
SPEE: A Secure Program Execution Environment
Tool Using Static and Dynamic Code Verification

Olga Gelbart, Bhagirath Narahari, and Rahul Simha
The George Washington University

Washington, DC�
rosa, narahari, simha � @gwu.edu

Abstract— With the growing number of successful computer
attacks, especially those using the Internet and exploiting the vul-
nerabilities in the software and applications, software protection
has become an important issue in computer security. This paper
proposes a system – SPEE – for software integrity protection
and authentication and presents performance results. Our system
architecture utilizes key components from the compiler process
and operating system features, and provides static verification
before execution and code block verification at runtime thereby
providing a secure program execution environment. Integrity
checking is performed by means of a hashing scheme, which
not only detects changes but isolates these changes in O(log N)
time, where N is the number of code blocks in the executable.
The SPEE tool is designed to function as part of the operating
system kernel and provides a trusted computing system.

I. INTRODUCTION

With the ubiquitous use of the Internet in the workplace and
at home, it is becoming increasingly important for a computer
system to function reliably and securely. Most attacks on
computer systems are carried out through the use of networks,
particularly the Internet, so it is becoming more and more
necessary not only to verify a program’s correctness and
integrity (as well as authenticate it) before execution starts, but
also during runtime. Ideally, we would like to run a trusted
networked system, where all programs are only run by those
authorized to do so and are not vulnerable to attacks either
before or during execution.

With the growing number of successful computer attacks
based on software vulnerabilities, software protection has
become an important issue in computer security [6]. Attackers
exploit software vulnerabilities caused by programming errors,
system or programming language flaws. Code is often attacked
at runtime to gain unauthorized access to the computer system.
A number of software protection methods have been proposed
to prevent or detect these kinds of attacks [15], [8], [4],
[1], [13]. There currently exist a number of open-source
projects focusing on specific areas of software security [6].
These include static code analysis tools, dynamic tools that
insert runtime checks (such as buffer overflow protection)
and various operating systems controls. While they secure the
system against specific types of attacks, the current methods
do not provide code integrity and authentication methods that
address attacks through injection of malicious code.

We propose a software tool – SPEE (secure program
execution environment) – that combines static and dynamic

code analysis and uses operating system utilities in order
to provide a secure execution environment for application
programs. It provides integrity and authentication protection,
added during the compilation and loading process, both stati-
cally, before launching an executable, and dynamically, when
program blocks are checked for integrity and control flow and
authenticated at runtime. During the compilation and loading
process, the SPEE tool adds a signature, and hashes, to the
executable code and data. These signatures are added as a
separate ELF section into the executable, and the operating
system kernel performs checks to verify the signatures before
authorizing execution. By using the Linux Security Modules
[14], we are able to perform the necessary runtime verification
of our secure programs. For the purpose of integrity checking,
the tool employs a hierarchical hashing scheme wherein the
executable is divided into blocks and are hashed forming a
hierarchy of levels This method not only detects any changes
to the executable, but also isolates where the changes have
occurred in O(log N) time, where N is the number of blocks in
the hash hierarchy. The goal of our tool is to provide a secure
path from compilation to execution of application programs,
while complementing the variety of software protection tools,
which are designed for a particular kind of an attack. For
example, FormatGuard [1] is designed for the purpose of
protection against printf() format string vulnerability.

While our tool adds additional information to the exe-
cutable, it does not interfere with the source code, nor does it
add any additional code to the executable. It takes advantage
of the executable format, specifically the ELF format, to
add integrity and authentication information. Verification is
performed by the operating system kernel, modified to handle
protected executables.

The paper is organized as follows. Section 2 summarizes
different approaches to software protection from the literature
and motivates our approach. Section 3 discusses the overall
system architecture of SPEE (our approach) and the key
concepts and system utilities. Section 4 presents our current
version of the SPEE tool which performs static verification and
provides initial performance results and section 5 concludes
our paper.

