large weight. For one special edge in the first cycle, we change the weight to

1. This keeps the first cycle k-optimal but now its weight is many times that of the second cycle.



The graph G has n vertices denoted 1,2,... n. Its edge weights are

-
g

t(1,2) =

(
2. wt(i,i+ 1) =eforall ¢ > 1, and wt(n,1) =
3. wt(k+3,2k+4) =e

(),

4. wt(j,2k+4—j)=cforall 1 <j<k.

5. All other edges have weight kn.

In general, T is 1,2k + 3,2k + 2,2, 3,2k + 1,2k, 4, 5,2k —-1,2k—-2,6, ..., k—1,k+5k+
4k kE+1k+2k+3, 2b+4,2k4+5,26+6,2k+7,...,n—2,n— 1,n. This tour has weight ne.
For example, when & = 8 and n = 26, the optimal tour 7T is 1,19,18,2,3,17,16,4,5,15,14,6,7,13,
12,8,9,10,11,20,21,22,23,24,25,26.

The tour 7" is 1,2,3,...,n with weight 1+ (n — 1)e. If we set ¢ = 1/(Mn) the performance ratio
will exceed M as desired. We still have to verify that 7" is k-optimal. This is straightforward and left
to the reader. ®

Plesnik [18] showed that for a graph with n vertices, the worst-case performance ratio of 2-opt could
be as bad as %, and conjectured that the worst-case performance ratio for 3-opt is 2. We show that
Plesnik’s bound for 2-opt is tight up to a constant factor by proving an upper bound of 4,/n on the
performance ratio of 2-opt. We also disprove his conjecture for 3-opt by proving lower bounds that
approach infinity as n goes to infinity for k-opt for all k; a lower bound for 2-opt then follows as a

special case.
The upper bounds in this section and in section 5 use techniques similar to those of [4, 20].

Let M be any arbitrary metric space with a distance function d. Let V be a set of points in M,
and let n = |V|. Let OPT(V) be an optimal tour on V and let T(V') be any tour on V which is locally
optimal with respect to the 2-opt algorithm.

We first state a simple fact which follows from the triangle inequality.
Fact 3.2. V' CV = wt(OPT(V")) < wt(OPT(V)).

Lemma 3.3. For any k € {1,2,...,n}, let E} = {edges e € T(V)|wt(e) > W}. Then
|Ek| < k.

Proof: Suppose otherwise; so for some k, » = |Ej| > k. Orient the edges of T(V) in a consistent
manner, i.e., so that the directed edges form a directed Hamiltonian cycle. Consider the directed edges
(with the above orientation) of Ey, (t1, k1), (t2, ha), ..., (ts, hr), where the t;’s are the tails and the h;’s
are the heads of these directed edges.

We first see that not too many tails can be clustered very closely together. Consider any sphere of

radius M%KD around some point in the metric space. We show that the number of tails (of edges

from F}) in this sphere is less than VE.

.,1;, all lie in the sphere for some p > Vk. Let
i) < MD , since #; and #;,

Suppose otherwise, so that the tails ¢;
hi,, hy

21y %22y 0 0

219 Zza"

, b, be the corresponding heads. For any u # v, d(t

Zu’



lie in the sphere. This implies that d(h;,, h;,) > M?/—%KD, since otherwise we get a shorter valid

Tu

tour (T(VYU {(ts,,t:,), (hi, s ) Y) — {(ti, hiy), (85, R, )} with a 2-change operation. But since, by
supposition, we have p > vk heads and these heads are pairwise at a distance at least w

apart, the optimal tour on these heads is of length at least 2 - wt(OPT(V)), which contradicts Fact 3.2.

Now we show that a large number of tails have to be at a large distance apart. Pick any arbitrary
tail t; and consider the sphere (of radius MO\/A%M) centered around ¢;. “Kill” all the tails within this
sphere. By the above argument, fewer than /k tails can have been killed. Now pick any remaining
“live” tail and kill all tails in the sphere centered at this tail. Repeat this process until all tails have been
killed. Since there are at least k tails and in a single iteration we kill fewer than Vk tails, this process
can be repeated more than vk times. Clearly, the tails at the center of the spheres are at a distance

wi(OPT(V))
NG

greater than apart from each other, and there are greater than vk of them, therefore the

optimal tour on the tails is of length greater than wt(OPT(V)), which contradicts Fact 3.2. ®

Theorem 3.4. %%TK(%/% /.

Proof: Note that Lemma 3.3 implies that the weight of the kth largest edge is at most

Hence

2wi(OPT(V))
—

wt(T(V)) = Zwt(/ﬂth largest edge)
k=1

"~ 2 wt(OPT(V))

= 2.wt(OPT(V —
§f

< 2~wt(0PT(V))/ 7
= 4wl (OPT(V)) - /n.m
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3.1 Lower Bounds for 2-Opt and k-Opt

We prove a lower bound on the performance ratio of k-opt; Plesnik’s lower bound on the performance

ratio of 2-opt [18] follows as a special case.

Theorem 3.5. For any k > 2, for infinitely many values of n, there exists a complete weighted n-node
graph G, , with positive edge weights satisfying the triangle inequality, and a k-optimal tour T} ,, of

kan,suchthat%>— n7x ifk23,and% nif k=2

Define the girth of a graph as the number of edges in its smallest cycle, provided it is not a forest.
Lemma 3.6. Suppose there exists a connected unweighted graph Gy , » with n vertices and m edges,
having girth at least 2k, in which every vertex has even degree. Then there is an m-vertex complete

weighted graph Gy (with positive edge weights satisfying the triangle inequality) and a k-optimal tour
t(T m
T of G1 such that WT_(GL)) Z -

Proof: Assume we are given G n.m = G = (V, E). Since G is connected and every vertex has even

degree, GG has an Eulerian tour E7T.



Using G and ET, we construct a complete weighted graph Gy = (V1, F1) and a tour T for Gj.
Let V(G) = {x1,®2,...,2,}. We think of each vertex #; in G as a “supervertex” corresponding to

dega(2;)/2 vertices in Gy, so

Vl — {$1,1a ceey $1,degg(x1)/2a e Tnly ey, $n,degg(xn)/2}~
The number of vertices in Gy is (degg(z1) + -+ -+ degg(n))/2 = m.

Let dg(x;, 2;) be the length of the shortest path from #; to #; in G. The edge weights of Gy are as

follows:

1. Vi,s,t,s #t, wt(z; s, 2;¢) = €, where € = 711—2
2' Vi’jﬁsﬁt’iij’ wt(xlys’xjyt):dG(xl’x]).

By inspection, it is easy to see that the edge weights of (G; satisfy the triangle inequality.

The tour 7" on (1 1s constructed as follows. Suppose that the rth vertex of the Eulerian tour ET" of
(i is vertex x;. Suppose that this is the [th time ET has entered and exited vertex z;, 1 <1 < deg(z;)/2.
Then the rth vertex of tour T" of Gy 1s x;;. Since ET' enters and exits each vertex z; of G exactly
dege(2;)/2 times and there are precisely degg(#;)/2 vertices in each supervertex, this procedure gives
us a tour 7'. Note that for all {z;, z;} € E there is a unique pair s, ¢ such that {z; ,,z;:} € T.

Since the weight of the minimum spanning tree of GGy is at most (n — 1) 4+ (n-n - €) = n, and edge
weights satisfy the triangle inequality, wt(OPT(G1)) < 2n. In the tour T, there are m edges each of

weight 1, and so wt(T) = m. Hence we get % > 4=, so all we need to prove Lemma 3.6 is

Claim 3.7. 7T is k-optimal.

Proof of claim 3.7: If not, then there is a tour 7" of (G; which is obtained from T by a k’-change
operation, k' < k, such that wt(T") < wt(T).

A closed walk is a walk which begins and ends at the same vertex, repeated edges and vertices

allowed. A simple closed walk is a closed walk with no repeated edges.

Claim 3.8. Viewing T and 7" as sets of edges, there are sets C C T —T" and €’ C 7" — T such that
C'U ' is the edge set of a simple closed walk, |C| = |C'| < k, wt(C) > wi(C"), and every vertex in V;

is incident to the same number (0, 1, or 2) of edges of C' as C".

Proof: Let A denote symmetric difference. Since for all v € Vi, degrar:v is either 0, 2, or 4, TAT"
can be partitioned into a collection of vertex-disjoint simple closed walks Py, Ps, ..., Ps. Further, since
wt(T) > wt(T"), at least one of the P;, say, P1, has to satisfy wt(PLNT) > wt(P,NT"). Tt is easy to
verify that C' = Py NT and C’ = Py N'T’ have the desired properties. H

Let C,C' be as in Claim 3.8. Let G2 = (V, E2) be a weighted multigraph with the following edges.
Between every pair of vertices there will be one edge of positive integral weight and zero or one edge of
weight —1. Specifically, between #; and z;, i # j, there is an edge in E5 of weight dg(z;, x;), which is a
positive integer. For that x; and z;, if there are s,¢ such that {#; ,,2;;} € C, then (s and ¢ are unique
and) in addition to the edge of positive weight between z; and z;, there is an edge in Ey between x;
and z; of weight —dg(2;, 2;). A crucial fact is that —dg(x;, 2;) = —1 in this case, because every edge
in T is of weight 1. Let us denote the set of edges of positive weight in E3 as D’ and let us denote the
set of edges of weight —1 as D. Each edge in C' gives rise to exactly one edge in D, so |D| = |C| < k.



Note that there is an obvious correspondence between (1 and G»: the vertices inside a supervertex

in G; are merged into a single vertex in Ga, with the intra-supervertex edges in GG; “disappearing.”

