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Abstract
We present and evaluate an approach for human-in-the-loop specification of robot–object interactions. Our method is based
on the idea of model annotation: the addition of simple cues to an underlying object model to delineate a complex task. The
goal is to explore simplified CAD-like interfaces to permit novice users to describe and annotate manipulation tasks that are
then carried out by a robot. The constructed models meet precision requirements for modeling a variety of joint types and
kinematic chains, and can be re-used after their initial design. The approach is contrasted with teleoperation and tested with
a user study. We found that untrained users can create object models whose structure can be readily used to initialize joint
constraints to guide the user in designing successful end-effector trajectories. We see this approach as an alternative to direct
teleoperation for cases where it is more natural or practical to store the action sequence with the object as the reference frame.
The approach was evaluated using the PR2 robot platform.

Keywords Articulation modeling · Annotation · Human-in-the-loop · HCI

1 Introduction

High level robotics tasks, such as preparing ameal or cleaning
a room, might require robots to interact with new or compli-
cated objects in potentially unstructured environments. In
particular, pick and place actions and the handling of artic-
ulated objects are typical tasks for a robotic system that is
expected to operate in human-centric environments. These
tasks are often, in themselves, composed of a sequence of
low-level actions such as detecting objects, choosing and exe-
cuting grasps, and deciding how to move held objects. These
low-level actions are often the bottleneck to accomplishing
more complex activities due to the sheer combinatorial vari-
ability of the cases that the robot might have to encounter.

Significant progress has been made in teaching robots to
deal with manipulation challenges autonomously: examples
of these are (Ciocarlie et al. 2014), where vision is used to
recognize previously seen objects and grasp them based on
physical appearance; (Sung et al. 2015), where manipulation
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behaviors are learned from human demonstrations; and (Kim
andSukhatme 2014),were behaviors are defined as a reaction
to object features. Despite these advances, many of these
low level tasks often prove difficult to solve without human
participation.

An alternative to autonomous techniques for object inter-
action, such as the ones mentioned above, is having a
human operator provide assistance to the robot in order to
accomplish difficult tasks. While many circumstances might
preclude a human from doing the task themselves (such as a
dangerous environment, or being physically unable to do so),
an operator can direct the actions of a robot using an effec-
tive interface. A human operator has the great advantage of
being able to assist in the full perception-action loop, from
interpreting noisy or obstructed sensory data, tomaking deci-
sions and indicating ways to carry them out. In teleoperation,
a person controls the actions of the robot using some type of
remote control. This approach could be called actor-relative,
since the motions are directed from the point of view of the
robot (or the operator controlling it).

One issue with this approach is that the operator might
get overburdened by attempting to simultaneously achieve
the task outcomes (by cognitively managing micro-actions)
while overcoming difficulties that arise from interacting with
the environment through the robot interface and limited per-
ception (Kent et al. 2017). We consider the approach of
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reducing the burden of operators by moving away from full
teleoperation (as in bomb-disposal robots) to a low-demand
interface where simple gestures or commands from the oper-
ator are translated into complex sequences of actions to be
performed by the robot. This has the potential to reduce
the amount of low-level controlling actions that the operator
needs to think about, allowing them to focus instead on the
high level goals. In fact, efforts have been made to construct
robotic languages that link these high-level actions into com-
plex activities (Tenorth et al. 2013). However, using such a
language to indicate a detailed sequence of low-level actions
can become cumbersome, especially when complex spatial
understanding is required, as for example, when trying to
program the sequence of joint rotations and translations to
reach for an object and grasp it.

Instead of having the human grapple with a complex
language to fully specify the step-by-step instructions to com-
plete an interaction, an alternative is to capture these from a
real or virtual demonstration. This gentler (on the human)
approach focuses on generating and storing the most basic
and relevant information that can be used to complete a task,
leaving the low-level control to the robot platform instead.
The human’s cognitive burden can be reduced to making
annotations layered on top of a visual representation of the
scene. For example, the human can apply annotations to a
manipulation task by adding simple markers on top of the
visual field in order to create a set of object-relative instruc-
tions that can be directly carried out by a robot. Annotations
have been used in a wide variety of object-related robotic
tasks, such as shape reconstruction (Berger et al. 2017), rigid
object grasping (Leeper et al. 2012), and learning articulated
models (Sung et al. 2015).

