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Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority
queue). Their data structure, the Fibonacci heap (or F-heap) supports arbitrary deletion in O(log n)
amortized time and other heap operations in O(1) amortized time. In this paper we use F-heaps to
obtain fast algorithms for finding minimum spanning trees in undirected and directed graphs. For
an undirected graph containing n vertices and m edges, our minimum spanning tree algorithm runs
in O (m log B(n, n)) time, improved from O(mp(m, ) time, where A(m, ny=min {i|log® n=mjfn)}.
Our minimum spanning tree algorithm for directed graphs runs in O(nlog n+m) time, improved
from O(nlog n+m log 10g 108(y/m+2y7). Both algorithms can be extended to allow a degree constra-
int at one vertex.

1. Introduction

A heap (sometimes called a priority queue) is an abstract data structure consist-
ing of a collection of items, each with a real-valued key, on which at least the follow-
ing operations are possible:

make heap: Return a new, empty heap.

insert (x, h): Insert item x, with predefined key, into heap h, assuming that it is not
already in A,

Jfind min (h): Return an item of minimum key in heap h, without changing h.

delete min (h): Delete from heap h an item of minimum key and return it. If £ is
empty, return a special null item.

A variety of other operations on heaps are sometimes useful. These include the
following:

meld (hy, h,): Return the heap formed by taking the union of item-disjoint heaps &,
and h,. This operation destroys h, and hy.
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decrease key (4, x, h): Decrease the key of item x in heap k by subtracting the non-
negative real number 4. This operation assumes that the location of x in 4 js known.

delete (x, h): Delete item x from heap h, assuming that its location in / is known.

Fredman and Tarjan [7] recently invented a heap implementation called the
Fibonacci heap (abbreviated F -heap) that supports delete min and delete on an n-item
heap in O(log n) amortized time and all the other heap operations listed above in
O(1) amortized time. (By amortized time we mean the time of an operation averaged
Over a worst-case sequence of operations. For a discussion of this concept see Tarjan’s
survey paper [19].) The importance of this result is in its reduction of the time for
decrease key to O(1) from the O(log n) of previous heap implementations. Since
decrease key is a central operation in many network optimization algorithms, F -heaps
lead to improved running times for such algorithms. In particular, Fredman and Tar-
jan reduced the running time of Dijkstra’s shortest path algorithm from
O(m10g(mm+gyn) to O(nlog n+m) and showed how to find minimum spanning trees
in undirected graphs in O(mpB(m, n)) time, improved from O(mlog 10g(min+2yn).
Here nand m are the numbers of vertices and edges in the problem graph, respectively,
and B(m, n)=min {illog® n=m/n}, where log!” nis defined by log® (x)=x, log+th x=
=loglog® x. (Throughout this paper we use base-two logarithms.)

Our purpose in this paper is to explore the use of F-heaps in computing mini-
mum spanning trees in undirected and directed graphs. Our two main results, dis-
cussed in Sections 2 and 3, respectively, are as follows

(1) By adding the idea of packets {8, 9] to the Fredman—Tarjan undirected
minimum spanning tree algorithm, we reduce its running time to O(m log f(m, n))
from O(mpB(m, n)).

(i) By observing that in certain situations items can be moved among F-heaps
in O(1) amortized time per item moved. we obtain an implementation of Edmonds’
minimum directed spanning tree algorithm [16] with a running time of O(n log n+m),
improved from the O(nlog n+m log log log, /.40 1) bound of Gabow, Galil, and
Spencer [8]. Our algorithm is also substantially simpler than the previous one.

Both our algorithms extend to allow a degree constraint at one vertex as we
discuss in Section 4. Section 5 contains a few concluding remarks. The undirected
minimum spanning tree algorithm described here originally appeared in a Symposium
paper [8] by the first three authors.

2. Minimum spanning trees in undirected graphs

Let G=(V, E) be a connected, undirected graph with vertex set V of size n
and edge set E of size m, such that each edge {v, w} has a real-valued cost c(v, w).
Connectivity implies m=n—1; we shall assume mz=n since m=n—1 implies G
itself is a tree. A minimum spanning tree of G is a spanning tree whose total edge cost
is minimum. The problem of computing minimum Spanning trees has a long history
[11, 17]; the first algorithm was proposed by Boruvka [2] in 1926. Before the invention
of F-heaps, the best known time bound was O(m log log(mm+ayn) [4], a slight
improvement over Yao’s O(m log log n) bound [20]. Fredman and Tarjan [7] used
F-heaps to obtain an O(mp(m, n)) bound. We shall modify their algorithm so that
it runs in O(m log B(m, n)) time. ,

P . P )

-~

€4




. E. TARJAN

1€ap h by subtracting the non-
‘he location of x in 4 is known.,

its location in 4 is known.