Edges from (") like arbitrary edges of GGy, are either of weight ¢ or of positive integral weight. An
edge in C' of positive integral weight is an edge {z;,,x;+} for some i # j having weight dg(z;, z;)
and is said to correspond to the edge in D’ between x; and z; of weight de(2;, #;). An edge in C7 of
weight ¢ is said to correspond to nothing. An edge in C is of unit length and is an edge {z;,, 2}
such that dg(z;,2;) = 1, 1.e., {x;,2;} € E. Such an edge is said to correspond to the edge in D (of
weight —1) between z; and ;. (Several edges of C’ may correspond to the same edge in D'. However,
different edges in C' correspond to different edges in D.) With this correspondence, the simple closed
walk in G; which uses each edge in C'U C” exactly once corresponds to a closed walk P in Gz. (Edges
of weight € are not needed and do not appear.) P need not be simple since edges in D' may have
several “preimages” in C”. Since each edge in C'U C" is traversed exactly once and different edges in C
correspond to different edges in D, it follows that no edges in D are traversed twice. Each, in fact, is
traversed exactly once by P. The weight of P is at most wt(C") — wit(C) < 0.

Let Gz = (V, F5) be a weighted multigraph obtained by replacing each edge from G by two edges,
one of weight 4+1 and one of weight —1. An edge of G5 of positive integral weight is an edge between
some «; and x; with 7 # j. Such an edge has weight dg(2;, ;) and is said to correspond to some fixed
(shortest) path in ('3 between x; and z; consisting of dg (2, ;) edges of weight +1. An edge of G of
weight —1 between, say, z; and «;, is said to correspond to the identical edge in G5. (There will be
many more negative edges in (i3 than there are in G, since C' is small.) With this correspondence,
the closed walk P in G5 corresponds to a closed walk W in G3 of the same weight. Edges of weight
41 may be traversed many times, but no edge of weight —1 can be traversed even twice, since no
edge of weight —1 is traversed twice by P. Let the edges of weight +1 in W be edges ¢1,¢a,..., ¢,
occurring in W my, ms, ..., m, times, respectively. The number of edges of weight +1 in W, including
multiplicities of course, equals Z;Il m;. Since wt(W) = wt(P) < 0 and wt(W) = (Z;Il m;) — |D|,
we have my + ma + -+ -+ m, < |D|. Also, the number of edges in W is (Z;Il m;)+ |D| < 2|D| < 2k.

One of the following must be true:

o For every edge in W of weight —1, there is another edge in W with the same endpoints. But since
W never has two negative edges with the same endpoints, this other edge must have weight +1.
We infer that wt(W) > 0, a contradiction.

e There is some edge in W of weight —1 such that there is no other edge in W with the same
endpoints. But since W 1s a closed walk, this implies that there 1s some set of edges S C W such
that S is the edge set of a simple cycle. Since S C W and W has fewer than 2k edges, S also has
fewer than 2k edges. But then there is a cycle in G corresponding to S, and this cycle has fewer
than 2k edges since S has fewer than 2k edges, which is a contradiction since the girth of G is at
least 2k. ®

wl"‘

m

Lemma 3.9. Forall k£ > 2, for infinitely many n the graphs G, ,,,,n of Lemma 3.6 exist with 3> > 42 .

Proof: In order to prove that these graphs exist for infinitely many n, it suffices to show that for any

ng, there exists such a graph Gy m Wwith n > ng.

We first present an extremal graph-theoretic lemma from [5] [Theorem 1.4’; Chapter II1].



e . (6—1)971-1
Fact 3.10. Let ¢,6,¢9 be positive integers such that ¢ > “———

graph having 2¢q vertices and girth at least g¢.

. Then there exists a é-regular

Let p > ng be a positive integer. Let ¢ = (2p)?* 71, § = 2p and g = 2k. The parameters g, 6, g satisfy
the hypothesis of Fact 3.10; let G’ be the graph from Fact 3.10. G’ has 2¢ vertices, girth at least 2k,
and is (2p)-regular. Let GG be the largest connected component of G'. We claim that ¢ has the desired

properties.

Clearly G is connected, every vertex has even degree, and the girth is at least 2k. Let n = |V(G)|.
Since p > ng and G is 2p-regular, we get n > 2p > ng. Let m = |E(G)|. Since G is 2p-regular,
m = pn < p(2q9) = 2p(2p)**~! = (2p)**, which implies that m=5> m 2k

of Lemma3.9. ®H

+— This completes the proof

3|
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Lemma 3.11. For infinitely many n the graphs Gz, ,n of Lemma 3.6 exist with - = ¥,

Proof: We will prove the result for all values of n which are multiplesof 4. Let p = n/4. Let G = Kop op.

G is connected, every vertex has even degree and G has no cycles of length 3. G has exactly m = 4p?

edges som/n=p=+m/2. N

Theorem 3.5 now follows from Lemmas 3.6, 3.9 and 3.11. =

4 Bounds on Performance Ratios for Geometric Graphs

In the previous section we found that the triangle inequality by itself ensures a ©(y/n) worst-case
performance ratio. Now we put stronger conditions on the distances, requiring them to be induced by

a norm on IR™, and show the worst-case performance ratio is between c¢logn/loglogn and O(logn).

4.1 The Upper Bound

We find an upper bound on the performance ratio of any 2-optimal tour for geometric graphs, under

any norm and in any dimension. A large portion of this subsection i1s based on concepts presented in
[6].

We begin by stating a well-known property about norms and introducing a few definitions. Consider
any positive integer d > 2 and any norm N on R™. Let dy(#,y) denote the distance between # and

y in the metric generated by N. Let d(z,y) denote the Euclidean distance between z and y. By the

well-known comparability of norms [15, page 132], there exist [y, un > 0 such that for every z and y,
In -dy(z,y) < d(z,y) <uy -dy(z,y). (1)

In this section we use the concept of angles. As usual, angles are defined by the inner product and

the Euclidean metric. The angle between a and b in R™ is

b

a .
arccos T
[lall2l[6]]2’

which we take to be in the interval [0, #].



Figure 1: Illustration for Lemma 4.1.

Consider any norm N on IR™. For Iy and uy satisfying (1), let 5 = arctan(%). Define the
angle between directed line segments uv and wz to be the angle between the vectors v — u and ¢ — w
(E denotes a line segment directed from a to b). Two directed line segments uz and vy are said
to be similar-directional (with respect to N, Iy and upy) if the angle between them is at most .
More intuitively, similar-directional means that the two directed line segments point in almost the same
direction, since the angle 6y is small. Note that for 6 < 7/2, if uz and vy are similar-directional, then
uz and yv are not similar-directional. NV, Iy and ux will be implicit when we write simélar-directional

instead of stmilar-directional with respect to N, In and uy.

Let V' be a finite nonempty set of points in IR™ with norm N. Let G be the geometric graph
induced by V. Let T" be a 2-optimal tour of (¢ with (directed) edge set B’ (2-optimality is with respect

to distances on the metric induced by N).

Build a set E’ of directed line segments in IR™ corresponding to F’ as follows. Suppose the tour
T = (v1,v2,...,0n,v1). Then E' = {v1v3,va03,...,Up—10n, Unv1 . Every vertex is the tail of exactly

one line segment in B’ and the head of exactly one line segment in E’.

We now present an important technical lemma. Intuitively, this lemma says that if there are two
similar-directional directed line segments uw and vZ in E’, then v and v must be separated by a
distance greater than half the length of the shorter segment. Consequently, the originating points of

two similar-directional segments cannot be too close together.

Lemma 4.1. Let G = (V, E) be a geometric graph in IR™ under norm N. Let T’ be a 2-optimal tour
of (¢ having (directed) edge set E’. Let uz and vy be any two similar-directional segments in E’. If
dy(u,z) < dy(v,y), then dy(u,v) > % - dy(u,z).

Proof. Let Iy,uny > 0 be the constants defined in (1) and fx = arctan ALIULN. Let v be the angle

between directed segments uz and vy. To prove the lemma we assume that

dy(u, z) < dy(v,y), v < by, and dy(u,v) < = - dy(u,z) (2)

and we derive a contradiction.

Note that since Iy < uy, tanfy = 2= < 1. So, if v > /4, ¥ > 0n. Thus, we may assume that

4UN



y < w/4.

Consider the configuration obtained by translating vy in space such that v coincides with u. Let
v = u be the translate of v, and let y be the translate of y. Points u = v, 2,y lie in a 2-dimensional

plane. The situation is illustrated by Figures 1 and 2 .

! ..., to denote distances in the NV

Throughout this proof we use primed lower case letters, a’, b, ¢
metric, while unprimed lower case letters denote distances in the Euclidean metric. For example, if

a' = dy(xz,y), then a = d(z, y), and vice-versa.

Let ¢ = dn(v,y), V' = dnv(u,2), ¢ = dy(2,9), and ¢ = dy(x,y). (Recall that a = d(v,y),
b = d(u,z), ¢ = d(»,y), and ¢ = d(x,y) are the corresponding Fuclidean distances.) Using this
notation, (2) implies that
/ / 1 /
b <a and dny(u,v) < 5[) . (3)

Claim: ¢’ > «'.

Proof. Suppose otherwise. We first see that [{u,z,v,y}| = 4. Clearly, v # « and v # y. Clearly
u # v, since otherwise u is the tail of two line segments in £, uz and uy. Similarly, z # y. If u = y,
then dy(u,v) = dy(v,y) and dy(u,v) < %dN(u,x) < %dN(v,y), which is a contradiction. If v = x,
then dy(u,v) = dy(u, z) and dy(u,v) < %dN(u, z), which is a contradiction. Hence, [{u, z,v,y}| = 4.

By assumption, dy(u,v) < 3dn(u, ) < dy(u,z), and ¢’ < a’, so dy(u,v) +dn(z,y) < dy(u,z) +
dn(v,y). Also, (u,v) is not in E’, because if it was, either uo € E’ or v € E’. But if uv € E’ then
the vertex w is the tail of two line segments in E’, namely 4z and uv, and if vii € E’ then the vertex
v is the tail of two line segments in E’, namely vy and va. Similarly, (z,y) € E’. But, now we can
interchange two edges from the tour 7", (u, z) and (v, y), with the two edges (v, u) and (y, #) which are

not in the tour, to get a smaller valid tour, which contradicts the 2-optimality of 77. &

We now consider two cases: a > b and a < b.