In this work, we explore the potential and limitations
of human annotation as a way for novices to program the
steps required for a robot to manipulate complex articulated
objects. The notion that novice users should be able to use the
interface is important as robots start to be used as consumer
devices and in home environments.

While complex objects might be difficult to completely
describe (due to complicated geometry or complex internal
mechanics), they usually have a reduced set of modes of
operation related to their function (e.g., a drawer is slid open
or closed, a window is rotated or slid open, a lid is unscrewed
from a jar). In addition, a reduced set of simple actions is
often all that is needed to allow the completion of a given task:
specifying the bounding box of an object to avoid a collision;
indicating a valid contact area for grasping; or defining the
axis of rotation for a given revolute joint. The challenge lies in
capturing the particulars of each articulated object’smodes of
operation and linking those to the actions a robot must follow
to manipulate that object. Moreover, the (novice) operator
should not need a lengthy training phase to construct the
instructions for a robot–object interaction.

A properly designed annotation strategy (for specifying
high-level interaction instructions as embedded cues inside
the scene representation) should allow the operator to spend a
minimumamount of effort to specify the annotations thatwill
allow a task to be completed. In addition, these annotations
should be multi-purpose and reusable so that the object, once
annotated for a particular robot and task, can carry the anno-
tations with it for successful manipulation of any instance of
the object and robot. In addition to being applicable in mul-
tiple situations, the model should allow for simple extension
to new situations.

In this work, we present a method that allows a user to
quickly annotate instructions to manipulate a complex object
by attaching a sequence of virtual actions to a model of the
object. The goal of the model annotation interface is to have
naive users be able to achieve robot manipulation tasks with
little or no training, and to demonstrate sufficient precision
and repeatability for their annotations to have generality and
application in new situations.

We aremotivated by recent results in theDARPARobotics
Challenge (DRC), summarized in Krotkov et al. (2016),
which found, over the course of 3 years of competition that
(1) human input is extremely useful in unstructured tasks,
(2) using object models to prime interaction is comparatively
better than the alternative, (3) there seems to be an optimal
level of immersion for a human operator that is between full
teleoperation and full abstraction through automation, and
(4) the most successful interfaces incorporated multiple data
streams (like point clouds, and object and robot models). The
findings for the DRC are further discussed in Sect. 2.4.

Our method is composed of three steps: (1) building mod-
els of articulated objects (which we call scaffolds) guided by
captured point clouds of these objects, (2) annotating those
scaffolds with user-defined task frames, and (3) using these
task frames to determine robot’s grasping poses and trajecto-
ries to actuate the object’s internal degrees of freedom. The
annotations are performed by changing the configuration of
scaffolds through the use of simple widgets and saving the
intermediate steps.

This approach is validated through user testing which also
shows that reusing these constructed models on new scenar-
ios takes very little time and practically no training.

We envision this system as an approach that will allow
untrained operators to model once and reuse anywhere to
accomplish complex robotic actionswith very little overhead.
We believe it constitutes an attractive alternative to teleoper-
ation for circumstances in which that approach is less viable,
such as when live-remote control causes the point of view
to be occluded, or when the manipulation is a complex one,
requiring great precision or involving several steps. The other
application scenario is for consumer robotics where end con-
sumers wish to achieve a manipulation task through a simple
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interface without having to learn the equivalent of 3D object
design software.

In the following section we describe previous work
focusing on annotating robot–object interactions. Section 3
contains the description of the methods used for specifying
annotations for objectmodeling, including articulations. Sec-
tion 4 contains a description of the user study performed to
demonstrate the strengths of our approach. Results are pre-
sented in Sect. 5, and discussed in Sect. 6. We discuss the
limitations of our approach in Sect. 7 and present our con-
clusions in Sect. 8. Finally, in Sect. 9, we discuss future work.

