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Application of a Gaussian, Missing-Data
Model to Product Recommendation

William J. J. Roberts, Senior Member, IEEE

Abstract—A Gaussian, missing-data model is applied to predict
product ratings. Vectors of product ratings from users are assumed
to be independent and identically distributed. Two approaches
for parameter estimation in this model are studied: Little and
Rubin’s expectation-maximization algorithm and McMichael’s
modified stochastic gradient descent approach. The resulting
estimates are used in minimum mean squared error prediction of
product ratings using the conditional mean. On a large dataset,
performance using McMichael’s approach is better than reported
performance of the popular matrix factorization approach.

Index Terms—Conditional mean, expectation maximization,
gradient descent, maximum likelihood.

I. INTRODUCTION

A RECOMMENDER system predicts preferences of users
for products. Consider a recommender system involving

users and products. An observed rating is a rating given by
one of the users to one of the products. Any rating not ob-
served is a missing rating. The total number of observed and
missing ratings is . The product recommendation problem is
to predict missing ratings. Applications for recommender sys-
tems include social networking, dating sites, and movie recom-
mendation [7].

In this letter, we assume the ratings from each user are -di-
mensional Gaussian random vectors. The -dimensional vectors
from different users are assumed to be independent and identi-
cally distributed (iid). The common mean and covariance are es-
timated from the observed ratings. Due to desirable asymptotic
properties—large datasets with large and are common in real
applications—we focus here on maximum likelihood (ML) es-
timation. An explicit ML estimate of the mean is known which
is not, in general, the arithmetic average of the observed rat-
ings. No explicit ML estimate of the covariance is known and
we study two iterative algorithms: an expectation-maximization
(EM) algorithm studied by Little and Rubin [9] and a modified
stochastic gradient descent algorithm due to McMichael [10].

Given estimates of the mean and covariance, minimum mean
squared error (MMSE) prediction of the missing ratings is per-
formed here using the conditional mean. The conditional mean
has a well-known, explicit linear form in terms of subvectors
and submatrices of, respectively, the mean and covariance [1,
Th. 2.5.1]. Conditional mean prediction of missing ratings using
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the estimated mean and covariance achieves a root mean squared
error (RMSE) of 0.8907 on the well-known Netflix data-set (see,
e.g., [3]).

A popular approach for large-scale, real-world recommender
systems is matrix factorization, see e.g., [7] and references
therein. In this approach, a sparse matrix containing
all observed ratings is approximated by the product of two
rectangular matrices. Missing ratings are predicted by the
inner product of appropriate columns and rows from the two
rectangular matrices. In [7, Fig. 4], plain matrix factorization
is reported to achieve an RMSE of above 0.902 on the Netflix
data.

Other studies have performed MMSE prediction of missing
ratings using an estimated mean and covariance. The esti-
mation steps, however, are different from those studied here.
Schwaighofer et al. [11] derive an EM approach for a Bayesian
formulation in additive noise. Using a similar model to [11],
Bohnert and Schmidt [4] estimate a structured covariance ma-
trix using a Gibbs sampling approach. Lawrence and Urtasun
[8] treat the mean of a Gaussian distribution as the product
of two matrices and estimate these matrices using stochastic
gradient descent.

The remainder of this paper is organized as follows. In
Section II, we specify the model, discuss ML estimation of
its parameter, and MMSE prediction of missing ratings. In
Section III, we detail the implementation of the techniques and
the results obtained. Section IV concludes with comments and
suggestions for further work.