The case in which a > b is illustrated in Figure 1, where z is the orthogonal projection of & onto the
segment vy, d' = dy(#,2), ¢ = dn(9,2), and f/ = dn(z,y). Since y < 7/4 and a > b, z does belong to

the segment vy.

The case in which a < b is illustrated in Figure 2, where z is the orthogonal projection of y onto the
segment uz, d = dn(y,2), ¢ = dn(u, z), and f' = dy(z,2). Since ¥ < 7/4 and a < b, z does belong to

the segment ux.
Case 1: a > b (a and b are Euclidean distances). See Figure 1.

Using (3) and the triangle inequality several times, we obtain

1 1
g < +dn(y,y) = +dy(u,v) <+ §b’ <d+f+ §b’

implying
d’>g’—lb'—f/>a’—f’—lb/:e’—1b’>e’—l(d'—|—e’)
- 2 - 2 2 = 2
implying
d'(1+ l) >e'(1— l)

10



Figure 2: Illustration for Lemma 4.1.

Using (1) we have that

1-1 & d
2 < S <IN IV tans,
1—|—§ e’ Iye Iy
implying .
-3 { {
tan~y > w{ ) N, N =tanfy.

Since tan~y > tanfy, we have that ¥ > 8y, a contradiction.
Case 2: a < b (a and b are Euclidean distances). See Figure 2.

Using (3) and the triangle inequality several times, we obtain
/ / — / / 1 / ! ! 1 /
g < +dnyy) = +dnuv) <+ oV <d'+ 1+ 5b

implying
1

1 1 1 1
d/Zg/_ib/_f/Zb/_f/_§b/:e/_§b/26/_§a/26/_§(d/+6/)

(the second inequality follows from ¢’ > o’ > b') implying

1 1
/ 2y (1 = 2.
d(1+3)>e(1-3)

As in Case 1, we obtain 7 > 8y, a contradiction.

This completes the proof of Lemma 4.1. ®

We now analyze the weight of the tour 7. In IR™, for any angle o > 0, consider a cover of IR™ by
some finite number B(d, &) of circular (overlapping) cones, all having the same origin P, such that two
distinct points different from P in the same cone form, at P, an angle at most o«. We use in Theorem 4.2
the well-known fact that B(d, «) is finite for every « > 0 and every d. This covering problem has been

extensively studied.
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We mention the following upper bound due to Rogers [19]:

om0 5 0 (1 108 iy <sin<iv/2>)m) |

Theorem 4.2. Fix m and a norm N on R™. Let GG = (V, E) be an n-vertex geometric graph in IR™
under norm N. Let OPT be the weight of the optimal tour on G. Let T’ be any 2-optimal tour of G.
Then the weight of 7" is O(logn) - OPT. (The constant implicit in the big O depends on m and N.)

Proof. Let 0y = arctan(%), where the constants I, uny > 0 are according to (1). At some arbitrary
point P in IR™, we cover the space by a constant number of circular cones C1, Ca, ..., Cp(m,gy), such
that every two line segments containing P and lying within the same cone subtend, at P, an angle at

most 0. As noted, B(m, ) depends only on d and N.

Call these the original cones. Construct B(m,0y) congruent cones around each of the n vertices
of G by translating each original cone so that its origin shifts from P to that vertex. Hence, corre-
sponding to each vertex of G are B(m, ) cones, one cone corresponding to each of the original cones
C1,C4, ..., CB(m,oy)- Let Cj; be the cone with its origin at vertex j that is a translate of original cone

Ch.

Let E’ be the edge set of the 2-optimal tour 7’. Let E’ be the set of directed line segments
corresponding to E'. Let E/ be the set of directed line segments in E’ that appear in U; Cj;. We claim
that the sum of the weights of the segments in E! is bounded by O(logn) - wt(OPT), for 1 < i <
B(m, 0y ). Since the sets E! cover the set E’ and the number of cones is a constant, proving this claim

is enough to prove the lemma.

Clearly all the directed line segments in E! are similar-directional. Hence by Lemma 4.1, if uyo7

and usv3 are two directed line segments in E!, and if the former one is shorter, then dy(ui,us) >

%d]\r(ul, 1}1).

Let T be an an optimal tour on G, so wi(T) = OPT. We are now going to account for the length
of the line segments in E! using the length of the edges in the 7. Consider a walk along the the edges
of T starting from an arbitrary vertex, and ending at the same vertex. As we walk along the path
we encounter the originating points of the line segments in E!. Let the order of the line segments

— —
encountered from E] be e7,... ¢/ .

We claim that there exist [¢/2] line segments in E with total length at most 2 - OPT'. Consider a
pair of consecutive directed line segments €;, &;41. By Lemma4.1, the distance between the originating
points of €; and €47 is longer than % times the length of the shorter segment. Hence the distance
along T' between the originating points of €; and €;;7 is also longer than % times the length of the
shorter segment. We may charge the length of the shorter line segment to the length of the section of
T between the originating points of €; and &;7. The charge is at most two times the length of the
path. Taking the |¢/2| disjoint consecutive pair of segments, {e1, s },{€3, €4 },..., and charging the
shorter line segment of each pair to the corresponding path in 7" between the originating points, each
section of the path 7" is charged at most once. Thus, the total length of the shorter line segments of
the chosen pairs is at most 2 - OPT.

Now we consider only edges in E! that have not been charged yet, and repeat the same process.
After O(logn) steps, each edge in E! is charged, giving the bound of O((logn) - OPT) for the total
weight of the edges in E!.

12



Since B(m,fy) is constant (dependent only on m and N), we conclude that wt(E’) is O((logn) -
OPT), and therefore O(logn) -OPT. N

4.2 A Lower Bound for 2-Opt Under L,

Theorem 4.3. There exists a constant ¢ > 0 such that for infinitely many values of n, there exists a
n-node graph G, embedded in the Fuclidean plane under the L, metric and a 2-optimal tour 7T}, of G,

wit(Ty) logn
such that wt(OPT(Gr)) zc loglogn *

We will prove the result for those values of n which satisfy n = 2(14+p+pt+p°+- - +p?F)+2p+p?P+1

for any positive odd integer p > 3. Note that p > c’ﬁ%g—n, for some ¢’ > 0.

We exhibit a set of n vertices V (all lying on the n x n grid in the Euclidean plane) such that

wt(OPT(V)) is at most 18 - p?». We then construct a 2- optimal tour 7" on V of weight at least

2 1 e 1es 1
2p - p?P > QC’ﬁﬁ)g—n P, Hence, we will get that Wﬁ > 09 ﬁ%g—n.

Our construction is a modification of a construction due to Bentley and Saxe [3] and Alon and Azar
[1] and is shown in Figure 3. We construct V in three parts, Vi, V5 and V3. The vertices in V; are in
p + 1 layers, where each layer is a set of equally spaced points on a horizontal line of length p??. The

coordinates of the points in level i, 0 < i < p, are (ja;,b;) where a; = p»~% and 0 < j < p*/a;, and

2p—2
bl

b; will be defined later. Thus ag = p*, a1 = p ., and a, = 1. Hence in layer 0 there are only

two points, in layer 1 there are p® + 1, in layer ¢ there are p* +1 = ’% + 1 points, up to layer p which

contains p?? + 1 points. Let by = 0. The vertical distance between layer i and layer i + 1 (i.e., bjy1 — b;)
2p—1-2i Pp-2i-2 _ . _ pPT> 4y
-7 p T op

Isc=p , for all .. Note that p-a;41 =p-p

V3 is a copy of Vi shifted to the right. For every vertex in V; with coordinates (e, f), there is a

vertex in Va with coordinates (e + 2p??, f). These are the only vertices in V.

Finally, we fill in the gaps in the topmost layer to get Va. Since a, = 1, let Vs = {(j,b,)|p* < j <
2 - p?P}. The set of all the vertices is V = V; U V5 U V3. Note that |V| = n.

Claim 4.4. wt(OPT(V)) < 18p?.

Proof: Since wt(OPT(V)) is no more than twice the weight of the optimal spanning tree, it suffices to
show that there is a spanning tree of weight at most 9p??. Consider the spanning tree built as follows:
for every point in every layer, other than the bottom layer, draw a vertical line to the point directly
above it in the next higher layer. Also draw the horizontal line in the topmost layer (layer number p).
The total length of this tree is at most

3p?F + QZcZ

p—1
2
< 3(p*F 1+2262/a —3(p2p(1—|—p;)):9p2p.l
=0

Define the tour 7" on V to be as shown in the Figure 3. Note that since p+ 1 is even, we can always

construct this tour.
Claim 4.5. wt(T(V)) > 2p - p*

Proof: Consider just the horizontal edges in 7. Each layer has horizontal edges whose combined

weight is at least 2p?P and there are p + 1 layers. H

13
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Figure 3: The tour T

Claim 4.6. 7T is 2-optimal.

We first present some simple notation. For any point A, let A;, A, be its  and y coordinates. We use
AB to refer both to the edge (line segment) and its length. (AB), is the length of the projection of AB
onto the z-axis, i.e., (AB), = |[A; — By|. We define (AB), similarly. Note that AB > (AB),, (AB),.
We say that two edges AB and C'D, which are either both vertical or both horizontal, overlap if the
following holds: let the projection of AB onto the infinite line containing C'D be A’B’. Then A’B'NCD

consists of more than a single point.

We next state and prove a simple geometric lemma.

Lemma 4.7. Let EF and GH be horizontal line segments in the Fuclidean plane, G, < E, < F, <
H, Let EF =1, GH =¢? ¢>1,s0 Gy, < E, < H, — 1. Let the vertical distance between EF and
GH be z. If z > ¢, then min{ EG+ FH,EH + FG} > EF + GH.

