Real-Time Scheduling with
Hardware Data Structures

Gedare Bloom, Gabriel Parmer, Bhagirath Narahari, and Raimha
Department of Computer Science, The George Washingtonelsify
Email: {gedare,gparmer,narahari,sim@gwu.edu

Abstract—Two essential features of a real-time operating implemented each of the three approaches in a cycle-aecurat
system (RTOS) are time management and task scheduling. simulator and evaluate them in terms of performance. Our
Such features reduce software developers’ burden of design- ragits show that the critical overhead of the scheduler and

ing, implementing, and validating generic system infrastructure,)
thus lowering costs and decreasing application time-to-market. time tick processing is captured by the HWDS, so that

However, there is a cost that is often paid as system overheadOUr approach is around 69% as effe_c_ti_/e as hard\{va_\r_e-only
during the runtime. Hardware coprocessors that encapsulate scheduling coprocessors without sacrificing the flexioitf
RTOS services can reduce system overheads and increase theoftware.

amount of CPU time available to applications. The contribution of this work is to introduce HWDSs

Prior work in scheduling coprocessors have moved scheduling
and event processing of a RTOS into hardware. Our work for improving the performance of real-time systems without

returns the control logic of scheduling coprocessors back to sacrificing flexibility. We demonstrate the flexibility of eh
software, and captures the data-centric logic as &ardware data HWDS by re-using the same hardware for multiple purposes,
structure. Separating the control and data aspects of scheduling including rungueue processing for various schedulingcesli
coprocessors Yyields efficient yet flexible hardware support for and timer queue processing.

real-time systems. We demonstrate the flexibility of the hardware

data structure by implementing two classic periodic task sched- Il. HARDWARE DATA STR

. . .) . UCTURES
ulers, the rate monotonic (RM) and earliest deadline first (EDF)) } _
algorithms, and use the same structure for managing timers. Hardware support for real-time scheduling is a well-

established field, which we review in section V. The key
departure that our solution makes with respect to prior work
System overhead must be accounted properly when designto isolate the data-centric mechanisms of the hardwara fr
ing a real-time system, or else task deadlines might be ohissthe policy-related hardware control logic. We refer to the
However, accounting for the overhead may lead developetsata-centric mechanism as a hardware data structure (HWDS),
to discard sets of tasks that would otherwise meet theihich is related to the notion of data structure. Just as a dat
deadlines. Despite the efforts of a real-time operatingesys structure encapsulates data and its access patterns, dogso
(RTOS) to have minimal and constant-time overheads, theHWDS. By extracting parallelism and performance in the
demand for high-resolution timing and scheduling by r@akt data-centric aspects of task scheduling algorithms, HWDSs
applications, such as video processing, leads to smaller ®&prove predictability and performance with respect tot-sof
ticks and greater scheduling overheads [1]. ware scheduling and improve both flexibility and hardware
Prior work has shown that migrating the scheduler to hardests with respect to hardware scheduling.
ware can lower the runtime overheads of admission controlOur work focuses on preemptive priority-driven scheduling
[2] and dynamic-priority scheduling [3], [4]. In additioro t with the rate monotonic (RM) and earliest deadline first (EDF
migrating scheduler services, others have proposed placaigorithms for tasks that are independent and periodic (p@e a
timer tick and interrupt processing together with the scited riodic or sporadic tasks) on a single processor, the CPLh Bot
in a hardware coprocessor [1], [5], [6]. These hardware tattke RM and EDF algorithms are straightforward to implement
schedulers use some form of a hardware priority queue (PiQ)software and have simple schedulability tests. Reptacin
[7] to efficiently select the next schedulable task. Hardwathe ready queue structure of either algorithm with a hardwar
timer management uses delay counters that are updatedpdority queue (PQ) yields a scheduler that has constam-ti
each OS tick (now generated by an external interrupt froaperations for adding and removing taskeadline folding8]
either the hardware clock or the OS). Our work balancedth modular arithmetic solves the problem of finite deagllin
the strengths of hardware with the flexibility of software byalues.
retaining the efficient hardware PQ mechanism asuaware o
data structure(HWDS) and allowing software to control theA- Hardware Priority Queues
scheduling policy. A priority queue is an abstract data structure with insert,
We compare our HWDS-based task scheduling with bo#xtract, and read first (peek) operations.Any data stradhat
software- and hardware-only scheduling, in which the sehesbrts its elements can implement a PQ, for example heaps and
uler is fixed in software or hardware respectively. We hawelf-balancing binary search trees both implement a PQ with