:ap implementation called the
ete min and delete on an n-item
:ap operations listed above in
time of an operation averaged
ion of this concept see Tarjan’s
1 its reduction of the time‘for
heap implementations. Since
timization algorithms, F-heaps
! particular, Fredman and Tar-
ortest path a]gorith{n from
3 find minimum spanning trees
d frorn O(mlog log(,,,,,,ﬂ)n).
1€ problem graph, respectively,
ted by log!™ (x)=x, logl+D x =
y logarithms.) o
f F-heaps in computing mini-
18. Our two main results, dis-

Fredman—Tarjan undirected
ing time to O (m log f(m, r))

can be moved among F-heaps
implementation of Edmonds’
unning time of O(n log n+m),
bound of Gabow, Galil, and
than the previous one.

"onstraint at one vertex as we
ling remarks. The undirected
1ally appeared in a symposium

»d graphs

>h with vertex set ¥ of size n
1as a real-valued cost c(v, w).
‘n since m=p—1 implies G
ing tree whose total edge cost
nning trees has a long hlstc_)ry
]in 1926. Before the invenpon
log 10g(mm+2yn) [4], a slight
“redman and Tarjan [7] used
10dify their algorithm so that

MINIMUM SPANNING TREES 111

the following step n—1 times (until there is only one n-vertex tree):
Connect. Select any tree T in the forest. Find a minimum-cost edge with exactly one
endpoint in Tand add it to the forest. (This connects two trees to form one.)

This algorithm s non-deterministic: we are free to select the tree to be proces-
sed in each connecting step in any way we wish. The Fredman—Tarjan version ex-
ploits this freedom by organizing the Computation into passes. Each pass begins with
a collection of o/d trees and combines them into a smaller collection of new frees by
performing connecting steps. The new trees become the old trees for the next pass,
After a sufficient number of passes only one tree remains, which js 3 minimum spann-
ing tree,

In presenting the details of thjs method, we shall reformulate it to use packets,
We replace each undirected edge {v, w} by two directed edges (v, w) and (i, v), each
of cost ¢(v, w). The Packet size p is a Parameter of the algorithm, Ip addition, each
pass of the algorithm has 2 barameter &, the heap size. At the beginning of a pass, for
cach old tree 7', the remaining edges (v, w) such that v js in T are in packets, each of 4
or fewer edges. At MOst one packet for each tree T is designated as 5 residual packet
containing p/2 or fewer edges. (The Temaining edges are those that have not yet been

added to the minimum Spanning tree or discarded; if (v, w) is such an edge, v and w
may or may not be in the Same tree.) Each packet consists of a Fibonacci heap of its

A pass consists of beginning with all trees marked o/d and repeating the fol-
lowing tree-expansion process until all trees are marked new:

Expand a tree:

1. Select any old tree T and mark it current (neither old nor new). Create
New, empty heap A, Heap h will contain old and new trees Connected by an edge to
T, each with an associated Connecting edge of minimum cost. The cost of the con-

necting edge is the key of the tree in 4. For each tree we maintain a bjt indicating
whether or not the tree i inh,

2. Createa set § containing all packets of T (those packets containing edges
(v, wywith vin T). Set S will be used for updating 4 so that jt contains trees connected

to T, with minimum-cost connecting edges, including such a tree with globally minj-
mum-cost connection,

3. Update 4 by repeating the following steps until S is empty (this selects one
edge per packet to participate in the application of g connecting step to T):

3




112 H. N. GABOW, Z. GALIL, T. SPENCER, R. E. TARJAN

3a. Remove any packet P from S. If P is empty, discard it. Otherwise, let
(v, ) be a minimum-cost edge in P. (Vertex v is in 7 vertex w may or may not bein
T). Find the tree T’ containing w.

3b. If T"=T or if T’ is in h with a connecting edge of cost not exceeding
c(v, w), delete (v, w) from P and put P back in S. Otherwise, proceed as follows. If
T” is not in h use an insert operation to add 7’ to h with connecting edge (v, w) and
key c¢(v, w). If T’ is in hwith a cornecting edge (x, y) such that ¢(x, y)>c(z, w), use
a decrease key operation 1o replace (x, y) as the connecting edge of T’ by (v, w) and
reduce the key of 7” to ¢(v, w); then delete (x, y) from the packet, say p’, containing it
and put p’in §S.

4. If heap h is empty or has size exceeding k, mark T new, stop the tree expan-
sion, and reset the bits indicating membership in k. Otherwise, apply a connecting
step to T as follows. Perform a delete min operation on h, returning a tree 7’ with
connecting edge (v, w). Add (v, w) to the minimum spanning tree, thereby combining
Tand T”into a single tree T”. If Tand T’ both have a residual packet, combine these
packets using the meld operation. The melded packet becomes the residual packet of
T” if its size 1s no greater than p/2; otherwise T” has no residual packet. If 77 is new,
associate the melded packet (if any) and all other packets of 7 and T’ with 7” and
stop the tree expansion. Otherwise (T is old), add the melded packet (if any) and all
other packets of 7" to S. Delete (v, w) from the packet, say p, containing it and add p
to S. Associate the melded packet (if any) and all other packets of 7 and T’ with
T”. Replace Tby T” and go to step 3 to update h.