Proof: Let z > q. Clearly, FH + FG > EG + F H so all we need to proveis FG+ FH > EF+GH.
For 0 < a < ¢? — 1, define f(a):\/a2+q2+\/(q2—1—a)2+q2. Let a = F, — G,. Then H, — F, =
(¢*—1)—a. EG+FH=Va2+224+\/(¢?—1—a)> + 2% > \/a2+q2—1—\/(qz—l—a)z—l—qz:f(a).
Since EF + GH = ¢? + 1, in order to show that EG + FH > EF + GH, it suffices to show that for
0<a<¢®—1, fla) > ¢+ L

We will show that the minimum value of f(a) in the interval [0, ¢* — 1] occurs at a = (¢% — 1)/2.
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This suffices since f(qQT_l) =q¢?+1.

) — a 3 (¢ —1—a)
I'(a) \/a2+q2 \/(qz—l—a)z—i—qz
1 1
R e N ==

In the interval [0, 422—_1), a < q¢> —1—a, and hence f'(a) < 0. In the interval (‘]27_1,(]2 - 1],
a > q>—1—a, and hence f/(a) > 0. Hence the minimum value of f(a) in the interval [0, ¢? — 1] occurs
ata=(¢>—-1)/2. =m

Proof of Claim 4.6 :

Suppose otherwise. So, in a single 2-change operation, from 7" we can get another tour 7" such that
wt(T") < wt(T). Label the four vertices involved as A, B,C, D so that E(T) — E(T') = {AB,CD},
E(T"Y — E(T) = {AC,BD} and AC + BD < AB + CD. Note that the vertices A, B, C, D have to be

distinct, since in a single 2-change operation we cannot replace two edges out of one vertex.

Since all edges in E(T) are either horizontal or vertical, there are three cases:

Case 1: AB and C'D are both vertical edges. If AB and C'D overlap, then they are the two vertical edges
which face each other. But then (AC), + (BD), > 2p** > AB + CD. If AB and C'D don’t
overlap, assume without loss of generality that A,, B, < Cy < D,. If A, < B, then (AC), > AB
and (BD), > CD. If A, > B, then (BD), > AB+CD.

Case 2: One of AB or C'D is horizontal and the other is vertical. Assume without loss of generality that
AB 1s horizontal and C'D is a vertical. By construction, and since A, B,C, D are all distinct,

exactly one of the following has to be true:

Subcase (i): Either C, = A, = B, or D, = A, = B,. Then, by construction, 4,, B, < Cp = D, or
Az, By > Cy = D,. If Cy = A, then (BD), = CD and, by construction, (AC), > AB.
Similarly, if Dy, = By then (AC), = C'D and (BD), > AB.

Subcase (ii): Cy, Dy > A, = By. Since AB is horizontal (A, # By) and C'D is vertical (Cy = D) either
Cy # Ay or Dy # Bx. If Cy # A, then, by construction, (AC); > AB and, by construction,
(BD)y > CD. Similarly, if D, # B, then (BD), > AB and (AC), > CD.

Subcase (iii): Cy, Dy, < A, = By. If Cy < D, then (AC), = (AD), + CD, and, by construction, (AD), >
AB, implying (AC)y > AB 4+ C'D. Similarly, if D, < C, then (BD), > AB+ CD.
Case 3: AB and C'D are both horizontal edges.

Subcase (i): AB and C'D are non-overlapping. Assume without loss of generality that A;, B, < Cy < D,.
If Ay < By then (AC), > AB and (BD), > CD. If By < A, then (BD), > AB+ CD.

Subcase (ii): AB and C'D are overlapping. Assume without loss of generality that AB is the smaller, higher
edge and that C; < Dy so Cp < A;, By < D,. Suppose AB is ! levels above C'D, ! > 1. Then
CD = p?. AB. The difference in height between them is AB-(p+p®+---+p?'=1) > AB.p.

Scaling all three quantities so that AB = 1, we see that the hypotheses of Lemma 4.7 are
satisfied, and hence AC+ BD > AB+(CD. 1
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5 Bounds on the Length of 2-Optimal Tours in the Unit Hy-

percube

In this section we show that for every m and every norm on IR™ there is a O(nl_l/m) upper bound
on the length of any 2-optimal tour on n points in the m-dimensional unit hypercube. (The constant

implicit in the big O depends on m and the norm.)

Notation: an arc is an ordered pair (h,t). The distance between h and ¢ is denoted d(h,t), and the
(directed) line segment between them is denoted ht. The orientation of an arc (h,t) is the (Euclidean)
unit-length vector (h—t)/||h—1t||2. The difference between two orientations r and s is the angle between

them as defined in section 4, i.e. arccos(r - s). Thus the orientations of (h,?) and (¢, h) differ by 7.

Initially we work with the Euclidean norm.

Theorem 5.1. For any dimension m > 2 there exists a constant ¢, such that all Euclidean 2-optimal

tours on all configurations of n points in the unit hypercube have Euclidean length less than Cpnt T

For any € > 0 define the long arcs in T as those of length at least e. For each long arc (h,t), define
the heart of the arc as the interior of the hypercylinder of radius ¢/8 and length d(h,t)/2, with the
height oriented parallel to ht, and with the center of the hypercylinder at the midpoint of segment ht.
In the 2-D case the heart is a rectangle of width e/4.

Formally, suppose without loss of generality (h,?) is a vertical arc of length k with endpoints ¢ =
(0,0,...,0) and h = (0,0,...,0,k). Let B = {x € R™| ||z|| < ¢/8;2m = 0}, so B is the interior of
a m — l-dimensional ball of radius €/8 in the subspace #, = 0 of IR™. Let M be the interior of the
middle half of the segment ht, M = {(0,0,...,0,A\)[k/4 < X < 3k/4}. Then the heart H((h,t)) is the
set sum B+ M.

We say that arc (hy,%1) attacks arc (ha,t2) iff the line segment hit; intersects the heart of (ks t2).

Note: attacking is not a symmetric relation.

At times it will be convenient to refer to the heart of a segment, or to say that a line segment attacks

another, even if the segment’s endpoints are not tour points. The intended meaning is obvious.

Let 8 = arccos (31/32). A family of arcs is any collection of long arcs in R™ whose orientations

differ pairwise by at most 6.
Lemma 5.2. No arc attacks another arc in the same family.

Proof. We prove the lemma in three steps. First, it suffices to consider the case where arcs have length
exactly €. Second, if two arcs are parallel and one attacks the other, then they violate 2-optimality by
more than ¢/4. Third, if two arcs are oriented within § and one attacks the other, then they can be

made parallel while still attacking, without changing things by more than ¢/4.
Step 1 begins with a simple geometric definition.

Definition 1. If the line segment H7T contains the line segment ht, and their orientations are con-
sistent (so d(H,h) < d(H,t)), then we say HT is an extension of ht.

For any four points hy,%q, ho,ts, define the function

G(h',th R% %) = d(h* 1) + d(R? t?) — d(h', R?) — d(t*,1?).
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The function G measures the decrease in tour length if arcs (h',¢!) and (k% ¢?) were removed in a
2-change operation. The two arcs cannot both be in a 2-optimal tour if G is strictly positive. (If G
is positive, we can swap out arcs (h!,t1), (h? ¢?) and swap in arcs (hl, h?), (t!,¢?). The tour remains
connected, because the original tour included h' just before ¢!, and h? just before ¢?, in that order.)
The following sub-lemma implies that if a pair of arcs has positive G value, then so does any pair of

extensions of these arcs.

Lemma 5.3. Suppose H!T® is an extension of hiti for i = 1,2. Then G(H',T*,H? T?) >
G(h, ¢t h% 1%). The result holds in IR™ with respect to any norm.

Proof. Observe how GG changes as the shorter segments are stretched by extending the endpoints in
turn. Because H', k', and ¢! are collinear and any norm scales, d(H* t*) = d(H*', ht) + d(h',t'). By
the triangle inequality d(H', h?) — d(h', h?) < d(H' k') = d(H' ') — d(h',t'). Thus extending h' to
H' cannot decrease (. By a symmetric argument the other components of GG are nondecreasing as the

segments are extended and the claim follows. B

Suppose long arc (H!,T1) attacks long arc (H?,7?). Obviously the segment H17T" is an extension

of some segment hlt! that has length ¢ and that also attacks (H?,7%). Now consider all segments
that are of length € and can be extended to H2T2. The union of the hearts of these segments is a
hypercylinder of radius €/8 and length d(H?,T?) —¢/2 > d(H?,T?)/2, with the same center as the
heart of (H?,T?); so it contains the heart of (H?,T?). Therefore (at least) one of these segments is
attacked by h't'. Denote the attacked segment by h2t2.

By lemma 5.3, if G(h!, ¢! A% %) > 0 then G(H', T*, H? T?) > 0. To prove our lemma it therefore
suffices to consider the case d(h!,t') = d(h? ¢?) = e. This completes step one of the proof.

For step two, suppose a segment attacks a parallel segment, and that both segments have length e.

Our aim is to show G exceeds ¢/4.

Consider the 2-dimensional (affine) subspace (plane) spanned by the four endpoints of the two
parallel segments. Now the intersections of the hypercylindrical hearts of the segments with this plane
are precisely the 2-dimensional rectangular hearts of segments in the 2-D case. Therefore, for the

remainder of step 2 we work in 2-D.