II. A GAUSSIAN, MISSING-DATA MODEL

A. Model Specification

Let denote a -dimensional Gaussian random vector rep-
resenting both observed and missing ratings of the th user,

. Let represent ratings from
all users and assume these ratings are iid. Let be the
mean vector of and let be the covariance matrix of .
Let denote a -dimensional subvector of representing the

, observed ratings of the th user. Let be the
identity matrix. Let be a submatrix of where the
rows of corresponding to the indices of the missing ratings
of the th user have been deleted. The integer and the ma-
trix are assumed to be deterministic. Thus is a
Gaussian random vector with -dimensional mean
and covariance , where denotes ma-
trix or vector transpose. Note and are a subvector and a
principal submatrix of and respectively. If is a symmetric
and positive semi-definite (psd) matrix then all of its principal
submatrices are also symmetric and psd [6, Cor. 4.2.2]. Thus all
such are valid covariance matrices.
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Let denote observed ratings from all
users. Let denote a realization of and denote a realiza-
tion of . Independence of follows from the independence
of . The , however, are not iid. The probability density
function of is thus

(1)

B. Parameter Estimation

We aim for the and that maximize . Joint
maximization over and is not possible in closed form. Let
denote the ML estimate of . Assuming a known , McMichael
[10] obtained the following explicit by equating to zero and
solving the derivative of with respect to

(2)

With the elements of are the arithmetic means of the
observed ratings.

No explicit ML estimate of is known. We resort to two iter-
ative techniques that aim to increase the likelihood with each it-
eration. The first is the EM algorithm studied by Little and Rubin
[9, Sec. 11.2.1]. Iterations of the EM algorithm are guaranteed
to not decrease the likelihood [9]. Let denote a -di-
mensional random vector representing all the missing ratings of
the th user. Let be a submatrix of where the
rows of corresponding to the indices of the observed ratings
have been deleted. Then

(3)

Let denote an existing estimate of . Assuming a known ,
an EM iteration that provides an updated estimate of is given
by

(4)

As and applying the independence of

(5)

After substituting (3) into (5) we require conditional moments
of . The required conditional distribution is Gaussian [1, Th.
2.5.1] with mean

(6)

and covariance

(7)

where
and . The resulting EM iteration is thus

(8)

where . Note that the EM approach can be
applied to the estimation of resulting in the estimate
[9, eq. (11.6)]. We prefer the ML estimate (2) as, for a given ,
this estimate maximizes the likelihood whereas the EM estimate
guarantees only to not decrease it.

The second algorithm that we consider for estimation
is McMichael’s modified gradient descent algorithm [10].
Assuming a known , an updated estimate of is given by

(9)

for . The required derivative is given by

(10)

Henceforth we will refer to the alternate estimation of using
(2) and using (8) as the EM algorithm. The alternate estima-
tion of using (2) and using (9) and (10) will be referred to
as McMichael’s algorithm. The estimates obtained at the th it-
eration of either algorithm are denoted and .

C. Initialization

Both McMichael’s and the EM algorithm require initializa-
tion. Let denote an initial estimate for . Little and Rubin [9,
Sec. 11.2.1] suggest using equal to the arithmetic mean of
the observations. Let be the diagonal matrix given by

. The th diagonal element of thus equals
the total number of ratings of the th product. The arithmetic
mean of the observations is given by
which is equivalent to (2) with .

Let denote an initial estimate for , where ,
represents one of the four different initial estimates we study
here. We restrict ourselves to that are symmetric and psd as
such matrices are valid covariances. A simple such initializer is

. Define the psd matrix

(11)

constituting an un-normalized sample covariance matrix. Little
and Rubin [9, Sec. 11.2.1] suggest using the diagonal matrix
whose elements correspond to the sample variances of the ob-
served data. This matrix is given by where

is the diagonal matrix consisting of the diagonal ele-
ments of . The third initial estimate of we study is the psd
correlation matrix . Off-di-
agonal elements of are nonzero. As the diagonal elements
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of are equal to one, this matrix may not be a good initial-
izer when rating variances are far from one. An initial estimate
of with nonzero off-diagonal elements and diagonal elements
equal to the sample variances is .