II. RELATED WORK IN SOFTWARE PROTECTION

Ideally, software should do what it is supposed to do and
nothing else. Since it is almost impossible to create perfect

software, various software protection methods exist. As stated
in [6] they can roughly be divided into three broad categories:
software auditing, vulnerability mitigation and behaviour man-
agement.

Software auditing is a category of methods, which try
to prevent vulnerabilities before an attacker has a chance to
exploit them. These techniques employ either static analyzers,
which analyze source code, or dynamic debuggers, which look
for abnormal behavior by subjecting the executable to various
unusual inputs.

Static analyzers scan the source code and alert the program-
mer about potential vulnerabilities. These types of programs
are usually used to assist a programmer in code reviews.
Such tools as BOON [15] and CQual [8] scan C source code
to find potential buffer overflows or inconsistent usage of
values. MOPS [4] uses a finite-state machine model of what
is considered valid behavior for a particular program. If a
property is violated, i.e., an illegal state is reached, during
analysis the programmer is alerted about a potential vulner-
ability. Vulnerabilities such as the format string vulnerability
[17] usually comes from sloppy programming thus making it
easier to scan for it before the program is compiled. Static
analyzers serve as good helper tools for the programmer, but
they always run the risk of detecting too many false positives
or false negatives. Some tools also take a considerable time to
perform the analysis, in some cases a matter of several hours
for a moderately sized program [6]. Other approaches to static
code analysis include code obfuscation methods [5] and proof
carrying code [11]. Both these approaches are susceptible to
code tampering via injection of malicious code.

Vulnerability mitigation is a category of methods, which
usually insert protection mechanisms into the code during
compilation and detect vulnerabilities at runtime [6]. These
techniques are not used to eliminate program bugs or prevent
intrusions, but to detect them and prevent further program
execution if such events occur. These techniques are designed
to minimize the amount of damage from an attack.

One of the most common types of attack is buffer overflow
[6], when an attacker overrides the input buffer in hopes to
replace function’s return address with the address of his/her
own code. There are several tools designed to prevent buffer
overflow attacks such as StackGuard [13]. They work by
inserting integrity protection into the stack around the return
address. FormatGuard‘s [1], purpose is to protect against
the printf() vulnerability. This tool implements a wrapper
around the standard printf() function to check the number of
arguments passed to it.

These tools protect from a very particular vulnerability.
There are also runtime tools that use a more general method
of protection such as Guards [3]. In this case, small pieces
of code (or guards) are inserted throughout the code during
compilation. Each guard is responsible for checksumming a
particular piece of code. If a tamper is detected, a special
kind of repair guard is called. This method eliminates a single
point to failure, but it not only increases code size, but is
also vulnerable to code analysis which can remove the guards

before execution.
Most runtime tools have a narrow focus on a particular

security violation, although they take less of a performance
penalty as compared to the static analysis tools.

Behavior management techniques are operating system
features, such as access control policies, which are designed to
limit the program’s execution environment, thus limiting the
amount of potential damage if a program is compromised [6].

Linux Security Modules (LSM) [14] is an open-source
framework approved by the Linux development community.
It allows a programmer to implement various access control
mechanisms customized for the systems particular needs.
LSM provides hooks [14], [16] into file systems, tasks, pro-
gram loading, inter-process communication, kernel modules,
networking, host and domain names, and I/O ports among
others. LSM enables one to add mandatory access control
on top of the regular Unix/Linux discretionary access control
model. Several access control mechanisms have already been
implemented as LSMs, and examples include Security En-
hanced Linux (SELinux) [12], and Linux Intrusion Detection
System (LIDS) [10]. All of these tools provide additional
access control rules (for example, by dividing users and files
into domains and types) to further restrict program execution
thus limiting possible damage if a compromise occurs. LSM
provides a wide variety of possibilities for a security system
designer. However, it is observed that they do not prevent
malicious code introduced into an authorized user’s application
from executing on the system thus leaving them vulnerable to
attacks from tampered code.