Also without loss of generality (but assuming Euclidean distances) take the second (attacked) seg-
ment to be vertical, with # and y coordinates h2 =2 = t; =0, and h; = ¢. We can further take the z
and y coordinates of the first (attacking) segment’s endpoints as all nonnegative. Geometrically we are
placing the attacking segment above and to the right of the other. The attacking segment is parallel,
hence vertical, so h; > ¢. Since the first segment attacks the second, we must have hl = tL < ¢/8, and
also t; < 3¢/4, whence h, < Tc/4 (since the first segment has length ¢). (The inequalities are strict

because the heart is the interior of the rectangle.) Now
d(t' 7)<ty — 2]+ |ty — 2] =1, + 1, <1, +¢/8.
Similarly d(h', h?) < h, — h? 4+ ¢/8 = h, — T¢/8. Thus
G(h* t' h* 1) > 2e —t, — /8 — hy +Te/8 > e(2—3/4—1/8 =T[4+ 7/8) = ¢/4.
This completes the second step of the proof of the lemma.

For the third step, suppose two segments of length € have orientation differing by at most #. Without

loss of generality assume that the first attacks the second.
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Let p € hit! N H((h?,t%)) be a point of intersection of the first arc and the second arc’s heart. Hold

h1t! tacked at p and rotate it to be parallel with (A% ¢?). Call the new segment hl it

The new segment attacks the second arc because of p. Thus the new segment and the second segment

meet the conditions of part two. Therefore,

G(RY, T4, h2,12) > ¢/4.

We next claim that when the attacking arc is rotated, the value of G' does not change by more than
/4, i.e.,
GO, £, 0%, 12) — G(RL, 7, B, 1)) < /4.
Observe that d(h!,t!) = d(izl,fl) by construction. Therefore the value of G changes for only two
reasons: d(t!,1?) is replaced by d(#!,t?); and d(h', h?) is replaced by d(/Nzl, h?). Recall that we set the

value of 6 so cos(f) = 31/32. The idea is that for small rotations #! cannot be too far from t*.

By the law of cosines, at any angle { <6,

d(t', ') = d(t',p)* + (@', p)* = 2d(t*, p)d(T*, p) cos(C)
= 21", )21~ con(()) < 21, (1 —con(6) = 2d(1",p)*(1 — 22) = d(t", p)?/16.

Therefore d(t', 1) < d(t*, p)/4.

By properties of similar triangles, we also have d(hl,/Nzl) < d(ht,p)/4. Putting all this together
with the triangle inequality, we find that rotation changes GG by at most d(p,t')/4 + d(p, h')/4 = €/4.
Therefore

G(h',t' A%, 1%) > 0.

This completes the third and final step of the proof of lemma 5.2. B

Definition 2. The soul of an arc is the hypercylinder defined exactly as the heart of the arc but with
radius and length half that of the heart.

The soul therefore has radius ¢/16.
Lemma 5.4. If the souls of two long arcs intersect, then they attack each other.

Proof. Let p be a point of intersection of the souls of (h',) and (h?%,¢?). Let p' denote the nearest
point on segment hit’ to p. Then p’ is in the soul of (h,t) and d(p,p') < ¢/16, for i = 1,2. By the
triangle inequality we have d(p*, p?) < €/8.

On the other hand, the heart of (h',¢!) has radius €/8, and it extends d(h',¢')/8 > ¢/8 beyond the
soul along the arc in both directions as well. Therefore, for any point of the arc that is in the soul, its

open ball of radius €/8 (the set of points at distance less than ¢/8) is completely contained in the heart.
Taking p! as this point, it follows that p? is in the heart of (h!,¢!). Therefore (h%,1?) attacks (h',t1).
By symmetry, (h!,t1) attacks (h%,¢%). =

Fix the dimension m. Any soul is contained in the slightly-larger-than-unit hypercube of side length
14 2¢/16 and volume at most &y = (9/8)™ (if ¢ < 1). By Lemmas 5.2 and 5.4 the sum of the volumes

of the souls in a family F' is at most k.
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Now, the volume of the soul of arc (h,t) is ko™ 'd(h,t) for some constant ks. So

koe™ 0 N d(ht) < ki = > d(h,t) < kie' ™" ks
(ht)eF (h,t)EF

This bounds the sum of the lengths of long arcs in a single family.

For every possible orientation ||u||2 = 1 define a corresponding set Fy, = {v|v-u > cos(#/2)}. Notice
that for any 7', the set F, induces a family of arcs of T'. The set of all F}, 1s an open cover of the compact
unit sphere {u||u||z = 1}. Extract a finite subcover of cardinality k3. Note that ks is independent of
T and n.

For all T the subcover provides a finite collection of families whose union is the set of all long arcs
in the tour 7. Therefore, the sum of the lengths of all long arcs in 7' is bounded by ka[kie! =™ /ks].

The total length of all short arcs is obviously bounded by ne. Choose € = n=w. The sum of lengths
of all arcs in 7" is less than ne + %el_m =nl=w+ %n_l_Tm = ¢pynt~w and Theorem 5.1 is proved.
|

For the 2-D case we can use a region larger than the soul, and change a few other details to get an

explicit bound on tour length.

Corollary 5.5. In the two-dimensional Fuclidean case, the length of any 2-optimal tour is less than

8v/26+/n + 234.
Proof.

Define the left heart of a large arc as that half of the arc’s heart which lies strictly to the left the

arc, when walking from tail to head.
Lemma 5.6. The left hearts of arcs in a family are all mutually disjoint.

Proof. Suppose two long arcs (hl,#') and (h?,¢?) have intersecting left hearts. Suppose further that
the two arcs’ orientations differ by n where || < /3 = arccos 1/2. We show that one of the arcs attacks

the other, and the result follows from Lemma 5.2.

Let ¢ be a point of intersection of the left hearts. Drop a perpendicular from ¢ to segment hit? at
intersection point ¢',i = 1,2. Consider without loss of generality the case d(q,¢') < d(q,¢?). We prove
in this case arc (k! t!) attacks (h?,¢?).

Extend the line segment q¢2 to point ¢*? so that ¢? is the midpoint of the other points: ¢? =
(¢ + ¢??)/2. Observe that the entire segment ¢q¢?? is within the heart (not necessarily the left heart)
of (h%,1%). Therefore, all we have to do to prove (h% 1?) is attacked, is to verify that the segment hl¢!

intersects this segment ¢g22.

Let p denote the point of intersection of the (infinite) lines A1t and ¢¢?2. The intersection p is sure
to exist because 1 < 7/2. First we show that p is “between” ¢ and ¢*2, or simply that d(q, p) < d(q, ¢*?).
Since n < 7/3, we have

=cosn > cosw/3=1/2.

Hence d(q,p) < 2d(q,q') < 2d(q,q*) = d(q,¢*?) as desired.
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Second we show that p is between k! and . Now,

d(q',p)
d(g,q")
Also, ¢ is in the left heart of (h',#!) and ¢! lies on that arc. Therefore d(q,q') < ¢/8. Finally, recall
that the arc (h',t!) is long, whence d(h',t') > ¢. Putting these inequalities together, we find that ¢

and p are near each other:

= tany < tan7/3 = /3.

d(q',p) < V3d(q,q") < eV3/8 < e/4 < d(h',1)/4.

Since ¢! is in inner half of the arc, the above implies that p lies in the arc (h*,¢1). So p is the desired

point of intersection of the two segments, (h?,¢?) is attacked, and the lemma is proved. ®

Any left heart is contained in the square of side 1 + ¢/4 and area at most 14 9¢/16 (since € < 1).
By Lemma 5.6 the sum of the areas of the left hearts in a family F' is at most 1 + 9¢/16.

The area of the left heart of arc (h,t) is ed(h,t)/16. So

(¢/16) > d(h,t) <1+9¢/16 => > d(h,1) < 16/c+9.
(ht)eF (h,t)EF

The number of families needed to cover the circle is [W&ﬂ/?’?)] = 26. Therefore, the sum of

lengths of all long arcs in T' is bounded by 26(16/¢ +9) = 416/¢ + 234.

Choose € = v/416/y/n. The sum of lengths of all arcs in T is less than /4164/n (for the short arcs)
plus v/4164/n + 234 = 8v/26/n + 234 and corollary 5.5 is proved. ®

It is also easy to generalize theorem 5.1 to arbitrary norms on IR™. The trick is to do most of the

work with respect to the Euclidean norm and switch norms later.

Theorem 5.7. For any dimension m > 2 and any norm N on IR™ there exists a constant ¢, y such
that all 2-optimal tours on all configurations of n points in the unit hypercube have length less than

1—L
Cm,NT mo,

The proof 1s a modification of the proof of theorem 5.1.

Proof. Choose m and N. As in section 4.1, by the comparability of norms, there exists a constant
Kn > 1 bounding the ratio (and reciprocal of the ratio) between the N-induced distance and the
Euclidean distance between any pair of distinct points in IR™. Define G with respect to norm N.
Define long arc as one whose Euclidean length is at least €. Define heart as before, except with radius
¢/(8K%). Define attack as before. Define family as before, except choose ¢ so that cos = 1 — ﬁ.
N
Lemma 5.8. No arc attacks another arc in the same family.
Proof. Sub-lemma 5.3 has already been proved for the general case.

For step 2, our aim is to prove (G exceeds ﬁ, if K11 and h2t2 are parallel, both have length e,
and hltl attacks h2t2. Let d() denote Euclidean distance; let dy() denote distance induced by N. As
before it suffices to work in 2-D. Let pt and ph denote the respective projections of 2 and A% on the
line through h' t'. Then, since d(h',t') = ¢ and d(t', pt) < %e,

d(h*,tY) —d(t', pt) > €/4.
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Now, because all these points are collinear, and all norms scale, we have

dN(hl,tl) - dN(tl,pt) > 6/(4[(1\7).

By the triangle inequality, dy(t!,t?) < dy(tt, pt) + dn(pt,t?). By comparability, dy(pt,t?) <
Knd(pt,1?) < Kn - ¢/(8K%) = ¢/(8Kn).