The correctness of this algorithm follows from the observation that if the delete
min operation in step 4 returns a tree T’ with connecting edge (v, w), then (v, w) has
minimum cost among all edges in all packets of T, since it is minimum among all
packet minima. Thus the algorithm is a valid implementation of the generalized greedy
method. Before analyzing its complexity, let us comment a little more on the data
structures it requires.

We need a way, given a vertex, to find the tree containing it. The vertex sets of
the trees are disjoint and updated by set union operations. Thus we can use a fast
disjoint set union algorithm [14, 18] to maintain them. We must also maintain, for
each tree, the set of its associated packets. These sets of packets are also combined by
union, but there is no need to determine what tree is associated with a given packet.
Thus we can represent each set of packets as a circular doubly-linked list, so that union
of packet sets and deletion of a packet from a set take O(1) time. The last important
data structure is the heap h, which we implement as a Fibonacci heap.

We choose the packet size p to be f(m, r). We initialize the packets by dividing
the edges incident to each vertex into packets of size exactly p and at most one packet
per vertex of size less than p; such a small packet is residual if its size is at most pl2.
Initializing the packets as heaps takes O(m) time since it requires 2m insertions in
F-heaps. Each edge is deleted at most once from a packet, for a total deletion time of
O(mlog p). There are n—1 meld operations on packets, taking O(n) time. Thus
the overall time spent manipulating packets is O(mlog B(m, n)) plus O(1) per packet
minimum found. .

Let k; be the value of k selected for the i* pass and let »; be the number of trees
at the beginning of the i pass. We choose k,=2*"" and k;=2k-: for i=2. Let
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us analyze the implications of this choice. Since a heap size bound of n or larger can
only occur during the last pass, the number of passes is at most min {illog®n=
=2m/n}z=B(m, n). The tree expansion stopping rule implies that at the end of the i*®
pass each new tree has at least k; associated packets. The number of packets existing
at the beginning of pass i is at most min {2m,2m/B(m, n)+n;). Thus n; =
=min {2m, 2m/2m/f(m, n)+n}/k;. Since m=n and 2*=2x for x=2, an induc-
tion on i implies k;=2'(m/n) which combines with the estimate n;,,=2m/k; to give
n; 41 =n/271. It follows that the number of packets existing at the beginning of the it
pass is at most 2m/B(m, n)+n/2'72, and n;,,=(2m/B(m, ny+nf2i-H/k,.

We can use these estimates to analyze the running time of the algorithm. The
number of packet minima found during the algorithm is one per packet existing at the
beginning of each pass, for a total of at most

( 2m b n 5

B(m, n)m+ igl' 5T (m+n) = O(m).

Consider the operations on heap h. There is one insert or decrease key per packet
minimum found, for a total of O(m) time over all passes. In addition, during pass i
there are at most n;—1 delete min operations, taking O(n;log k;) time. For pass 1
the delete min time is O(n log 2°™/*)=O(m). For each subsequent pass the delete min
time is O(n;k;_y)=0(2m/B(m, n)+n/2*-2), Thus the delete min time summed over
all passes is O(m+n)=0(m).

The time for all other processing 1s O(1) per packet minimum found, except for
the operations of finding the tree containing a given vertex. There are O(m) such ope-
rations, at most one per packet minimum found. The total time for the tree-finding
operations is O(m«(m, n)) [14, 18], where « is a functional inverse of Ackermann’s
function, which grows more slowly than log .

Combining all our estimates, we see that the overall running time of our mi-
nimum spanning tree algorithmis O(m log 8 (m, n)).

3. Minimum spanning trees in directed graphs

Let G=(V, E) be a directed graph with a distinguished root vertex r and a real-
valued cost ¢(v, w) on each edge (v, w). As in Section 2, we denote the number of
vertices by n and the number of edges by m. We assume that every vertex of G is
reachable from r. A minimum spanning tree of G is a spanning tree rooted at r (a set
of n—1 edges containing paths from r to every vertex) of minimum total edge cost.
Edmonds [6] devised a polynomial-time algorithm for finding a minimum spanning
tree; the same method was discovered independently by Chu and Liu {5] and by Bock
{1]. Edmonds’ correctness proof uses concepts of linear programming; Karp [12]
gave a purely combinatorial correctness proof. Tarjan [15] implemented Edmonds’
algorithm to run in O(min {m log n, n?}) time; Camerini et. al. [3] repaired an error in
Tarjan’s implementation. Gabow, Galil, and Spencer [8] devised a very complicated
algorithm with a running time of O(nlog n+mlogloglog ,m+2n). Here we shall
develop a relatively simple algorithm with an O(nlog n+m) time bound.