III. OUR APPROACH: SPEE

Software protection methods described above all contribute
to creation of a trusted networked system. Each tool tries to
solve a narrow problem of software protection. As one can see
in Fig. 1, each particulate tool aims to solve a narrow software
protection problem at a partcular stage. Static analysis tools
(software auditing) aim to predict potential vulnerabilities by
analysing source code. Runtime tools (vulnerability mitiga-
tion) attempt to protect from a particular vulnerability. Linux
Security Modules (behavior management) aim to solve manda-
tory access control problems by imposing various restrictions
on users, files, and processes. The software protection methods
described above leave the system vulnerable to attacks from
tampered code and do not provide code verification techniques
to prevent an authorized user’s code from being tampered
with. This could lead to an insecure system for a number
of reasons. Suppose a program is run through static analysis
tools and no potential vulnerabilities have been identified.
It is compiled and run (even with the presense of some
number of above-mentioned runtime tools). But how do we
know that the program has not been modified and malicious
code has not been inserted during runtime? What happens if
the inserted malicious code does not cause a printf() format
string or buffer overflow? Would we not want this event to
be detected nonetheless? It is observed that the problem of
software integrity and software authentication has not been

Fig. 1. Software Protection Methods

widely addressed by the code security tools (whether we
are talking about static, compile-time or runtime integrity
verification). Our aim is to add to this collection of tools by
concentrating on software integrity and authentication aspects
of code security. As one can see in Fig. 1, SPEE aims to
provide these services in every category of software protection.
The static stage of SPEE provides executable integrity and
authentication protection to ensure that the file has not been
modified by an unauthorized user. At the vulnerability mitiga-
tion stage, software integrity as well as flow control protection
are ensured at runtime. Our tool can also become part of the
behavior management stage, as it can be implemented either
as an independent tool, or as a Linux Security Module, or as
part of the operating system kernel. By authorizing only trusted
verified code to execute on the system, we aim to provide a
trusted computing environment.

A. Overview of SPEE

Our goal is to create a secure program execution environ-
ment (SPEE) by complimenting the existing code security
tools with the addition of program integrity checking and
program/user authentication at various stages of the execution.
The general framework of SPEE can be described as shown
in Fig. 2. Our system is based on the interplay between the
compilation process and operating system, and required the
development of three modules (indicated in bold boxes in the
figure).

The source code is compiled with a regular compiler (such
as gcc), after which the newly created executable is run
through a special module – the signature and hashing module,
which adds integrity and authentication information. At this
point, the executable is ready to be launched by a user. At first
the regular operating system security checks are performed
(such as whether or not the file exists or whether a user
has privileges to run it). If the file passes this step, then an
additional kernel tool – Static Verification module – checks
the integrity of the executable and verifies its signature. After

Fig. 2. Architecture of Secure Program Execution Environment (SPEE) Tool

successful completion of this step, the executable is launched.
As the program is executed, an operating system kernel – the
Dynamic Verification module, which is responsible for running
the program, performs additional integrity and authentication
checks as program blocks are loaded and executed. By encod-
ing the control flow of the program into the authentication
information and signatures the dynamic tool permits only
authorized control flow as defined by the properties of the
program. If at any stage the verification fails, the execution
is halted. This scheme will prevent unauthorized programs
to be executed, as well as prevent modification of existing
programs before and during execution. In other words, SPEE
contributes to trusted software environment by providing a
secure execution path from compilation to execution. As an
additional benefit, it also provides forensic information in case
of a verification failure by providing the user with information
about which part of the program has been modified.

B. SPEE Implementation Components

Before we present a more detailed description of the SPEE
architecture and implementation, summarize some of the con-
cepts and system tools. Specifically, the ELF file format [17],
[7], signed kernel modules[9], Linux security modules[14],
and watermarking scheme[2] are key components of our
system. These are needed to build our signature, static ver-
ification, and dynamic verification modules.