Putting these inequalities together,

dy(h' 1) — dn(th,1%) > [dn(h' 1Y) — dn(th, pt)] — dv(pt, °) > ¢/(AKN) — ¢/ (8KN) = ¢/ (8K ).
By a similar argument, dy(h? t?) — dy(h', h?) > ¢/(8 Kn). Hence G > ¢/(4Ky) in the norm N.

For step 3, the reader can verify that § was chosen so that rotating a line segment of length e through
an angle @ cannot move the endpoints by more than ¢/(8K%), with respect to Fuclidean distance. Then
the same rotation does not change endpoint distances in the norm N by more than ¢/(8 Kn). By the

triangle inequality, G does not change by more than ¢/(4Ky). Therefore G remains strictly positive in

the norm N. This proves lemma 5.8. W

Define the soul as having half the length and radius of the smaller heart used in this proof. The rest
of the proof of theorem 5.1 goes through without change, in the Fuclidean metric. At the end we have
a bound of the form cn'~# on the Euclidean length of T' (although T is 2-optimal with respect to the
norm N). Multiplying this bound by Ky gives a bound for the norm N and the proof is complete. B

6 Expected Value of Performance Ratio in the Unit Hyper-

cube

In this section we combine Theorem 5.7 with well-known distributional properties of optimal tour

lengths to show that the expected performance ratio is bounded by a constant.

Let S, be any set of n points in the d-dimensional unit hypercube [0,1]* C RY. Let OPT(Sy) be
an optimal tour (under norm N) on Sy, and let T(S,) be a 2-optimal tour (under norm N). Let I,, be

n points picked 1.1i.d. from the d-dimensional unit hypercube under the uniform distribution.

As an immediate corollary to Theorem 5.7 and a lower bound of Q(ndg_l) on E[OPT(1,)] [9], we

infer that there exists a constant y4 5 such that %T((II")))]] < va,n for all n; the ratio of the expected

values 1s bounded. We can also show that %%TIT%% is O(1) with high probability and that the

expected value of this ratio is O(1).
The following is easily obtainable from Lemma 3 in [9, p. 190]:
Fact 6.1. There exist constants F'y > 0 and 0 < p < 1 such that for all n > 1,

P [wt(OPT(In)) < Fy - ndi—l] <

From this and Theorem 5.7 we get
Theorem 6.2.

P [wt(T(In)) > (?—NN : wt(OPT(In))] <o
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Corollary 6.3. Tor all m and all norms N on IR™ there exists a constant c;mN such that

wi(T(In)) /
F|l————————| <
[wwopTum) = fmN
where T'(I,,) (respectively OPT(1I,,)) is the length of the longest 2-optimal tour (respectively the shortest
tour) on the points I, with respect to N.

Proof: We first note that for any set of points Sy, %%7%25 < n; this follows since if the diameter

(under norm N) of S, is D, then wi(T(Sy)) < nD and wt(OPT(S,)) > D.

Let ng be such that Vn > ng, np” < 1. Let oy = maxo<n<n, & [%]. Now consider

n > ng.

= Plet(T(1,)) < 22 - wi(OPT(L)]

Cm,N

+ Plut(T(I,)) > wl(OPT(I,))]

b [ D (23, > %5 w0,

wt(OPT(1,)) N
Cm,N n
< Py + np
Cm,N
< —+4 1
S Ty +

e Cm N
Taking ¢;, y = max{éy, =+ + 1}, we are done. H

7 Expected Running Time of 2-Opt

This section gives polynomial upper bounds on the average number of iterations of 2-opt under the Lo

and L; norms.

7.1 The L, metric

In the first subsection, we prove that the average number of iterations done by the 2-opt local-
improvement algorithm on n random points in the Euclidean unit square is O(n'°logn). Prior to
this paper, no polynomial upper bound on the expected time was known. However, W. Kern proved a
related result [10]:

Theorem 7.1. There is a ¢ such that the probability that 2-opt does more than n'® iterations is at

most ¢/n.

Kern’s proof allows the possibility that 2-opt does exponentially many iterations with probability
Q(1/n). Kern himself writes, “Our approach does not seem to yield interesting results about average
running times.” We will prove that the expected time is polynomial and we will rely heavily on Kern’s

lemmas in doing so.
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The basic idea of Kern’s proof is to show that with probability at least 1 — ¢/n, every iteration
decreases the cost by at least ¢(n) > 0; the initial tour being of length at most \/2n, the number of
iterations can then not exceed %

To prove that the expected number of iterations is polynomial, we need the following definitions and

lemma from [10].

Definition 3. Given points P,Q, R, S € [0, 1]%, define G(P,Q, R, S) = [d(P,Q)+d(R, S)]—[d(P, R)+
d(Q, S)].

Definition 4.  Given three points P, @, R in the unit square and ¢ > 0, define B.(P, @, R) to be the
set of points S in the unit square such that |G(P,Q, R, S)| < e.

Lemma 7.2. [10] There isa K > 1 with the following property. For any three points P, ), Rin the unit
square with P # @, the area of B.(P, @, R) (which is the conditional probability that |G(P, @, R, S)| < «,
given P, @, R) is bounded above by K+\/¢/d(P, Q).

Let X, X5, ..., X,, be points chosen independently and uniformly at random from the unit square.

Definition 5. If ¢, j, k, [ are distinct elements of {1,2,...,n}, define F(4, 4, k, 1) = G(X;, X;, X, X7).

Definition 6.  Define @ = {(¢,4,k, L7, 7, k') such that 4 5k L 7 k1 € {1,2,.. n},
i g,k Gl= Wi % K U =4, and {d, 5,k 1} £ {57 K U}
Definition 7. Given n random points X1, X, ..., X}, in the unit square, define

F=min{F(#, 'k, )G, 4k 1§k U)eQand 0 < F(i,j, k1) < F(i', i, k' ')}
Definition 8. Let N = min{n!,1/F}.

We now give a very rough road map of the proof that the expected number of iterations done
by 2-opt is O(n'%logn). It is not hard to see that any two consecutive improving 2-changes involve
distinct 4-sets of vertices. By the definition of F, 2-opt must decrease the cost of the tour by at least
F in any two consecutive iterations. The cost of the initial tour being at most v/2n, the number of
iterations cannot exceed 2v/2n/F. Clearly the number of iterations never exceeds n!. Thus the number
of iterations done is at most min{(2nv/2) - n!,2nv2/F} = (2n/2)N. Our goal is therefore to bound
E[N].

Notice that if F' € [5,¢€), then N, which is at least ﬁ times the number of iterations, is bounded

by % The chance that F is in this interval is bounded by C'nS¢, since P[F < €] < C'n®¢ (this is Lemma

7.5). Hence the contribution to the expected value of N due to [5, ¢) is bounded by 2Cn8. Since N = n!

if ' < & and I < 2 always, we need consider only lgn! + O(1) intervals, each of which contributes at

n!

most 2Cn® to E[N]. Thus E[N]is O(n®1gn!), and the expected number of iterations is O(n'"logn).

Now we continue with the proof.

Lemma 7.3. Let € > 0. Choose points X1, X, ..., X;, in the unit square independently and uniformly
at random. Let (4,4, k,0,¢,,k',l') € Q. Suppose that [ & {¢,j/, k', '} and that I & {¢,j, k,[}. Then

L 16 {i,j} # {0.7'), then P[P (i, j,k,1)| < ¢, [F(7,§', K, 1) < €] < 6472 K.

2. 1If {i,j} = {¢,§'}, then P[[F(i, j,k,1)| < ¢, |F (&', j/, k', I)| < ] < 1K e lgLif e < L.
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Proof. From Lemma 7.2 we have

P[X; € Bo( Xy, Xj, Xp)| X, Xj, Xi] = P[|F(i, 5, k, D] < €| Xy, Xj, X3] <

P[|F(Za.7akal)| S €, |F(i/aj/ak/al/)| S €|XiananaXi’an'an’]

(notice that { and ' must be distinct from each other and from ¢, j, k, ¢, j/, k', though the latter six need
not be distinct)

K\  K.e
d(X;, X;) d(Xir, X;1)

= P[X; € Bo( Xy, Xj, Xy), Xp € Bo( Xy, Xy, Xp)| X, Xy, X, Xor, Xjo, Xpr] <

K2e

d(X;, Xj)d( X, Xj0)

Therefore

K2e

d( X, X;)d( X5, X;0)

P[|F(Za.7akal)| S €, |F(i/aj/ak/al/)| S €|XiananaXi’an’an’] S

and therefore

K2e
PllFG, 5,k D| < e, |FG, 78, D <eXs, Xi, X, X50] < . 4
1 (i 5o, DI S 1P K00 < X5 X, X, X3 € gt (4)

If {i,j} # {7, j'}, then
PIIF G, kD) < e |F (7,5 K, 1) < d

=D D PUF(LG R DI S e |F(E 5 1) < ed(X, X5) € 277,277, d(Xir, Xyo) € [27°,27°H)]

r=0 s=0
Pld(Xi, Xj) € 277,277, d( X, Xj0) € [27°,27°H)]

Now
Pld(X;, X;) € [277, 27" M) d( X, Xj0) € [275,275 )] < Pld(X;, X;) < 277H d( Xy, Xji) <2751

and
Pld(X;, X;) <27 d( Xy, X)) < 275 M) < w277 H) 2p(27 0 T2

since {i,5} # {i',j'}. So
PG kD) < e [ 3 K1) <

< ZZP[|F(i’j’k’1)| <€ |F(i/aj/ak/al/)| < €|d(Xi’Xj) € [Q_T’Q_T+1)’d(Xi”Xj’) € [2_8’2_s+1)]

r=0 s=0
PLA(X, X;) € [0,2774), d(Xo, X0) € [0,27H)]

oo 00

KZ%e . s
<55 K sy
r=0s=0

= 1672 iime?‘?rz’?—%

r=0s=0
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= 16721&%%2—’“2—5

r=0s=0
=16m°K%e(d_277) (> 27°)
r=0 s=0
= 641 K %e.
If instead {4,7} = {¢', '}, we have
P[Xi € B(Xi, Xj, Xp)|Xi, Xj, Xi] = P[[F(i,5,k, )] < €| Xy, Xj, Xie] <

Equation (4) tells us that

K2e

P[|F(Z,j,]€,l>| S €, |F(i/,j/,]€/,l/)| S €|XZ,X]] S W

PG j k)] < 6 [F(, 1, 1)] <

=D PUFG, G kD < 6 |[F( 7K, V)] < eld(Xi, Xj) € 275,27 ] PI(Xy, Xj) € [27%,27° 1)
s=0

Since

[/ 2
PFG,j, kD] < e, |[F(,§' K 1) < eld(Xi, X;) € [275,27+1)] < min{( t < 1}
= min{K%e2%* 1},
we have

P[|F(,j, kD] < e |F(, ik, ) <€ < ZP[d(XZ»,Xj) € 275,27 )] - min{ K?e2% 1}
5s=0
<> PlA(X;, X;) < 27T min{K%e2”, 1}
5s=0

<> 4r27*  min{K%e2*, 1}

s=0

Now K?¢2?° < 1 if and only if s < %lg Kl%. So the quantity is at most

518 5] .
Z 4727 22?8 4 Z 47272

s=0 s=[31g =51

)+ 87K .