2 Related work

In this work, a simple GUI framework and graphical annota-
tion scheme is employed to allow novice users to indicate the
steps needed for a robot to interact with articulated objects.
In particular, we wish to introduce a way to use human per-
ceptual capabilities to sidestep the difficulty of estimating
articulation models in the presence of noise, or in the case
where demonstrations are not a viable option. In the follow-
ing subsections, previous work is presented that address the
tasks of inferring object model parameters from interactions,
using human cues, and constructing annotation platforms
based on human-centered design.

2.1 Extracting object parameters

Some studies have looked at specific solutions for inferring
parameters in pick-and place-tasks (Jiang et al. 2012; Dragan
andSrinivasa 2012), or inferring articulationparameters from
human demonstrations and applying the obtained insights to
robotic manipulation (Sturm et al. 2010; Sturm 2013; Katz
et al. 2013; Hausman et al. 2015; Pillai et al. 2015; Huang
et al. 2014).

Other work focuses on inferring possible object function
from shape analysis. A survey of methods for inferring func-
tionality from shape is presented in the work of Hu et al.
(2018). In particular, the work of Hu et al. (2017) aims to
predict mobility of parts from an input 3D model.

In contrast, our work uses a human in the loop and a sim-
ple annotation mechanism to bypass the need for inference.
We instead use human experience to directly indicate a pre-
ferred mode of interaction. Having a human in the loop can
help counteract the problems that automatic methods have
when considering the imperfect nature of the input. For exam-
ple, monocular images lack depth information while stereo
images rely on using features that might be sparse. Point
clouds allow the use of registered depth and color images,
but often contain noisy or missing data that can negatively
affect autonomous methods.

2.2 Human in the loop

The main goal of this paper is to examine the manner by
which a human can effectively take part in the perception,
planning and execution process. Prior work has focused on
remote control, which may be accomplished through the use
of awide variety of interfaces (Boboc et al. 2012). These have
changed considerably with the advent of human-centered
design, and have evolved from joystick-and-button black
boxes to force-feedback devices (Farkhatdinov et al. 2010),
smart gloves (Ekvall and Kragic 2007), body-suits (Ramos
et al. 2015), verbal instructions (Johnson-Roberson et al.
2011), and vision-based analysis of natural body motions
(Lipton et al. 2018; Pollard et al. 2002; Fritsche et al. 2015;
Ishiguro et al. 2017).

While attractive in terms of the natural interaction they
afford, an immediate complication in using these methods
is obtaining and learning to use the required equipment. In
addition, mixed results from immersive teleoperation have
been reported, resulting in efforts to reduce the cognitive
load of the operators (Hart and Staveland 1988). In the work
ofMartins et al. (2015) a clear trade-off was detected: greater
control and situational awareness came at the cost of possible
cognitive overload and impaired performance. In contrast,
we seek to use off-the-shelf sensing equipment as well as a
traditional monitor-based GUI.

With regard to reducing the cognitive load on the user in
monitor-based GUIs, Kent et al. (2017) found that simple
constraining of motions was effective in reducing some of
the cognitive effort. The familiarity and widespread use of
smartphones and tablets has also brought attention to touch-
based control. Singh et al. (2013) used a simple touch-based
interface in order to reduce operator fatigue. Interfaces that
use Monitor, Mouse, and Keyboard (MMK) are simple and
cheap alternatives that have been applied to a wide variety
of robotics applications such as robot navigation (Osen-
toski et al. 2010), grasping (Miller and Allen 2004; Sorokin
et al. 2010; Sucan and Chitta 2013), or object manipulation
(Leeper et al. 2012; Sung et al. 2015). Consistent with these,
our model-creation tool employs constraining motions that
allow quick specification of parameters using anMMK inter-
face.