Let us begin by describing Edmonds’ algorithm. To simplify matters we shall
assume that G is strongly connected. (If not, we add dummy edges of suitably large
cost from each vertex to r.) The algorithm consists of two phases. The first phase finds

3
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a set of edges containing a minimum spanning tree and some additional edges. The'
second phase removes the extra edges.

The first phase begins with no edges selected and in general maintains a set of
selected edges that defines a forest (set of trees). As the phase proceeds, cycles of
selected edges are formed. Each such cycle is contracted to form a new (super-) vertex.
At the end of the phase, all vertices in the graph are contracted into a single vertex.
The phase consists of repeating the following step until only one vertex remains.

Grow. Choose any tree root v. Let (u, v) be a minimum-cost edge with u=vp. Add
(u, v) to the set of selected edges. If (u, v) forms a cycle with other selected edges, say
(4, v), (v=0vy,v1), (v, 1p), ..., (v -1, v,=u), redefine the cost of each edge of the
form (x,v;) to be c(x,v) —¢(Vi-1ymeak+1)» Ui)» and contract the set of vertices
{vo, vy, ..., v} toform a new vertex v*. (Each edge with an endpointin {v,, vy,...,5}
has that endpoint replaced by v*; loops and all but a minimum-cost edge among each
set of multiple edges are deleted.)

Note. All edge cost changes in a growth step occur simultaneously. Adding an arbi-
trary constant to the cost of all edges entering a given vertex adds the same constant to
the cost of all spanning trees; this does not affcct the behavior of the algorithm.

The second phase of the algorithm consists of expanding the cycles formed
during the first phase in reverse order of their contraction and discarding one edge
from each to form a spanning tree in the original graph. Since the second phase of the
algorithm is known to take O(m) time [3, 15], we shall not discuss it urther, except
to note that by varying the expansion phase appropriately, we can find a minimum
spanning tree with either specified or unspecified root.

Our improvement is in the first phase. We use a depth-first strategy to choose
roots for growth steps. Specifically, we select an arbitrary vertex s and then repeatedly
choose the root of the tree containing s for a growth step. This simplifies the imple-
mentation considerably, since the set of selected edges always forms a single path,
which we call the growth path. We shall denote the vertices on the growth path by
Vg, Uy, +.., Uy, With 1, the root.

Let us fill in some details of the implementation. We mark every original vertex
when it is connected to the growth path. This allows us to determine in O(1) time
whether a selected edge extends the growth path or forms a cycle. The total marking
time is O(n).

We represent the edges in the current contracted graph and their modified edge
costs implicitly, using a compressed tree data structure [7, 14]. This data structure
allows us to store a collection of disjoint sets, each initially a singleton and each ele- :
ment of which has an associated real value, subject to the following operations:

Jfind(e): Return the name of the set containing element e.
find value(e): Return the current value of element e.
change value (4, A): Add 4 to the value of all elements in set A.

unite (4, B, C): Unite sets 4 and B, naming the union C. (This destroys the original
sets 4 and B.)
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In our application, the elements are the vertices of the original graph, and the
sets are the sets of vertices contracted to form the vertices of the contracted graph. The
name of a set is the corresponding vertex in the contracted graph. The value of an
original vertex is the sum of the changes made to the cost of each of its incoming edges.
That s, if (v, w) is an original edge and c is the original cost function, the correspond-
ing current edge is (find (v), fird (w)), of cost c(v, w)+find value (w) (assuming that
this edge has not yet been deleted).

When contracting a cycle containing vertices vy, vy, ..., v,, we manipulate
the compressed tree structure as follows. For i=0, 1, ..., k, let(x;, y,) be the original
edge corresponding to the current edge (v(;-1ymoa «+1)» ). To update the edge costs,
we perform change value (—c(x;, y;)—find value (y;), v;) for each v;,i=0,1, ... k.
Then we use unite k times to combine the sets named v, vy, ..., 1, into a single set.

The various operations have the following running times. Any change value or
unite operation takes O(1) time. There are O(r) such operations over the course of the
algorithm. A total of k intermixed find and find value operations take
O((k+n)a(k+n,n)) time. As we shall see below, there are O(nlog n+m) such
operations over the course of the algorithm, which implies an O(n log n+m) time
bound for all the find and find value operations, and hence for the total overhead for
the compressed tree structure. (For x=nlog n, a(x, n)=0(1) [14].)

Throughout the running of the algorithm, we represent each current edge by
the corresponding original edge. Since we can easily obtain the current edge corre-
sponding to any original edge, we shall ignore this distinction in what follows.