1
<AnK%e(1+ =1
< AriCe(l+ 5 ls 1o

If e < %, then since K > 1 we have

1
)+ 87TK% < 147K% - lg—. m
€

1
-2
ArK7e(1 + 3 Ig er

Lemma 7.4. Let ¢ > 0. Let (4,4, k, 0,7, j/, K, 1") € Q.
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LIE i, gk, 1) O {7, K, 0] < 1 then PIIF(, j b, )] < ¢, [F(7, 7 K, V)] < d < 6427 K.

210 (i k) O {77 K I 2 2 and € < L, then PF(i,j kD) < o [F(, 7K. 1)] < d <
64m2 K2 - g %

Proof. By the symmetry in F', we have F(a,b,c,d) = F(e,d,a,b) = F(b,a,d, ). This means that it is
possible to move any one of the indices into the final position without changing the value of F'(a, b, ¢, d).
Formally, if # € {a, b, ¢, d}, then there is a permutation (a’, ¥, ¢/, d') of {a,b, ¢, d} such that d’ = » and
F(a, b, d) = F(a,b,c,d) always.

Since {i, 5, k, 1} # {¢, ', k', '}, we can find an @ in {4, 5, k, I} —{¢, 7, k', U'} and ayin {¢, j/ k' '} —
{i,7,k,1}. By moving « and y to the last position, without loss of generality we may assume that
Lk Uy and I ¢ {d, j, k, 1}

Now we invoke Lemma 7.3. If |{é,j, k, [} n{&, 7/, k', '} < 1, clearly {i,j} # {¢,j'}. Lemma 7.3
implies that P[|F(i,j,k, )| < e, |F (&, 5, k', )] < €] < 6472 K2,

If e, 5, k, 30 {7/, k', I'}| > 2, then possibly {i,j} = {#,j'} and possibly not. In the former case,
P|F(i, j, k, D < e, |F(@,j' k' 1) < €] < 14rK% -1gt < 6472K?% - 1gl (if € < 1). In the latter,
PlF(i,5,k,D| < e, |FE, 7,k 1) < < 647’ K2%c. m

Recall the definition of F:
F=min{F(#, 'k, )G, 4k 1§k U)eQand 0 < F(i,j, k1) < F(i', i, k' ')}
Lemma 7.5. Let n > 8 and let €' = 928072K2. Let 277" < ¢ < % Then P[F < €] < Cn®e.

In P[F < ¢] < CnB¢, the n® comes from the fact that @ in the definition of F has at most n®
8-tuples. The € comes from Lemma 7.2, which has a /e. Very roughly, because F involves two 4-tuples,

we can replace the \/¢ in Lemma 7.2 by an .

Proof. In this terminology, F' < ¢ if and only if there is an 8-tuple (4,4, k, 1,3, 5 k') € @ such that
0< F(i,j,k,l)<eand 0 < F(¢, 5, k) <e.

PF < <> PIFG, 4,k DI< e [P, 5K, 1) <€,

where the summation is over . There are at most n® 8-tuples (7,7, k, 1,4, j',k',I') € @ such that
Hi, 5, k, [} {7/, k', I'}| < 1. There are at most 122n° 8-tuples such that |{7, j, k, [} N {&’, 7/, k', I'}]| > 2.
By Lemma 7.4, if 0 < e < %, then

] 1
PIF < €] < n®(6472K?¢) + 144n°(647? K2 elg —).
€

%, % < 27° and lg % < n?. So the expression above is no more than n®(647%K?)e +
n%(928072 K ?)e. Let C' = 928072 K 2. Therefore P[F < ] < C'n®¢ if 277" < e <

~— ™

144n5(6472 K2n?)e
andn>8 ®H

1
2

Recall that N = min{n!, 1/F}
Lemma 7.6. E[N] <4Cn°lgn if n > 8.
Proof. We have

[lgn!]

E[NJ< Y PIFe[27,27th] 2" + P[F < %].n!

r=—1
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[lg n!]
I —r r I 1
< > PF<2M2 4 PF < —Int.
r=-—1

So
1 [gn!]

) ) o1
E[N]< Y PlF<27"2r4 Y P[F <2727 + P[F < —In!
r=—1 r=2 :
[lgn!]

1 1
<(5+1+2)+4 > (Cnf2rth 4 C’ngﬁn!

r=2
=3.5+200%([lgn!] — 1) + Cn®
< 3.542Cn%(nlgn)
<4Cn°lgn
since we are assuming n > 8. W

Theorem 7.7. The average number of 2-changes made by algorithm 2-opt when run on n random

points in the Euclidean unit square is at most (80\/5)7110 lgn, for any n > 8.

Proof. If a 2-change is made, replacing edges (z;, z;) and (xy, 21) by (2, 2x) and (z;, x;), then the
same four vertices {7, j, k,[} cannot be used in an improving 2-change in the next iteration. Therefore,

any two consecutive improving 2-changes involve distinct 4-tuples of vertices.

By the definition of F', 2-opt must decrease the cost of the tour by at least F' in any two consecutive
iterations. The cost of the initial tour being at most v/2n, the number of iterations cannot exceed

Qﬁn/ﬁ Clearly the number of iterations never exceeds n!.

The number of iterations done 1s at most

. 22
min{(2nv2) - n!, 7 }

. 1
= (2nV/2) - min{n!, 7

= (2nV2)N.
So the average number of iterations is at most (2nv/2)E[N] < (8Cv2)n'%lgn for alln > 8. =

7.2 The [ metric

In this subsection we bound the expected number of iterations of 2-opt under the L; norm. In contrast
with Theorem 7.7 the proof is somewhat nonconstructive, but it is fairly short and the polynomial is

of lower order.

Theorem 7.8. Let n points be independently sampled from the uniform distribution in the m-
dimensional unit hypercube. Let 2-opting be performed with respect to the L; norm. Then the

expected number of iterations required is O(n®logn).
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Proof. Let I"™ denote the unit hypercube. Suppose v!,v? v, v* are four points sampled independently
from the uniform distribution on I"™. Let Z denote the random variable equal to G(v!,v? v3 v?) =
[Jol — v2||1 + [|v® = v?|1 = |Jvt = 3|1 — ||v? — v*||1. Note that distances are computed according to the

L1 norm.

We study the distribution of Z. For clarity we focus on the case m = 2, and use parenthetical

remarks to extend the proof to the m-dimensional case.

The four points in I? are defined by eight (4m) random variables, denoted x;,y; : i = 1,...,4,
drawn independently from the uniform distribution on [0, 1]. Let g(x1,...,24) = |21 — @2| + |23 — 24| —
|1 — @3] — |#2 — x4|. Then Z is the sum of the independent and identically distributed variables X
and YV where X = g(x1, 22,23, 24) and Y = g(y1, 2, y3, y4). The key is to understand the distribution
of X, because X + Y will have a distribution found as the convolution of two i.1.d. variables with this

distribution. (In m dimensions 7 is the m-fold convolution of i.i.d. variables with this distribution.)

Lemma 7.9. With probability 1/3 the variable X = 0; with probability 2/3 the variable X is dis-

tributed according to a continuous density function h on [2,2].

Proof. Consider the conditional distribution of X, conditioned on the event 7y = {x1 > 23 > 235 > 24}.
Notice that X = 2x3 — 225 under this condition. Now if we take four samples 1.1.d. from the uniform
distribution, and let W equal the difference between the 3rd and 2nd largest, then obviously W has a
continuous density function. Therefore X has continuous conditional density function conditioned on

event m1. We denote the conditional probability density by fir, .

By symmetry, for seven other #’s we can make the same argument, and for each we get a continuous
conditional probability density function h,,. For eight additional 7; the conditional distribution is like

—W, i.e., twice the difference between the 2nd and 3rd largest.

For the last eight m;, the conditional distribution of X is degenerate with all its mass at zero. This

occurs when the projections of the arcs on the z-axis overlap and have opposite orientations.

The unconditional density function of X is
2
h = — Ny,
Lot
Therefore X has a hybrid distribution. It has a mass point of weight 8/24 = 1/3 at 0. The remaining

2/3 of the mass has continuous density because each of the 16 contributing h,’s is continuous. ™

When the distribution of X is convolved with itself to get 7, the result is a hybrid distribution: Z = 0
with probability 1/9; Z is distributed according to a continuous density, denoted h*, with probability
8/9. This is because X and Y are independent. (In higher dimensions each additional convolution
is of two independent hybrid distributions, each containing one mass point at zero, and continuous
everywhere else, and these properties are obviously preserved in the sum of the distributions.) In m
dimensions, the probability is (1/3)™ that a given random 4-tuple of points has Z = 0; 7 is distributed
according to a continuous density, denoted A™, with probability 1 — (1/3)™.