One important consideration is the level of human control
during the interaction. In the work of Leeper et al. (2012),
a variety of strategies involving different levels of human
control were compared. They determined that shared work-
load approaches that pair high-level decisions by humans and
low-level motion planning by the robot were able to achieve
the best results. This is supported by previous work (Dra-
gan and Srinivasa 2012; Hertkorn 2016), where collaborative
robot–human workload generated better results than pure
automation; or in the work by Balasubramanian et al. (2014),
where a strategy involving human supervision surpassed the
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quality of automatically suggested poses, especially if the
purpose of the grasp was taken into account. With this in
mind, the task specification in our work is based on high-
level annotations whereas the low level motions are left to
the automatic planner.

2.3 Simplified task specification

Our approach is designed with the idea that grasp sugges-
tions are to be embedded in the simple object models and
employed as a possible initial grasp point for the completion
of amanipulation task. This section reviewswork of a similar
nature.

Instead of asking the operator to solve the whole manipu-
lation problem, one option is to obtain the parameters of an
action by inferring them from the object they are to affect. In
the context of grasping, Ciocarlie et al. (2007) and Ciocarlie
and Allen (2009) developed a technique called Eigengrasps,
where low-dimensional grasp subspaces are computed that
match the object shape. These, in turn, may be used for
seeding interactive grasping. Some approaches are desig-
nated hybrid, since they use appearance features or 3D-model
detection depending on the situation (Brook et al. 2011).
Another procedure is to match and apply grasping templates
to the sensed input (Herzog et al. 2012). One option is to
detect known objects and execute a specific grasp linked to
that particular instance or category of objects (Azad et al.
2007; Dang and Allen 2012). In the work by Miller et al.
(2003), shape primitives are linked to the target object and
used to seed appropriate contact-level grasping. In our work,
we use the structure of the object models to prime the grasp
position and let the humanoperator complete the initial place-
ment.

Databases of grasping examples may be used as a starting
point for automatically generating grasp hypotheses (Li and
Pollard 2005). While these approaches are not fully auto-
matic, they already contain important semantic information
that might be germane to a multitude of context-dependent
grasping tasks. In Dang and Allen (2012); Nikandrova
and Kyrki (2015), shape and objective constraints are used
to specify appropriate grasps. Large annotated databases
(Goldfeder et al. 2009; Chang et al. 2015) exist that could be
mined for data that could be applied to objects involved in the
robot’s task. These annotated objects might be hand-crafted
using Computer Assisted Design software or CAD (such as
Solidworks, or 3DsMax), or constructed by integrating fea-
tures from repeated interactions (Huang et al. 2014; Sturm
et al. 2010; Martín-Martín et al. 2016). They can be later
refined and reused for different task instances or as a ref-
erence to inform on new events (Dang and Allen 2012). We
built our own frameworkwith the idea of (1) generating struc-
tured output that can be used to build such a database, and (2)
using pre-mademodels from these databases to bootstrap our

ownmodel construction. Integrating these databases with the
task specification described here constitutes future work for
this project.

Some studies focus on creating interfaces that fulfill
requirements of versatility and ease-of-use: on the one hand,
they allow the annotation of rawdata to solvemultiple robotic
tasks; on the other, the interface must be precise without
demanding a large effort from the user. In Sorokin et al.
(2010), crowdsourcing was used to segment, classify and
evaluate 2D and 3D objects for grasping. Also for grasping,
somework has focused on achieving grasp refinements based
on appearance and tactile feedback (Hsiao et al. 2010), the
detection and fitting to predefined models (Dang and Allen
2012), or a combination of both (Brook et al. 2011). One
approach (Sung et al. 2015) uses crowd-sourcing of human
manipulation annotations to gather information that may rec-
ognize affordances for objects that share similar features to
the ones used in themanipulation trials.While that work con-
centrates on extracting possible affordances, in our work, we
focus on attaching annotations for manipulation sequences
that relate a specific object to a full task.