1) File Formats: ELF Binaries: Our tool will work with
the ELF files. The Executable and Linking Format (ELF)
is a particular standard binary file format, widely used in
Unix/Linux systems [21].An ELF binary contains ELF and
program headers and a number of sections, each with its own
header. It provides a standard way for an operating system
to create a program image and run it. ELF sections hold such
information as the symbol table, dynamic linking, relocation or

the actual program code. We are mainly interested in work-
ing with .text section, which contains the actual executable
instructions, and .data section, which contains initialized data
information. These sections will be checked for integrity and
authenticated after the program is fully compiled and during
runtime.

We utilize the property that the ELF standard allows users to
add new sections to the executables. For example, DuVarney
et al [7] used new sections to add security features (such
as address obfuscation) to ELF executables. We use this
feature to add additional sections containing all the necessary
integrity and authentication information for our executables.
Note that this does not interfere with the normal execution of
the programs, since additional sections can be ignored.

2) Signed Kernel Modules: The concept of signed kernel
modules is used in many operating systems. Kroah-Harman
[20] first introduced the concept of signed kernel modules
for the Linux operating system. Of relevance to our approach
was the use of the ELF format for signature construction
and verification. Since kernel modules in Linux are simply
executables in ELF format, they can be manipulated to add
hashes and signatures. One can examine ELF file sections by
utilizing readelf program (part of binutils).

The signed kernel modules scheme extracted the executable
code and initialized variables sections, ran them through a
hash function (in this case SHA1 function from the kernel‘s
cryptographic library), then signed the resulting hash using
RSA algorithm (from the same cryptographic library). The
signature then was added into the kernel module as a new
section using another program from binutils, objcopy.

The Linux kernel code, responsible for loading kernel
modules, was modified to check the modules‘ signatures first,
before loading them. If the signature did not verify, the module
has been either tampered with or improperly signed. It either
case it was rejected.

The Kroah-Hartman scheme introduced the concept of
adding integrity and authentication to Linux kernel modules.
In SPEE, we extend this concept by adding integrity protection
and authentication to any executable in the ELF format, includ-
ing application programs. In terms of the SPEE architecture,
ELF binaries and the concept of kernel modules are used to
generate the signatures in the signature and hashing module
soon after compiler stage (Fig. 2). The precise algorithm used
in the hashing module is described in a later subsection.

3) Linux Security Modules: There have been many dis-
cussions on how to solve the discretionary access control
problem and, as noted earlier in Section 2, Linux Security
Modules (LSM) [14], [16] is one of the proposed solutions for
the open-source community. LSM provides a general-purpose
framework for implementing additional security solutions on
top of the regular Linux DAC model. A Security system
designer is presented with a wide range of ”hooks” into
the operating system’s kernel. The hooks include file and
process controls, networking and user control among others.
Programmers choose which hooks to implement, thus creating
their own customized security system. The hooks, which have

Fig. 3. LSM Hook Architecture

Fig. 4. Hierarchical Hashing Scheme

not been implemented, use default operating system calls.
Figure 3 depicts the LSM hook architecture.

For the purpose of our system, we need an operating
system kernel control for the runtime verification of our secure
programs. Since LSM provides necessary hooks into files,
processes, and program execution, SPEE utilizes the LSM
framework for its dynamic verification module (Fig. 2).

4) Hierarchical Hashing: The static verification module in
our system checks the signatures of the executable before au-
thorizing the start of execution, and its effectiveness is related
to the hashing and signature methods selected. Our hashing
and signature scheme is based on a technique previously
applied to image watermarking, but not explored in the context
of software protection. Celik et al [2] describe a hierarchical
method of hashing an image containing a watermark. This
scheme computes a watermark of an image by dividing the
image into blocks, which themselves form a hierarchy as
shown in Fig. 4.