We need some lists and sets to keep track of candidate edges for selection in
growth steps and to allow easy deletion of multiple edges. For each vertex v not on the
growth path, we maintain an exif list of the current edges (v, v,), sorted in increasing
order on i. (Recall that the growth path contains the vertices v,, v,, ..., v;.) For each
vertex v; on the growth path we maintain a similar exit list, of those edges (v;, v;) with

J>1, also sorted in increasing order on i. Among the edges on an exit list, the first
(of lowest index i) is active, the others are passive. For each vertex v;, we maintain
a passive set containing all passive edges entering v;.

We manipulate the exit lists and passive sets as follows. Initially these lists and
sets are all empty. After selecting a starting vertex s we add every edge of the form
(v, 5) to the exit list of v; each such edge is now active. After selecting a minimum-cost
edge (u, t,) during a growth step, we apply the appropriate one of the following two
cases:

Case 1. uis not on the current growth path.

Vertex u becomes the new root of the growth path. We delete every edge from
the exit set of u, removing each passive edge from the passive set containing it. (These
edges, which lead to vertices on the growth path, are now unnecessary for the com-
putation.) For each edge of the form (x, 1), we add (x, u) to the front of the exit list
of x. This edge is now active. If the list contains at least one other edge, the previ-
ously active edge, say (x, v;), becomes passive; we add it to the passive set of v;.

Case 2. uis on the current growth path, say u=uv,.

The cycle defined by the vertices vy, vy, ..., v, is contracted. We delete every
edge from the passive list of every v;, 1=i=k. For each such deleted edge (x, v;),
we delete from the exit list of x either (x, v;) or the currently active edge, whichever
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has larger cost, breaking a tie arbitrarily. (The contraction makes these edges mul-
tiple.) Each vertex among vy, Uz, .-+ Uk now has at most one edge on its exit list, which
we delete. The new vertex formed by the contraction has an empty exit list and an

empty passive set.
If we represent the exit lists and passiv

lists, the total time for manipulating the exit
immediate from the following observations:

(i) Each edge is added to an exit list at
from active to passive corresponds to such an addition.

(i) Any deletion of an edge from a passive list causes the deletion of a (pos-
sibly different) edge from an exit list. Any conversion of an edge from passive to active

corresponds to such a deletion.

e sets by endogeneous* doubly linked
lists and passive sets is O(m). This is

most once. Any conversion of an edge

to facilitate selection of minimum-cost edges

a collection of F-heaps. We shall des-
fine to achieve the desired time bound.
the growth path to be the set of verti-

We need one more data structure,
during growth steps. For this purpose we use
cribe a prototype algorithm which we then re

~ We define the active set of a vertex v; on
ces v such that (v, v;) is an active edge. Since each vertex has at most on¢ exiting active

edge, the active sets are disjoint. For each vertex v; on the growth path, we maintain
an F-heap containing as items the vertices in the active set of v;. The key of a vertex
v in the heap is the current cost of the edge (v, v;).

We manipulate the F-heaps as follows. To select a minimum-cost edge for use
in a growth step, we perform delete min (vy), where v, is the root of the growth path.
If u is the vertex returned from the heap, (4, v,) is the desired minimum-cost edge
(also the first on the exit list of ). We handle the cases of extension of the growth path

and contraction of a cycle as follows:

Case 1. u is not on the growth path.
We initialize a new, empty F-heap for u. For each edge of the form (x, u), if

the exit list of x is empty, we insert x into the heap for u. Otherwise, let (x, v;) be the
currently active edge exiting x. We move x from the heap for v; to the heap for u.
(In either case we add (x, u) to the exit list of x as discussed above.) The key of x is now

the cost of (x, ).

Case 2. uis on the current growth path, say u=uv.
We update the heaps after first updating the costs of the edges entering

Vps Uiy --vs Uy USING the compressed tree data structure. When a currently active edge
(x, v;) is deleted from the exit set of a vertex x, we move x from the heap of v; to the

~ heap of the vertex v; such that (x, v;) is the newly active edge exiting x (note that
j€{0, 1, ..., k}); or, if there is no newly active edge, we merely delete x from the heap
of v,. Having completed all such updating, we meld the heaps for vy, vy, --o» Uk 1O
form a heap for the new vertex representing the contracted cycle.

e

* By an endogenous data structure we mean a linked
items stored in the structure themselves. See Tarjan’s monograph {17} for a discussion of
this concept. Making the lists endogenous obviates the need for cross pointers between

the occurrence of an edge on an exit list and its occurrence in a passive set.
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To verify the correctness of this method, we n
F-heaps. An F-heap consists of a set of rooted trees, whce:s?;1 x:gdlc(e;l Z:Z tolfleeitfact ?bout
heap. Thc? 1tems are arranged in heap order: for any node x and any child em; . ﬂ}:e
key of x is no greater than the key of y. Consider the F-heap for a vertexy v0 * the
growth pa'lh. The key of a vertex v in the heap is the cost of the edee (v j)orSI't .
any updating of edge costs changes the cost of two such edges by theg sam ot
such a change does _not disturb the heap order. Thus we do not have to rsoiir}}ourlllt,
F-heaps when updatin g.edge costs. This implies that the implementation is correlc¥ e