One popular tool for motion planning is Moveit! (Sucan
and Chitta 2013). This tool can be used within the larger
RobotOperating System (ROS) to perform automaticmotion
planning with collision avoidance. In the RViz project
(Leeper et al. 2012), an interface was provided for humans
to record robot manipulations. In this context, our work is
aimed a providing a simple interface for novice users to spec-
ify object manipulation, which we further test with Moveit!
and the PR2 robot.

2.4 DRC: lessons learned

In the DARPA Robotics Challenge (DRC) humanoid robots
were tested in disaster response scenarioswhere human assis-
tance could be limited by faulty communications. Teams
created shared-autonomy systems that could complete a
sequence of mobility and manipulation tasks (Fallon et al.
2015; Atkeson et al. 2015; Marion et al. 2017). Strategies
were ranked according to task and sub-task completion ratio
and timing, and the results were analyzed to extract rec-
ommendations for the design of future systems. In both the
2013–2014 (Yanco et al. 2015) and 2015 (Norton et al. 2017)
analyses, the findings indicate the following with respect to
complex object manipulation:

– Despite advances in AI research, having robots per-
form tasks in unstructured environments almost always
requires human supervision.

– The most successful strategies made use of integrated
data displays (point clouds, object and robot models,
etc.), which allowed visualizing the scenario in a single
display.
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– No correlation was found between situational awareness
(fraction of the environment that the operator can be
aware of through the interface) and task speed, indicat-
ing no clear benefits from using interfaces that attempt to
increase awareness (through the use of feedback-gloves
or VR) over those consisting of the classic monitor-
mouse-keyboard (MMK).

– Decreasing the amount of operator input needed to
control the robot is desirable, (moving away from tele-
operation) (Yanco et al. 2015). However, more user
interaction is recommended for more complex manipu-
lation tasks (Norton et al. 2017), suggesting the existence
of an optimal region between teleoperation and fully
abstracted user interaction.

– The number of teams (of those included in the analysis)
using object-models to help with motion planning went
from 25% in 2014 to 50% in 2015. Those teams were
consistently among the most successful.

– Teams using autonomous pose estimation of objects
by fitting shape templates performed worse than teams
where the user participated in refining the objects pose
(Norton et al. 2017).

One thing tonote is that surprise challengeswereoffered to
each team competing in theDRC. Several teams chose to skip
the surprise challenges because they had no pre-computed
motions or object models to deal with these challenges. This
highlights the importance of having a strategy to quickly
incorporate new object models and interaction routines. In
Marion et al. (2017), an object model with linked constraints
for motion planning is automatically fitted to the scene, and
operatorswere able to refine themodel poseswhennecessary.
These objects, however, were limited to those present in the
competition.

In the work by Fallon et al. (2015), object models con-
structed in a modified version of Unified Robot Description
Format were used to indicate manipulation actions. In that
system a combination of automatic model fitting and user
refinements were used to indicate affordances in the environ-
ment, which were then acted on by the robot according to the
results of their planning.Their experiencesfitwith the lessons
learnedmentioned above. In their design, the user provides an
initial search region in which an automatic fitting algorithm
would place one of three simple affordances. The human
operator could dofinal adjustments and accept the fitting. The
system is quite powerful in scenarios for which these three
affordances are required, but might be severely challenged if
surprise tasks (with new or more complex affordances) are
presented. In our work, the focus is on the inclusion of an
integrated interface for the creation of such complex objects
from raw input clouds, with the fitting left to the user.

An integrated interface formodel-construction andmanip-
ulation annotation, as we will describe in this article, could

be very useful in extending these types of shared-autonomy
system architectures.

2.5 Automatic methods and human-in-the-loop

The use ofmethods that involve a human operator, orHuman-
In-the-Loop (HIL) need not be mutually exclusive with
autonomous ones. In the aforementioned studies, several
of the automatic methods were developed by working with
training data annotated by or performed with human guid-
ance. We believe that the construction of such annotated
models can seed the development of automatic algorithms
that can solve complicated articulation challenges without
the use of visual aids (Baum et al. 2017), or require a learn-
ing phase to operate complicated machinery from inferred
object-relative interactions (Sung et al. 2015; Kappler et al.
2015).