I. INTRODUCTION

logarithmic-time insertion and extraction, with a constime ready tasks, including those with duplicate deadlines,ctwvhi
cost to read the highest priority element. Hardware PQs aienplifies the search tree implementation.

hardware implementations of the PQ data structure. We use RTEMS with the SPARC-V9 port on the Simics
Serengeti target at the 150 MHz CPU frequency, which can
I1l. EXPERIMENTAL SETUP provide about 3 MB to an application for stack and heap data.

To evaluate the effectiveness of HWDS for scheduli?jh.e MMU on .the platiorm cannot be disabled, and RTEMS
we implemented the RM and EDF scheduling algorith lies on the firmware to manage the MMU and some OT the
as software-only schedulers, software schedulers sugipo th_er s_ystem traps. The clock d_rlver re_lles on the.t'Ck tegis
by HWDSs, and hardware-only schedulers. We implementg@mh Is advanced after every instruction by Simics.

the software schedulers in RTEMS [9] and implemented the
hardware support for scheduling in the cycle-accurate Opal
processor simulator, a module for the Simics simulator from We generate pseudo-random task sets to exercise our
the GEMS [10] simulation suite. All of our experiments ara ruscheduler implementations using distributions inspired b
with Simics and the GEMS’ Opal simulator, without using th®&aker [12]. A set ofn tasks is created by choosing integer
Ruby memory model. We also used Cacti 4.1 [11] to estimai@sk periodsp; uniformly from [1,50]. Task utilizationsu;

Task Set Generation

the delay and power dissipation of our HWDSs. are then chosen uniformly frofd.001, 1), implicitly selecting
task execution times;. After all n tasks have been assigned a
A. RTEMS utilization, eachu; is normalized so tha}""_,u; = U, where

The Real-Time Executive for Multiprocessing Systems, J{ is some target utilization value. This method of generating
RTEMS, is an open source real-time operating system. Wasks provides a variety of task sets while being able torobnt
extended RTEMS to support our experiments. So that RTEM number of tasks and the task set utllization.
will run on GEMS, we added support for the SPARC-V9 We developed a baS|_c te_st application for.aII of our ex-
family of processors, in particular the UltraSPARC-III proPeriments. The test application supports a variable nuraber
cessor model for Simics’ Serengeti target. We also added '8€Pendent, periodic tasks withua and p;. Each task also
EDF scheduler to RTEMS, and re-wrote the existing schedufdiows the maximum of all the,, P = MAXj_, (py). Each

to better isolate the following data structures from thek ta®riodic task's workload is a CPU-bound busy loop that ceunt
management logic. the number of instructions executed in the loop. The busy loo

The timer chainis a doubly-linked list of zero or more approximates the number of instructions in a microsecond

nodes for managing task timers. A task can add a timer wifh @1 inner loop, and an outer loop counts the number of

an event to the timer chain and provide a timeout, measur&ifroseconds of execution to reaah in the task’'sp;. The
in OS ticks, at which point the timer will “fire” the event. Thebusy loop consumes CPU time proportionakig neglecting

timer chain is a sorted linked list with(n) insert, butOo(1) ~ache. interrupt, and exception events. Each taskecutes
removal and efficient updates. its periodic loop until it completeg « P/p; periods, so that

The ready queudor ready chains) is used by the schedulépe task with the largest period executes exactly twice,thad

to manage the set of ready tasks and assign the highesnpriotr‘?St runs for n_o longer thax <P,_ 1),' o .
task to the CPU. The ready queue is implemented as a osgWVe do not include task creation, initialization, or deletio

element array of FIFO lists. Each list represents a prioriff) OUr measurements. These operations often are not on the

level, with the zero level as the highest priority. Taskshwitcritical path and do not make much use of the ready queue or

equal priorities are placed on the same FIFO list. The highddner chain structures, so we chose to avoid including them i
priority task is the head of the first non-empty FIFO fronPUr experiments. We also try to limit the effects of excepsio