A local improvement algorithm will not make any of the 2-changes corresponding to 4-tuples where

Z = 0. The algorithm will be fast if there are no very small positive Z values.

Now consider the density function A™. Tt is continuous everywhere on [—2m, 2m] and is symmetric

around 0. Since a continuous function on a compact set attains its maximum, 2™ has a maximum M.
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This implies that
Pl0<|Z| <€l <2Me ¥Ye>0.

Now let S denote a sample of n points on I”. Let A denote the smallest of all non-zero absolute

differences in tour length from 2-changes:
A= min |G (vt v?, v, vh)]
vhv? w3 vt e S
Gvt, v v3 vt £ 0
(where the minimum is over distinct points). Since the minimum is taken over fewer than n* 4-tuples,

we get
P[A < €] < n*(2M¢) = en'e.

4

By exactly the same argument as lemma 7.6 with an n* instead of an n® term, we have

E[min{n!,1/A}] < 4cn®logn. The cost of the initial tour being at most 2n, the expected number

of iterations is at most (2n)4en®logn, which is O(n®logn). =m

8 Extending Lueker’s Construction

In 1976, G. Lueker [16] constructed, for each n > 4, a family of n-node weighted cliques < G,, > on
vertex set {ag, €1, @9, ..., £p—1} with the property that the naive 2-opt algorithm can do at least 2ln/2]-2
iterations. Although the only thing we need from his construction is that each of the tours includes the

edge {xp, xn_1}, we give Lueker’s (unpublished) construction here.

Here is Lueker’s construction. For each 0 < i < j <n — 1, define the weight w;; of edge {z;, z;} as

follows.

1. 7 is even.
(a) If ZIO, then Wi = 22]
(b) If i is positive and odd, then w;; = 2%+3,
(¢) If i is positive and even, then w;; = 2%.
2. j 1s odd.
(a) If ZIO, then Wi; = 22j+3.
(b) If i is positive and odd, then w;; = 2%+%,

(¢) If i is positive and even, then w;; = 2%+3,

Let ap =< #1, 22, &3, ..., 22 > and let af be its reverse. Lueker proves the following theorem.

Theorem 8.1. Let T be a tour of ), that contains the block < xg,a, 2541 >. Then there is
a sequence of at least 2¥~! improving 2-changes which lead to the replacement of this block by <

zg, df, ap+1 > (and which leaves the rest of the tour unchanged).
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We refer the reader to [16] for a proof. The proof converts the string < xp, ag, ok4+1, Z2p+2, L2k+3 >

28=1 steps by induction, then to <

to < ®,al, Lok41, Togto, Lokgs > In at  least

, . .
X0, %, Tokt2, T2k4+1, Lag43 > 10 one step, then to < xo, Zaok4+1, Tok42, Ak, T2g4s > In one step, then
to < Lo, Zok41, Lak42, @), Topys > 10 at least 2*=1 steps by a clever use of the inductive assertion, and

last to < g, 242, Tak+1, Ak, T2kts >. Notice that, as claimed, edge {xg, 2,—1} is in all tours.
It is now our job to extend the result to all ¥ > 3. Since k& > 4 is easy, we do that case first.

Theorem 8.2. For any k > 4, for any N > 2k, there is an N-vertex weighted graph on which there

[N/2] -k

exists a sequence of at least 2 improving k-changes.

Proof. The idea is to take G, and add 2(k — 2) new vertices at distance one from each other and
from the original vertices. Any 2-change in the original proof can be converted to a k-change in the

new graph, by flipping two original edges and & — 2 new ones.

Let [ = k — 2 and add to GG, 2] new vertices:

Sata Y1, 21,Y2, 22, -, Y1—-1, Z1—-1-

The distance between any pair of these vertices, as well as that between these new vertices and the n

old ones, is 1. Let

A= {{yl, Zl}a {yz, Zz}, {ys, 23}, ey {yl—1, 21—1}},
let
L={{s,y1}, {21, 92}, {22, ¥3}, ..., {211, 1},

and let

R= {{Sa Zl}a {yla Z2}a {y2a Z3}a 2% {yl—l,t}}'

The key fact is that A U L is the edge set of a Hamiltonian path from s to ¢ among the new vertices,
AU R is the edge set of a Hamiltonian path from s to ¢ among the new vertices, and A, L, R are pairwise
disjoint. Furthermore, A U L. and A U R differ in exactly [ edges.

Now let S, T be the edge sets of any two tours of (G, that both contain edge {zo,#,_1} and
that share exactly n — 2 edges. Let S' = (S — {wo,2n-1}) U ({{x0, s}, {wn_1,}} UAUL) and let
T = (T —{xg,2n-1}) U ({{wo, s}, {zn-1,t}} U AU R). S induces a tour of the new graph, and 7’
induces a tour of the new graph as well, and 5" and T differ in exactly 2+ = k edges. Since all the
new edges have weight 1, if moving from S to T on the original graph is a cost-decreasing 2-change,
then moving from S’ to 7" in the new graph is a cost-decreasing k-change. (In the next step, we can

interchange the roles of the y’s and z’s, since they are symmetric.)

Lueker’s proof gives a sequence of at least 21%/21=2 cost-decreasing 2-changes on an n-vertex graph
(if n > 4). The new graph we built has N = n+ 2l = n 4+ 2(k — 2) = n + 2k — 4 vertices, and there
is a sequence of 2L7/21=2 cost-decreasing k-changes. In terms of the number N of vertices in the new

graph, the number of k-changes is at least 2LN/21-F  m
Now we tackle k& = 3.

Theorem 8.3. For each even N > 8, there is an N-vertex weighted graph on which there exists a

sequence of at least 2LV/41=1 improving 3-changes.
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Proof. We use w;; to denote the weight of {z;,x;} in G,. Let w;; = 0 for all i. Take two coples
of G. One copy has vertex set V = {zg, ..., 2n_1}; the other has vertex set V' = {z,...,2,_;}. The

/
K3

weight of edge {x}, z}}, i # j, and that of {z;, #}} equals w;;. Call the new 2n-node graph H,.

Let S be the edge set of any tour in G, containing edge {ap, 2,,_1}. There is an obvious associated
tour of Hy,: Let A = S — {{xo,xn_1}}. Let A = {{z},«}}[{z;,x;} € A}. Then the associated tour
contains edges 5" = {{wo, 2/, _1}, {x, #n-1}} UAUA*. Tt is not hard to see that S’ is the edge set of a

tour in H,,.

We will prove the following. Let S be any tour of G, containing {x¢,2,—_1}, and let S’ be the
associated tour of Hy. Let T" be a tour of (G,, obtained from S by one cost-decreasing 2-change. Then
the tour 7" of H,, associated with T can be obtained from S’ via two cost-decreasing 3-changes. (We

are implicitly identifying tours with their edge sets.)

Consider the tour S as directed from zy to z,_1. Suppose that the 2-change involves swapping
out the edges {z;, z;}, {xr, 21}, where, in S, the vertex x; is the first among the four visited by S, z;
is second, z; is third and zj, fourth. Since the 2-change results in a tour 7', it must replace the two
missing edges by {z;, 21}, {zr, 2;}. (If they were replaced by {z;, x¢}, {#:, 2;}, then the new “tour”

would be disconnected.)

Let S" and T” be the tours of H,, associated with S and T, respectively. S’ and T” differ only in
that to get from S’ to 7" one drops the four edges {z;, z; }, {z}, i}, {zp, 2} {#}, 2}, and adds {z;, 2},

29
{l‘;,l‘;}, and {$kaxj}a {x;c’x;}

We know that switching from S to 7' decreased the cost; thus (wi; + wri) — (wi + wy;) > 0. In S,

we have the four edges {z;, z;}, {xs, 21}, {2}

Hait, Az, x1}. We leave the last one unchanged and we

change the first three to {z;, z1}, {zy, z}}, {z},z;}. It is easy to see that the new “tour” is indeed a

tour, so this is a valid 3-change provided that we have decreased the cost. The decrease in cost is
(Wi + wrr + wij) — (Wi + wrj +wij) = (wij + wrr) — (Wi + wey),

which we know to be positive. The next 3-change leaves edge {a;,2;} unchanged. Tt flips

{ep, 25 b =), x5} Az, 21t to {ap, 25}, {#f, 21}, {#), 27} The decrease in cost is

(Wrj + wrr + wij ) — (wir + wrj + wrj) = (Wi +wer) — (Wi + wej),
which we know to be positive. The resulting edge set contains {xy, z;}, {z}, 2}, {z;, 2}, {=}, 27}, and
is otherwise the same as S’, so it is 7", and therefore a tour.

Lueker’s proof gave 217/21=2 2_changes on an n-vertex graph, n > 4. We have N = 2n, and we make
two 3-changes for each original 2-change. In terms of N, we have 2L¥/41=1 3_changes, if N > 8 is even.
|

9 Open Problems

e One of the best TSP algorithms in actual experiments [2] is the Lin-Kernighan algorithm [14],
a local search algorithm with a more complex neighborhood structure. Since a Lin-Kernighan
optimal tour is also 2-optimal, all the upper bounds on the performance ratio of 2-opt also hold

for Lin-Kernighan. Can one do better for Lin-Kernighan?
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e Our lower bounds on the performance ratio of k-opt are obtained by showing that there is some
k-optimal tour of large weight. Suppose we start with a random tour and then deterministically

make improving k-changes. Can we get better performance guarantees?

e Can Lueker’s results be extended to the Fuclidean plane, i.e., is there a graph in the Fuclidean

plane for which there exists an exponential number of improving 2-changes?

e Can Theorem 3.4 be generalized to any k-opt algorithm, i.e., for arbitrary metric spaces can one

prove that as k increases, the performance guarantee of the k-opt algorithm improves?
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