In the following sections, we present an annotation strat-
egy that allows the creation of simple object models with
instructions that,when followedby a robot, can performcom-
plicated manipulation tasks.

3 Methods for specifying interaction
annotations

In this study, we describe a method to quickly record a set
of virtual manipulation actions to accomplish a real robot–
object interaction. We do this by annotating the motion of
a virtual gripper with respect to the model of an object
that has been previously constructed. The model annotations
describing its joints are linked to the gripper’s pose, thereby
constraining its motion to the correct path.

3.1 Annotations for object modeling

As mentioned above, we wish to obtain an object-relative
annotation that can be constructed incrementally and applied
to multiple scenarios, including: object detection, grasping,
and manipulation. Our approach uses the concept of tracing,
where an original item is copied (to some desired precision)
with the use of an overlay, such as when tracing the lines
of a drawing on superimposed translucent paper. Our goal
has been to develop the 3D equivalent of translucent paper-
tracing using an inexpensive sensor and its data stream: a
Kinect, and the popular PointCloudLibrary (PCL) (Rusu and
Cousins 2011). The Kinect is used to capture a point cloud
of a scene which can be a snapshot from a single point of
view, or an integrated scan of the full scene, and which itself
can be accomplished using any number of methods including
theKinect-Fusion algorithm (Newcombe et al. 2011).We use
PCL’s version, called KinFu. At the moment, the point-cloud
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Fig. 1 Scaffolds: a single slice with green vertices and yellow contour;
b full scaffold with one highlighted slice; c scaffold on top of its point
cloud; d generated mesh for the enclosed volume; e slice with a hole
contour defined by blue handles; f sequence of sliceswith hole contours;
gmesh for the negative volume;h combinedfinalmeshwith the negative
volume extracted from the external volume(Color figure online)

capture is carried out before users annotate but in the future
can be integrated into the annotation procedure.

At this stage, the point cloud is loaded into our user inter-
face and annotation tool, which we call the Point Cloud
Prototyper (PCP). In PCP, the annotator can use our sim-
ple set of tools to perform various tasks depending on the
annotation objective. If the object model is to be constructed
for the first time, the annotator can use the tools to quickly
build object representations we call scaffolds. If the objec-
tive is to record a manipulation sequence, a different set of
tools are used to indicate the grasp point and the constrained
motion of the parts. In the following sections, we provide a
description of the scaffold construction process.

3.1.1 Scaffolds

Scaffolds are compact shape representations composed of a
series of contours defined on a control plane or slice (high-
lighted in red for the base slices in Fig. 1).

They stem from a type of representation called swept-
surfaces or generalized cylinders (Binford 1971), which use
sequences of polygons or closed planar spline contours to
describe a wide variety of solids. In our system, scaffolds are
composed of closed polygonal contours defined by vertices
(shown in green in Figure a). The base contour is highlighted
in yellow for all the images in Fig. 1 (a single contour is
shown in Fig. 1a), and highlighted in silver for the remain-
ing contours of each scaffold shown in Fig. 1b–h. They are
connected in a sequence to form the full scaffold (Fig. 1b).
Scaffolds can be visualized as an overlay on top of point

clouds (Fig. 1c) and can have subsequent slice vertices (or
handles) connected to define a mesh that encloses a volume
(Fig. 1d). The number and position of handles on each con-
tour, and the placement of the slices that contain them, define
the shape of the enclosed volume.

Scaffolds may be combined using Boolean operations to
define complex shapes. In addition, a second set of hole con-
tours in each slice (gold contourwith blue handles in Fig. 1e),
can be added and connected to define an internal volume
(Fig. 1g) which can be removed from the external volumes
to create cavities or internal spaces (Fig. 1h).