In general, the blocks of a lower level of the hierarchy form

the blocks at the next level. At each level, block hashes are
computed, and the hashes are inserted into the least significant
bits of the image block. This way if part of the image is
modified, it is possible not only to detect this event, but also
to pinpoint the actual location of the modified bits. Celik et al
[2] stress the importance of this feature, since it enables one
not only to provide integrity protection for the image file in
question, but also to provide localization of the error.

This technique is of interest to our SPEE framework, since
by dividing the executable into blocks, we can also not
only provide integrity protection and authentication, but also
forensic information. By determining the exact part of the
code, which has been modified, one can assess the potential
intentions of the attacker.

C. SPEE Architecture

The SPEE Framework combines combine the methods and
ideas of ELF, LSM, and hierarchical hashes, described above.
The signed kernel modules method provides integrity and
authentication only for modules. We would like to extend this
concept to any program executed on a system. Depending on
the user/security requirements, our method would apply to a
wide range of executables from all to only specifically chosen
security-critical ones (such as daemons or such programs as
passwd, for example).

1) Static Verification and Authentication: During the com-
pilation process, the executable has its code and data hashed
and signed using the hierarchical hashing scheme. These
signatures are added as a separate ELF section into the
executable. For static verification, the kernel of the operating
system performs checks before the executable is allowed to be
launched. This is where the Linux Security Modules are useful,
since they provide hooks into the file and process controls.
The static verification process involves checking the hash and
signature of the whole executable first. If the verification fails,
only then the hash hierarchy is checked to not only let the
user know that the executable has been compromised, but to
also show the user the exact code segment modified. It can be
shown that at the end of the static verification process, only
a program that has not been modified after its compilation is
allowed to proceed to execution. Thus, any program that has
been tampered with is prevented from execution.

Note that we could have divided the executable into N
chained blocks, but then the search time to find a modified
block would have been in the order of O(N). Constructing the
hashes in the form of a hierarchy (a binary tree in our case)
is more efficient, since for N blocks the search time for a
modified block is going to be in the order of O(logN). This
traversal is only done in case of a top-level verification failure.

2) Dynamic Verification: If the static verification is per-
formed successfully, the system allows launching of the ex-
ecutable and the dynamic verification module is responsible
for preventing run-time attacks on the program. Our dynamic
verification tool is based on key compiler concepts. The
LSM framework hooks control the runtime verification of the
executable by verifying the program blocks as they are loaded

Fig. 5. Dynamic Block Verification Scheme

for execution. Our dynamic verification module is based on
asserting the legal control flow in the program, i.e., any
changes made to the control flow graph of the program is
equivalent to code tampering and the program is halted. The
control flow of a program is usually defined using a control
flow graph which captures that branch and loop conditions. We
capture the control flow information of the program when we
compute the hash of each block as described in what follows.

The hash of each block contains the information about both
current and previous blocks as follows:

For every block X,
H(Y, X) denotes the hash of the block X, where
H - the hash function
Y - contains parents and children information
X - the actual block itself
This is done to preserve the control flow order and thus to

prevent an attacker from inserting new code into the execution
stream. For example, the program in Fig. 5 consists of four
blocks A, B, C and D. B and C are only executed if their
hash is verified and A is reported as their parent block. D
is executed if either A, B, or C are the starting condition
and D’s hash is verified. Suppose a malicious block M is
introduced (for example, a buffer overflow causes malicious
code to start execution). M will fail the block signature and/or
starting condition test, so it will not be executed. The program
will be halted. This scheme will detect runtime attacks on an
executable by preventing the execution of unverified code.

This approach does not require remembering the entire
execution tree, just the parent block, so the verification can
be done more efficiently. Guards [12] perform hash checking
during execution, but are vulnerable to code analysis attack,
when they can be altogether removed from the executable. Our
approach does not insert additional code into the executable,
but relies on the operating system kernel to perform both static
and runtime verification. Thus code analysis would not be
effective in this case. The issue remains to determine the initial
verification condition for the first block. Performance testing
will be done to determine the optimal block size, hash and
signature algorithms to be used.