the beginning of the ready queue. This structure is effiiend INterrupts.
indexed by maintaining a bit map to index non-empty FIFOs,
Periodic tasks are implemented in applications by registeg'
ing a task-specific timer to track the task’s period. A task We implemented the hardware support for scheduling by
becomes periodic by creating a timer and executing a lodp tmaodifying Opal and RTEMS. New “magic” instructions trig-
starts by setting its timer to the current tick plus its pério ger the hardware, with different instructions to identifyet
We extended the interface for creating periodic tasks sb tlmperations of enqueue, extract, and read (first) for thevienel
periodic tasks can be created and scheduled according to Fiig¢. We use the software implementation to simulate the func-
EDF algorithm, which required an extra call-out to update thionality of the hardware PQ, and use the magic instructions
deadline of a task when a job is released. to properly account for the resources consumed during the
Our EDF implementation is straightforward. We replacebardware execution.
the ready queue with a red-black tree that sorts tasks byBecause Opal does not control the SPARC's tick register,
deadline values. We chose a self-balancing binary seageh twhich is used to track time in RTEMS, the hardware operations
over a heap so that duplicate deadlines are detected €dsly. consume the same amount of perceived time as the software;
ready queue also maintains a linked list which holds all ef tra welcome side-effect is that the hardware-supported tests

Hardware Data Structures for Scheduling

execute similar instruction counts and mixes as the soffwaA. Performance of Hardware Data Structures
only tests, making test runs between the software and haedwa
scheduling consistent. We measured the performance speedup from using HWDSs

We model the hardware PQ as a cache, so that we can Q¥edgenerating task sets of sizein 20, 40, 60, and 80. We
freely available tools to obtain reasonable estimates émyd Normalized the utilizations of tasks to a task set utilmat/
and power costs at a given technology node size. We udP-2, 0.4, 0.6, and 0.8. 10 task sets of each comb_lnatlon of
Cacti 4.1 [11] to estimate the delay and energy use of enquefi@dU were generated, for a total of 160 task sets in all. Each
extract, and read operations on a hardware PQ. For the emquégK Set is a copy of the basic test, with pseudo-randomgtrio
and extract operations, we use a fully associative 1KB cach@d Utilizations. We ran the same task sets with the software
with an 8 byte cache line at the 0;8n technology feature scheduler, the software scheduler augmented with HWDSs,
size. This is the feature size used by Opal for Wattch pow@pd the hardware scheduler.
modeling. The 8 byte cache line is sufficient to hold a pointer Figure 1 shows the performance speedup of using hardware
to a task control block, and the cache tag can hold the priorfQs for replacing the software-based timer chain and ready
value. The fully associative cache is a good substituteHfer tqueue for the RM and EDF schedulers. The results are grouped
enqueue and extract operations, which cause comparisongcgording to the target task utilizatiaii, with each bar an
every node in the PQ. The access times and energy for ggrage of the 10 tasks for the particutarand U. The first
enqueue and extract operations are 9.2 ns (2 cycles) anél 2dour bars are for/' = 0.4, the next four are/ = 0.6, then
nJ. Because the PQ can return the highest priority eleméht= 0.8, and finallyU = 1.0. Error bars show the standard
without using any global wires, the read operation is sinita deviation.
accessing a direct mapped cache. The same cache parameters
are applied but with a direct mapping. The read operation h Performance Speedup of Hardware Data Structures
an access time of 4.74 ns (1 cycle) and uses 0.7 nJ. for Real-Time Scheduling

All hardware operations were simulated and accounted 6%
a specific HWDS, with separate counters for each operati s,
on the timer chain and ready queue. Each distinct access % }
a HWDS increments a counter for that structure and for tl ﬁ
operation. These counters are used to add the cycle deldys 3% 1
to estimate the dynamic power dissipation of the HWDS. W 29 it 1
do not estimate the static power of the hardware PQ.