D. Prediction of Missing Ratings

Performance of recommender systems is often measured
using RMSE. Our criterion of choice in predicting missing
ratings is thus MMSE. As is well known, MMSE prediction is
accomplished by the conditional mean. Redefine to be only
those missing ratings that we wish to predict. Given a realization

from the th user, the conditional mean of the desired missing
ratings is the linear estimator given
by (6). This is implemented using appropriate submatrices and
subvectors of the estimates of and obtained from either
McMichael’s or the EM algorithm.

The constant covariance matrix specified by (7) is referred to
as a partial covariance matrix [1, p. 36] and represents the co-
variance of the predictions. In applications it could be used, for
example, to calculate confidence regions. A two-sided
confidence interval for the th element of , denoted , is
given by where is the th diagonal ele-
ment of the appropriate partial covariance matrix and is
the quantile of the standard Gaussian distribution evaluated at

. Alternatively, a confidence ellipsoid for can be
constructed.

III. NUMERICAL SETUP AND RESULTS

A. Implementation

The techniques of Section II were implemented in Matlab
and augmented where appropriate with explicit calls to basic
linear algebra subprograms (BLAS), see e.g., [5]. To conserve
memory— can be very large in real applications—the BLAS
generally operated on a designated memory location which
held a matrix when processing observations from the th
user. To illustrate the use of BLAS consider, for example, the
th iteration of McMichael’s algorithm consisting of (2), (9),

and (10) together with (1). For the th observation, the matrix
is formed by copying the relevant elements

of the current estimate of into the designated memory lo-
cation. In this and other similar operations matrix multiplica-
tions are not required. Using the BLAS spotrf, the matrix
is overwritten by its triangular Cholesky decomposition ,
where . The BLAS strsm is used to calculate

, followed by another call to strsm to calculate
. The determinant in (1) is calculated using the

identity where is the
th element of . The matrix ,

required in (10) is calculated using the BLAS ssyrk. The matrix
required in (2) is calculated using the BLAS spotri with

the result overwritten into the designated memory location.

B. Results

The approaches described here were tested using data
from the Netflix movie recommendation contest that ended in
September 2009. In this dataset each of users rated
some of movies. Ratings consisted of integers from
1 to 5. The majority of the data set constituted the training-set.
The probe-set is a subset of the training-set. The quiz-set is a

set of additional ratings not in the training-set used to measure
performance. Users rated on average less than 2% of the
movies that they could have rated. Detailed specification and
descriptions of the contest and the datasets are available in [3].

Performance in this competition was measured by RMSE.
Recall that is a random vector representing the subset of the
missing ratings of the th user that we wish to estimate and
is an estimate of . Let denote a particular realization of

used to measure performance. The RMSE of the estimates
is denoted by and obtained using

(12)

where denotes the length of and .
Initial experiments were conducted using the Netflix dataset

limited to the 100 movies with the greatest number of observed
ratings. Here and . Users rated on average
over 24% of the 100 movies that they could have rated. The
portion of this reduced dataset corresponding to the probe-set
was removed from the training-set and constituted the variables

to be predicted. Conditional mean prediction (6) of was
performed using and estimates obtained using the EM algo-
rithm. The EM algorithm was initialized with and . With
each EM iteration, the likelihood increased, and the RMSE de-
creased. Iterations were ceased once the convergence criterion

(13)

with was satisfied. The number of iterations required
for convergence was 27. The final log-likelihood normalized by

was . Ratings estimates above 5 were clipped to 5,
and those below 1 were clipped to 1. The resulting RMSE was
0.9170.

The experiment was repeated using and estimates ob-
tained by McMichael’s algorithm. This algorithm required the
specification of an addition parameter, in (9) and we used

. The log likelihood and RMSE values were iden-
tical, to four significant figures, to those obtained by the EM al-
gorithm. Similar monotonicity of the log-likelihood and RMSE
with iteration count was observed. Convergence was slower,
however, and required 35 iterations. The behavior and perfor-
mance of neither algorithm varied greatly when different initial
estimates of were used.