To analyze the time spent manipulating F-heaps, we observe that there r t
most » inif 1ahz_at10ns of empty heaps, at most 2n—2 delete min operations ata ; it
n insert operations, at most n—1 delete operations, and at most 2m oper;tio:s)o f
moving a vertex from one heap to another. If we implement each move operation s0
deletion followed by an insertion, the total time for heap operations is O(mlo : )a
(To fa.c_lhtate heap deletions, we make the heaps endogeneous. Alternativel wegcg .
maintain a pointer from each vertex to its location in the heap containing it gl, !

By tz'ikmg advantage of the special properties of F-heaps, we can feduce the
amortized time per move operation from O(log n) to O(1), thereby reducing the time
tfor hf;ap operations, and the overall time to compute a minimum directed&spanniAng
arlzeo,ri‘lrgrr:i O(mlogn) to O(nlogn+m). This is the crucial idea in our improved

Let us review the way F-heaps work. The two primitiv. 1
ordered.trees qsed in F-heaps are linking, in which we Eombineeti)vr())etr ?gézrilrs]t(;noﬁzag
comparm:g.thelr roots and making the root of smaller key the parent of the root lar e¥
key (breaking a tie arbitrarily), and cutting, in which we break one tree in two gb
deletn‘:g the edge joining a _given node to its parent. Each cut or link operation take)s]
O(1) time. With each node in an F-heap we store its rank, defined to be the number of
its chlld.ren. !n adglmon, each node is either marked or unmarked. When a root loses a
comparison in a link operation and becomes a non-root, it becomes unmarked. W
carry out the various operations on F-heaps as follows:*’ e

make heap: Return a new, empty set of trees.

ns (x, h). Make ltem X1 tO ance ) one-n d
ert X 1N W ode tlee, alld add th]s tlee to the fOI‘CSt

dilete min (h). In the forest of trees representing A, repeatedly link trees having roots

1(<)e ;q(ljlall xt"a_r_lécfuntll.no two roots have equal rank. Then choose any root of minimum
» delete 1t from 1ts tree, and return it. (Each child of the deleted

root of a new tree in the forest.) root becomes the

meld (hy, hy): Combine the forests representing /, and h, into a sin gle forest.

dgcrease key (4, x, h) : Subtract 4 from the key of item x. If x is not a tree root, cut
;fe edge joining x to its parent, say y, and repeat the following step until it stZ)ps:

»1s marked and not a root, make it unmarked, cut the edge joining y and its parent
let the new value of y be the parent, and continue; otherwise, mark y and stop. ,

* W(; have modified the data structure sli i
i ghtly to suit o . 1 ;
dropped the maintenance of minimum nodes.y (See [7],) ur needs. Specifically, we have
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delete (x, h): Perform decrease key (0, x, h). (This makes x a tree root without chang-
ing its key.) Delete x from the tree containing it. (Each child of x becomes a root.)

: With this implementation, the maximum rank of a ncde is O(log n), where n
is the total number of items. The amortized time per operation is O (log ») for delete
min and delete and O(1) for all the other operations. These bounds are derived by
defining the potential of a collection of F-heaps to be the total number of trees plus
twice the number of marked non-root nodes, and defining the amortized time of an
operation to be its actual time plus the net increase in potential it causes. (For a dis-
cussion of the use of the “potential” concept in deriving amortized time bounds see
[19].) For any sequence of heap operations starting with empty heaps, the total amor-
tized time is an upper bound on the total actual time. For details of the analysis see
[71.

We wish to implement a move operation, specified as follows:
move (x, hy, hy): Move item x from heap A, to heap h,.

To carry out such an operation, we perform decrease key (0, x, h,), which
makes x a tree root without changing its key. Then we move the entire tree rooted at x
from heap h; to heap h,.

The amortized time required by a move operation is O(1), since moving a tree
from one heap to another takes O(1) actual time, does not change the potential, and
does not affect the crucial structural property that the maximum rank of a node is
O(log n).

Suppose we use this implementation of move operations in our directed mi-
nimum spanning tree algorithm. We certainly obtain an O(n log n+m) running time.
The only question is whether the algorithm is correct. When a vertex v is moved from
one heap to another, its key changes, because its active exiting edge changes. This may
violate the heap order between v and its children in its heap. Furthermore, the descen-
dants of v are now in the wrong heap. By making one more modification to the F-heap
structure, we can fix these problems.