O HWDS-EDF M HWDS-RM

1%

0%
D. Hardware-only Scheduler 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

Number of Tasks

We also simulate a hardware scheduler by encapsulat o
Grouped by Task Set Utilization (0.4, 0.6, 0.8, and 1.0)

all of the processing that the system does for the OS clo
tick. All explicit accesses of the timer chain, ready quearg]
scheduling subsystem, except for yields and dispatches, Big. 1. Performance improvement of the hardware data stru¢téDS)
subsumed by the hardware scheduler. The hardware schedgfgyd RM and EDF schedulers over software-only schedufimgrovements

. . come from replacing both the timer chain and ready queue witardware
does not capture all task state management, in particullar Cgriority queue.

made by tasks that modify their state, for example sleeping.

Part of the motivation for HWDSs is that they provide
similar performance benefits to a hardware-based scheduler

We conducted a series of experiments to evaluate HWD®bile being generic, flexible, and applicable to many défer
in the context of real-time systems. The effect of HWDS8lgorithms. Figure 2 shows initial results for how well the
on overall system performance is measured by observing H¥/DSs perform with respect to our approximation of a hard-
change in CPU cycles when running the basic test describ&are scheduler. We only add the delay of accessing the HWDS
above with varying numbers of tasks and utilizations pek tao the hardware scheduler and assume other operationstare no
set. We measured performance speedup for software sche@alany critical paths. Also, we ignore possible communagati
ing, HWDS-supported scheduling, and hardware schedulil@gencies, which can be significant for off-chip coprocesso
for both RM and EDF scheduling. In this paper, performand&@sed hardware schedulers. Thus our comparison is at least
speedup is computed as the difference in cycles consuniat, and at worst biased in favor of the hardware scheduler.
between software scheduling and HWDS scheduling, dividedAcross all of the tests, the gap between the HWDS approach
by the total number of cycles used to complete the tesind the hardware scheduler sits between 0.3% and 3.8% of
Additional measurements are taken to evaluate the enesjy aaverall processor performance speedup. This is a modest gap
of the HWDS, which is the energy use of HWDS divided byvhen one considers the conservative estimates we use for the
the total processor power dissipation. performance costs of the hardware scheduler.

IV. EXPERIMENTS AND RESULTS

HWDS Performance as Percent of HW Scheduler
Grouped by Task Set Utilization (0.4, 0.6, 0.8, 1.0)
O HWDS-EDF Il HWDS-RM

We are pursuing multiple directions with this work. First,
we focused on overall performance so far, but we are also
interested in how HWDS affects the latency of OS services
and thus schedulability. Second, our model of the HWDS and

70% hardware schedulers suffers from software artifacts sich a
60% | exceptions and cache misses, which we plan to reduce. Third,
50% - a HWDS affects the system’s memory usage. We are investi-
40% - gating how a HWDS changes the cache behavior of memory-
30% boupd gpplic;ations. Fourth, our mgthod for ge.n.erating test
20% applications is _based on prior work in s_chedulabm_ty ar_1cyma
not be appropriate for our uses; we are interested in gengrat
10%7 test applications that can be used to reliably evaluate HWDS
0% in the context of real-time scheduling.
20406080 20406080 20406080 20406080

Number of Tasks ACKNOWLEDGMENT

This work is supported in part by NSF grant CNS-0934725
Fig. 2. Performance speedup of the HWDS as compared to the gpeédugnd AFOSR grant FA9550-09-1-0194. The authors thank

the hardware-only RM and EDF schedulers over software-saheduling. . . L
Performance penalties for accessing the HWDSs and the hardwhedulers Guru Venkataramani and Veronica Bloom for their 'nS|ghthI

are assumed to be identical, which is unlikely the case. suggestions.

REFERENCES

V. RELATED WORK [1] P. Kuacharoen, M. A. Shalan, and V. J. M. lll, “A configutab
. . hardware scheduler for Real-Time systemdii Proceedings of
Hardware support for scheduling has been an area of interest the International Conference on Engineering of Reconfiglera

in the queuing hardware of packet-switched networks. Moon Systems and Algorithmspp. 96—101, 2003. [Online]. Available:

. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=1068.585
et al. [7] compare four approaches to hardware PQs for hlgtfi] W.pBurIeson, J. KF()), D. Niehaus, K. Rameriymritham, J. A. Staikov

speed networks and introduce an approach that melds two G. wallace, and C. Weems, “The spring scheduling coprocessor
of the previous solutions. Kim and Shin [8] describe an @ scheduling accelerator]EEE Trans. Very Large Scale Integr.