3) Analysis of SPEE: The SPEE tool is designed to protect
from several kinds of attacks. The static verification module
protects against attacks on the executable before it is launched,
such as:� attacks trying to replace existing executables with mali-

cious ones with the same name� attacks trying to modify existing executables’ code sec-
tion� attacks on initialized variables section of the existing
executable, when attackers might try to introduce their
own initial values for the variables (in order to bypass a
security check, for example)� Static verification also offers protection agains expired
keys. In any case, our tool makes sure that the executable
has not been replaced or modified in any way and has
been properly signed before it is launched.

The dynamic verification module protects from runtime
attacks, such as:� replay attacks – when program blocks are captured by

the attacker and re-inserted into the program flow. Since
dynamic verification not only checks block integrity but
also control flow, these attacks will be prevented� general control-flow attacks – which try to divert execu-
tion to attacker’s code, will be prevented as well, since
the newly-introduced program blocks will fail hash and
signature checks.� Since the tool does not add any additional code to
the executable, the executable is not vulnerable to code
analysis attacks, which try to remove protection code
from the executable. An attempt to remove or replace
hashes and signature will result in the execution being
halted.

IV. PRELIMINARY EXPERIMENTAL RESULTS

Our system is being implemented under Linux (RedHat
9.0 and Fedora Core 2). Since the static hierarchical hashing
scheme has been completed and tested, we present these
results in this section.

The hash hierarchy is represented as a complete binary tree,
i.e. the total number of nodes can be calculated at shown in
Equation (1).

� � ���	��

���
(1)� � �������������
(2)

� � ����! �#"�$%"%& � $'" (3)

� � ����� �)(��+* ���
(4)

� � � � �-,/. (� ��10 � * (5)

where N 2 the number of blocks the executable is divided into (i.e. the
number of nodes in a binary tree)
S 2 the size of the executable, in bytes3)4 2 the size of the executable with the hash added, in bytes
B 2 the size of a block, in bytes
H 2 the size of a hash of an individual block, in bytes

Fig. 6. Hash block size relative to the number of blocks required (10Kbyte
file)

h 2 the number of levels of the hash hierarchy (or the height of the tree)

Thus the height of the tree (or the number of levels in
the hash hierarchy) can be calculated as shown in Equation
(2). Since the size of the file and the block size are known
quantities, Equation (3) can be substituted into Equation (4),
thus giving us the final formula for calculating the potential
number of hash hierarchy levels, dependent on the file size
and the size of a hierarchy block. Our evaluations considered
a file of 10 KBytes and a hierarchy block of at least 20 bytes.
Currently we used the SHA1 algorithm for hash calculations,
which produces a 20 byte hash – note that this can be replaced
by other hash schemes and we are currently evaluating various
hash schemes. It would be impractical to choose a code block
of less than 20 bytes. Based on Equations (1) - (4), the
following dependencies have been calculated: Fig. 6 shows the
block size (which the executable is divided into) is inversely
proportional to the number of blocks created. The number of
levels in the hierarchy is directly proportional to the number
of blocks used. It has to be mentioned that a block used in
this case is different from a disk block, although in practice a
disk block size has to be taken into consideration.

Equation (5) shows the final file size of the executable after
the hashes in the hierarchy have been calculated and added
to the original file. The hashes are added as a stream of hash
values (20 bytes each in the case of SHA1) as a separate ELF
section of the executable. From Equation (5), we can observe
that the file size is inversely proportional to the block size
chosen for the hash hierarchy.