For any vertex v in the active set of some vertex v; on the growth path, we call
the heap of v; the home heap of v, and we call v displaced if it is not on its home heap.
When deleting a node from an F-heap (in a delete min or delete operation), we examine
each child of the deleted node and, if the child is displaced, we move the tree rooted at
the child to the home heap of the child. This does not affect the O(log n) amortized
time of delete min or delete, since any node has O(log n) children and moving a tree
takes O(1) actual time and does not change the total potential.

This completes our description of the algorithm and the analysis of its running
time. It remains for us to show that the manipulation of the F-heaps correctly pro-
duces minimum-cost edges for use in growth steps. The key to proving this is to
observe that the manipulation of F-heaps maintains the following invariants:

(1) The root of any tree in an F-heap is always in its home heap (unless it has
Just become a root and is about to be moved to its home heap).

(i) If x and y are vertices in an F-heap with x the parent of y, and r;and ¢; are
the vertices on the growth path such that (x, v;) and (y;, v ;) are active, then =/,

(iii) If x and y are vertices in an F-heap with x the parent of y, and both x and
¥ are in their home heap, then the key of x is no greater than the key of y.
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Invariants (i) and (ii) are easy to prove by induction on the number of growth
steps. (Invariant (ii) can become temporarily false during a contraction step (Case 2)
but is restored by the melding that concludes the contraction.) To verify (jii), consider
a link operation that makes a vertex x the parent of another vertex y. At the time of
the link, both x and y are in their home heaps, say of vertex v;, and the key of x is no
greater than the key of y. As long as y remains a child of x, (3, v;) remains active,
and its cost remains the key of y. The only way to violate the heap order is to move x
and its subtree to another heap, displacing y. Vertex y can subsequently return to its
home heap (without deleting x) only if the entire part of the growth path up to and
including the current vertex representing v; is contracted. But this causes the key of x
to decrease to at most the current cost of (x, v;), thereby restoring the heap order
between x and y. Invariant (iii) follows.

Let v, be the root of the current growth path. Invariants (i), (ii) and (iii) imply
that any vertex of minimum key in the active set of v, must be a root of minimum key
in the heap of v,. This implies that the delete min operations used to find minimum-
cost edges for growth steps work correctly. Hence the entire algorithm is correct.

4. Minimum spanning trees with a degree constraint

The algorithms described in Sections 2 and 3 extend to allow a degree constra-
int at one vertex. Let us first consider the undirected case. Suppose we wish to find
a minimum spanning tree in an undirected graph among spanning trees with k edges
incident to a specified vertex v, where k has a specified value. Gabow and Tarjan [10]
have shown that this problem is linear-time equivalent to the unconstrained minimum
spanning tree problem. Thus the algorithm of Section 2 combined with the Gabow—
Tarjan reduction will find an undirected minimum spanning tree with a degree con-
straint in O(m log B(m, n)) time.

The case of directed graphs requires a little more work. Suppose we wish to
find a minimum spanning tree in a directed graph, with specified root r and exactly &
edges exiting r for some given k. Gabow and Tarjan [10] describe an algorithm for
solving this problem that runs in O(m log n) time. We shall provide a preprocessing
step that reduces the number of edges that must be considered to O(n), thus reducing
the time for the actual spanning tree computation to O(n log n). The preprocessing
step is a variant of the first phase of Edmonds’ algorithm and takes O(nlog n+m)
time by the method of Section 3. Thus we obtain an O(nlog n+n1) time bound for
finding a directed minimum spanning tree with a degree constraint.

We need a lemma that characterizes the effect of cycle contraction on directed
minimum spanning trees. Let G=(¥, E) be a directed graph with edge cost function
¢, distinguished root vertex r, and having no edges entering r. Assume without loss
of generality that no two edges entering the same vertex have the same cost. Let R
be a set of required edges exiting r. An R-free is a spanning tree rooted at r that con-
tains all edges in R. Let C=(v,, vy), (v, 0,), ..., (tx—15 ), (4, vo) beacyclein G
such that for 0=i=k, (VG -1ymoa(k+1)» ¥;) 15 @ minimum-cost edge entering v;. Let
G/C be the graph formed by changing the cost of each edge of the form (x,¢,) to
(X, ) = (V- 1ymoa k+1)» i), CONtracting the cycle Cto a single vertex, and discarding
all loops and all but a minimum-cost edge among each set of multiple edges. (If the
set S of multiple edges contains an edge in R, the minimum-cost edgein RNS is the
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one retained.) Let R/C be the set of edges in G/C corresponding to Rin G. Finally,
let T be a minimum-cost R-tree in G, and let 7” be a minimum-cost R/C-tree in G/C.