. . . Syst, vol. 7, no. 1, pp. 38-47, 1999. [Online]. Available:
architecture for EDF scheduling for ATM switch networks, hitp://portal.acm.org/citation.cfm?id=297731. 207736

which is also applicable to task scheduling and introduceg] s. saez, J. Vila, A. Crespo, and A. Garcia, “A hardwareesttter for
deadline folding. complex real-time systems,” imdustrial Electronics, 1999. ISIE '99.

For real-time task scheduling systems a number of hardware Egﬁ%es('ﬂ%s of the IEEE International Symposium . 1, 1999, pp.

scheduling coprocessors have been proposed. The first usefJ. Hildebrandt, F. Golatowski, and D. Timmermann, “Schasylco-

hardware scheduling of which we are aware is in the Spring g_focessor for errliganlc?d Legst-Laxity-EFirst Scheguli?g Mdhi?éil-
. . . . ime systems,” irReal-Time Systems, Euromicro Conference S
Scheduling Coprocessor (SSCoP) [2]. SSCoP is primarily sjamitos A, USA: IEEE Computer Society, 1999, p. 0208,

used to generate a schedule for a set of tasks and to ensglep. Kohout, B. Ganesh, and B. Jacob, “Hardware support réa-
that the schedule is feasible under the system’s real-time _tintﬂe OI?_efatling Slystems,” irPrgce;dingf Offw;he lstdlEEE/ACMt/IFIP
. . . International conterence on Hardware/sofrtware codesi aystem
constraints. Saez et_al. [3] put EDF_and slack stealing vaihk t synthesis Newport Beach, CA, USA: ACM, 2003, pp. 455’5“11. [)('Dn"ne].
state management in hardware. Hildebrandt et al. [4] p®@pos Available: http://portal.acm.org/citation.cfm?id=9446844656
enhanced least-laxity-first scheduling. Kuacharoen e{13l. [6] L. Zong, “Nanoprocessors: Configurable hardware acatdes for em-

. . bedded systems,” Master's Thesis, 2003.
implement a configurable hardware scheduler that Manages s wmoon, K. Shin, and J. Rexford, “Scalable hardware fiioqueue

sleeping tasks and the task table. Kohout et al. [5] propose architectures for high-speed packet switches,Rial-Time Technology
the Real-Time Task Manager (RTM), which is a processor and Applications Symposium, 1997. Proceedings., ThirdElEB97, pp.
extension that implements task management in hardwagg 203-212.

. . . o _)] B. K. Kim and K. Shin, “Scalable hardware earliest-déaelfirst sched-
including fixed priority scheduling, timer management, and ~ uler for ATM switching networks,” inReal-Time Systems Symposium,

event management_ Zong [6] imp|ements EDF Schedu"ng and |EEE International Los Alamitos, CA, USA: IEEE Computer Society,

: 1997, p. 210.
task state management in hardware /f@/OS. 9] “RTEMS: Real-Time executive for multiprocessor systems.”

. [9]
In contrast to the related work, our approach implements hitp://www.rtems.com/. [Online]. Available: http://wtems.com/

only the PQ mechanism in hardware and allows RTOS soft0] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.

. . . . Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
ware to control the scheduling policy. Our approach is fliexib Hil, and D. A Wood, “Mulifacets general execution-deim

and generic like software while remaining fast like hardsvar multiprocessor simulator (GEMS) toolseSIGARCH Comput. Archit.
News vol. 33, no. 4, pp. 92-99, 2005. [Online]. Available:
VI. CONCLUSION AND FUTURE WORK http://portal.acm.org/citation.cfm?doid=1105734.11467
. . [}]1.1] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “CACTI 4.0,PHL.aboratores
As a hybrid approach, hardware data structures provide the pao Alto, Tech. Report HPL-2006-86, 2006.

flexibility of software and the performance of hardwaretistii [12] T. P. Baker, "A comparison of global and partitioned ElfRedulability
results are encouraging, showing that HWDS capture at least Besltioffrngg'st'pmcessors' Florida State University, Tegtep. TR-
50% of the performance benefits of scheduling coprocessors. '