For a file of 10 Kbytes, with a block size for the hash
hierarchy chosen at 300 bytes, and using SHA1 as a hash
algorithm (i.e. the size of each resulting hash is 20 bytes)
the static hierarchical hash file verification showed a 5.5%
increase in the file size. The hash and signature verification
is performed prior to the program execution. Thus it does
not affect the program performance. Note that dynamic block
verification scheme will affect performance, and this is the
subject of our ongoing work.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a software tool – SPEE – that provides
a trusted computing environment via software protection. The
goal of our tool is provide additional security to a computer
system, especially a networked one, where software authenti-
cation and verification become especially important. Our sys-
tem combines concepts from compilers, operating systems and
watermarking to provide static and dynamic code verification
and authentication. It prevents a number of attacks, including
code tampering, replay attacks and control-flow attacks. In
addition, it provides forensic information to the user about
what exact part of the code has been attacked. The tool can
be integrated into the operating system kernel, thus making it
possible to perform software verification at the system level.
Ongoing and future work includes completion of the dynamic
verification module, and considerations of issues such such as
key storage and assignment rules, frequency and method of
rekey, optimal size and number of hash hierarchy blocks. We
are also exploring the application of SPEE to various kinds
of files, such as data files and databases, to provide integrity
protection and authentication for data files to provide kernel
level protection from unauthorized modifications.

ACKNOWLEDGMENTS

The research is supported in part by NSF grant ITR-
0325207.

REFERENCES

[1] C. Cowan, et.al. “FormatGuard: Automatic Protection From printf Format
String Vulnerabilities”, Proc. 10th USENIX Security Symposium, Wash-
ington DC, August 2001

[2] M. U. Celik, G. Sharma, E. Saber, A. M. Tekalp, “Hierarchical Wa-
termarking for Secure Image Authentication with Localization”, IEEE
Transactions on Image Processing, Vol. 11, No. 6, June 2002

[3] H.Chang, M.J. Attallah, “Protecting Software Code by Guards”, Proceed-
ings of the 1st International Workshop on Security and Privacy in Digital
Rights Management, pp. 160-175, Nov. 2000

[4] H. Chen, D. Wagner, “MOPS: an Infrastructure for Examining Security
Properties of Software”, Proceedings of ACM CCS, 2002

[5] C. Colberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations”, Technical Report, Dept of Computer Science, Univ. of
Auckland, July 1997.

[6] C. Cowan, “Sotfware Security for Open-Source Systems”, IEEE Security
and Privacy, 2003

[7] D. C. DuVarney, S. Bhatkar, V.N. Venkatadrishnan, “SELF: a Transparent
Security Extension for ELF Binaries”, State University of New York at
Stony Brook.

[8] J.S. Foster, M. Fähndrich, A. Aiken, “A Theory of Type Qualifiers”,
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Atlanta, Georgia, May 1999

[9] G. Kroah-Harman, “Signed Kernel Modules”, Linux Journal, Jan. 2004,
pp. 48-53.

[10] LIDS, http://www.lids.org
[11] G. Necula, “Proof carrying code”, Proc. of POPL’97, 1997.
[12] S. Smalley, C. Vance, W. Salamon, “Implementing SELinux as a Linux

Security Module”, NSA, NAI Labs, May 2002
[13] P. Wagle, C. Cowan, “StackGuard: Simple Stack Smash Protection for

GCC”, Proceedings of the GCC Developers Summit, pp. 243-256, 2003
[14] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman,

“Linux Security Modules: General Security Support for the Linux Ker-
nel”. 11th USENIX Security Symposium, San Francisco, CA, August 2002.

[15] D. Wagner, J.S. Foster, E. A. Brewer, A. Aiken, “A First Step Towards
Automated Detection of Buffer Overrun Vulnerabilities”, University of
California at Berkeley, NDSS, 2000

[16] C Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman,
“Linux Security Modules Framework”, 2002 Ottawa Linux Symposium,
Ottawa, Canada, June 2002.

[17] ELF Specification, http://www.muppetlabs.com/5 breadbox/software/ELF.txt