Lemma 1. T is formed from T’ by expanding the cycle C, adding all edges of R, and
discarding every edge of C that enters a vertex with another entering edge.

Proof. Let U={(x,v)T}. Let ¥=UNR if this sct is non-empty, or otherwise let
V={(x, v;)}, where (x,v;)is an edge of U that is minimal in T in the sense of being
closest to the root. Let C’={(vi-1, v;)| no edge of ¥ enters v;}.

We claim that T—(U—V)UC’ is a tree rooted at r containing all edges of R.
Certainly RET—(U—-V)UC’, since RE T. Every vertex except r contains exactly
one entering edge of T—(U—V)UC’. The only non-trivial part of the claim is to
show that T—(U—V)UC’ contains no cycles. Suppose there is such a cycle, say Y.
Y must contain an edge from a vertex not on C to a vertex on C; this edge cannot be
in R since r has no entering edges. It follows that Y can only exist if V= {(x, v;)}
where (x, v;) is an edge of U that is minimal in T and ¥ contains (x, v;). But the path
in T from  to x does not contain a vertex of C by the choice of (x, v;), which implies
that (x, v;) cannot be on a cyclein T—(U—-V)UC’. This contradiction establishes
the claim.

Since each edge (v;_,, v;)€C’ is of minimum cost among edges entering v;, we
must have U—V=C’, since otherwise T—(U—V)UC" has cost less than T, con-
tradicting the fact that T is a minimum-cost R-tree. Thus either the edges in T enter-
ing vertices on C are exactly the edges in R entering vertices on C (af UNR0),
or there is exactly one edge in T entering a vertex on C (if UNR=0). In either case
T is formed from some R/C-tree T” in G/C by expanding C, adding all edges of R,
and discarding every edge of C that enters a vertex with another entering edge.

Suppose UMNR=0. Then exactly one edge of C is discarded in forming T
from T”. The edge cost transformation is such that e(Ty=c(T")+¢(C). Since T is
minimum with respect to ¢, T” must be minimum with respect to ¢’, and T"=T’
since G/C has a unique minimum-cost R/C-tree.

A similar argument applies if UM R=0. In this case the edge of T” entering
the vertex formed by contracting C corresponds to the minimum-cost edge in R
entering a vertex of C. It follows that ¢(T) is a non-decreasing function of ¢’(T”")
(or of ¢(T”); in this case the edge cost transformation is irrelevant). Since T is mini-
mum-cost, T” must also be minimum-cost, and T"=T". [

Lemma 1 implies that the desired degree-constrained minimum spanning tree
T is contained in a subgraph H constructed as follows. Choose any vertex r’#r.
Form G —r; add an edge (r’, v) of appropriately high cost to any vertex v not reach-
able from r’. Run phase 1 of Edmonds’ algorithm on this graph. Then H consists of
all edges in G corresponding to edges selected in phase 1, plus all edges directed from
r. To prove that T is contained in H, observe that H contains all cycles contracted
in phase 1. Now use induction on the number of cycles contracted in phase 1, taking
R as the set of edges incident to rin 7.

The algorithm to find a minimum degree-constrained spanning tree constructs
H using the algorithm of Section 3 and runs the Gabow—Tarjan algorithm on H
The time is O(m+n log n), since H has O(n) edges.

We close this section by noting that Lemma 1, specialized to the case R=0,
provides the basis for a purely combinatorial proof of correctness of Edmonds’
algorithm that is somewhat simpler than Karp’s proof [12].
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5. Remarks

We have described an O(m log f(m, n))-time algorithm for finding undirected
minimum spanning trees and an O(n log n+m)-time algorithm for finding directed
minimum spanning trees. Both algorithms extend to allow a degree constraint at one
vertex (the root, in the directed case). The algorithms use F-heaps and some additional
techniques.

Remaining open questions have to do with whether our algorithms are impro-
vable and whether the methods they use can be applied to other problems. In this
regard, it is known that undirected minimum spanning trees can be verified in
O(ma(m, n)) time [16) and even in O(m) comparisons [13]. Thus one is tempted to
look for an O(ma(m, n))-time or even O(m)-time algorithm for finding such trees. On
the other hand, Edmonds’ directed minimum spanning tree algorithm can be used to
sort n numbers. This implies an Q(nlog n+m) lower bound for any implementation
of his algorithm that makes only binary decisions. Any improvement would require
a new algorithmic approach rather than just new implementation ideas.

The most intriguing problem to which the techniques discussed in this paper
might be applicable is nonbipartite weighted matching. The current best time bound
is O(n*log n+nmlog log 108(m/n+2y ), obtained by Gabow, Galil, and Spencer
(8, 9]. We might hope for an improvement to O(n? log n-+nm).

Acknowledgement. The fourth author would like to thank Ilan Bar-On for assistance
in working out the details of the directed minimum spanning tree algorithm.
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