Both algorithms aim for the ML parameter estimate.
McMichael’s algorithm, however, lacks the guarantee of the
EM algorithm to never decrease the likelihood. With an ap-
propriate choice of , our results here suggest that in practice
the two algorithms can be equally stable. If is too large
McMichael’s algorithm can decrease the likelihood and pro-
duce a non-psd covariance estimate. Our choice of was the
largest we found that avoided this.

The computational requirements of the two algorithms, how-
ever, are different. In the EM algorithm, the primary computa-
tion burdens are -dimensional vector outer-products and mul-
tiplications involving a matrix required in (8). In
McMichael’s algorithm the primary computational burdens are

matrix inversions and multiplications required in (10).
For the full Netflix data where and is on average
< 210, the computational burden of the EM algorithm was too
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TABLE I
RESULTS FOR MCMICHAEL’S ALGORITHM INITIALIZED

WITH FOUR DIFFERENT INITIAL � ESTIMATES

large and only McMichael’s algorithm could be implemented
on the available hardware.

McMichael’s algorithm was thus applied to estimate a mean
and covariance using the much-larger, full Netflix training-set.
The setup was similar to that described above except we used

to speed-up McMichael’s algorithm by reducing the
number of iterations. Each iteration required approximately 2 h
of processing time on a 2.6 GHz Intel Quad 4 processor. The
resulting mean and covariance estimates were used in MMSE
prediction of the full quiz-set. As before, the likelihood and
RMSE changed monotonically with each iteration. The changes
in RMSE from iteration to iteration were very small immedi-
ately prior to convergence. In this experiment, performance was
sensitive to the initial estimates of . In Table I, we provide
the performance of initial estimates, iterations required for con-
vergence, performance of final estimates, and log likelihood of
final estimates for McMichael’s algorithm initialized with the
four different initial estimates from Section II-C.

The best RMSE in Table I is better than the RMSE for plain
matrix factorization mentioned earlier. It is, however, much
higher than the best RMSE of 0.8553 obtained during the
Netflix contest on identical data. The significantly improved
performance was obtained by a team using linear regression
to combine the predictions here with predictions from over
100 different systems, including, e.g., systems using matrix
factorization. Let be an estimate of obtained by the th
system, . Let denote
the set of estimates from the th system. Let be a
matrix whose th column is . The estimate of obtained
by linear regression is given by [2]

(14)

Generally is not available, and thus the last bracketed term in
(14) can not be explicitly evaluated. In the Netflix competition,
implementation of (14) could be accomplished by assigning the
probe-set to be . The product of the two bracketed terms
in (14) can then be evaluated using systems trained without
the probe-set. An alternative approach [2] relied on knowing
the RMSE of obtained during the Netflix contest by
submitting to the contest administrators. If is
known, and in (12) is known for each , then the last

bracketed term in (14) can be found. The term can be
elicited from the RMSE of constant estimates, e.g., .

In another experiment, confidence intervals as described in
Section II.D were calculated. Using the mean and covariance es-
timated by McMichael’s algorithm from the training-set, a con-
fidence interval was calculated for each MMSE rating prediction
in the quiz set. We then checked how frequently the confidence
interval contained the true rating. With , 94.2%
of the intervals contained the true rating. With ,
98.1% of the intervals contained the true rating. Thus the prac-
tical performance of these confidence intervals is consistent with
that predicted by theory.

IV. CONCLUSION AND FURTHER WORK

Even though it lacks the guarantee of the EM algorithm to
never decrease likelihood, we demonstrate that McMichael’s
algorithm performs similarly to the EM algorithm on a small
dataset. McMichael’s algorithm has the advantage that it
can be scaled up to the large Netflix dataset. On this dataset
McMichael’s algorithm together with MMSE prediction
demonstrate better performance than that reported for plain
matrix factorization.

Performance of matrix factorization has been improved by
accounting for so-called user and product biases. Further im-
provements have been obtained by allowing these biases to vary
with time, see [7] and references therein. One potential avenue
for further work is to investigate applying similar normaliza-
tions to the approaches described here.
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