Slices and handles are interactive. Each slice can be inde-
pendently translated, rotated, and scaled using an arrow and
disk transform widget (the y-axis rotation disk for the first
slice can be seen in Fig. 1c). Each handle may be dragged
along its constraining slice. Figure 1a shows a highlighted
slice with its local reference frame. When initially created,
slices are placed in sequence along an axis of displacement
or sweep axis (highlighted in Fig. 1 in magenta).

The goal of a scaffold is for the user to quickly go from
a point cloud of a scene to a rigid or articulated object rep-
resentation to better represent the structure of objects. The
following section shows an example of a full object modeling
sequence.

3.1.2 Modeling objects with scaffolds

In PCPwe can work with point clouds obtained from a single
point of view, or composed of the fusion ofmany such clouds.

A scanned point cloud from a single point of view may
appear as a complete point-based representation of a scene
(Fig. 2a) but it usually contains large gaps or artifacts
(Fig. 2b). In PCP, we can load the cloud and segment the
various objects of interest through the use of a variety of
point-editing tools (Fig. 2c–e) such as using frustumorpolyg-
onal selection; or using cut, copy, or deletion actions of point
selections.

The modeling process continues once we have an isolated
object (Fig. 2f). All other parts of the scene may be hidden
and stored for future use. For the case of the mug shown, we
have split its points into a “cup” and a “handle” (Fig. 2g).
The insertion of the scaffold is done by using a crosshairs
insertion widget that requires placing the point of view (POV)
of the modeling window along the desired sweep-axis of the
inserted scaffold. In Fig. 2h we insert a scaffold (with regular
polygon as predefined contours) along the cup’s longitudinal
axis. The result of the insertion is a scaffold that encloses a
point cloud (Fig. 2i). PCP automatically fits the scaffold to
the underlying point cloud for some predefined cross-section
shape (rectangle or regular polygon) by scaling the shape so
no point is outside the scaffold. The number of slices and
handles may be changed to generate the external volume of
the cup (Fig. 2j).
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Fig. 2 Modeling process: a–e Isolating the point cloud of interest; f–g
segmentation into a cup and handle; h–ithe scaffold is inserted along
the medial axis of the desired point cloud; j connecting the external
contour handles results in an exterior (positive) volume; k–n insertion
and placement of internal contours; o connecting the internal contour

handles results in an interior (negative) volume; p–q insertion of the
cup-handle scaffold; r–s use of the axis-drawing widget to draw the
sweep-axis; t final union of meshes (the cup mesh has the negative
volume removed)

In order to create the cavity in the cup, the user may insert
an internal contour (Fig. 2k) that can be placed on any con-
tinuous sequence of slices (Fig. 2l). All external or internal
contours can be modified (translated, rotated, and scaled)
individually or as a whole (Fig. 2m). In the example, the top
two slices have a hole contour (curves with blue vertices in
Fig. 2n). Finally, these are connected into a negative volume
(Fig. 2o).

Since some shapes have a curved sweep-axis, such as the
mughandle (Fig. 2p),wehave supplemented thenormal auto-
matic POV insertion (Fig. 2q) with an axis-drawing widget

(Fig. 2r) that allows the user to reposition the slices along a
path (Fig. 2s). The final object is the union of all difference
meshes (Fig. 2t). The slice contours may also be automati-
cally fitted to the underlying point clouds in a process we call
shrink-wrapping.

Shrink wrapping is done by following these steps for
each control plane (that holds each contour): (1) obtain the
point cloud points near the plane (within the thin prism
bisected by the plane); (2) fit a NURBS curve to the points
projected on the contour plane; (3) reposition the contour ver-
tices along the fitted curve without altering the initial vertex
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order; (4) adjust the vertex positions to disallow topological
irregularities when connecting corresponding vertices from
neighboring contours.

For a more detailed explanation of the modeling, see
(Frank-Bolton 2018)1 where we concluded that when using
PCP, novice users could reconstruct shapes quickly and with
high accuracy. Novice users could quickly learn to use these
shape proxies to represent a wide range of objects. The same
study indicated that simple grasp widgets could be precisely
placed using the GUI. This result agrees with previous find-
ings (Balasubramanian et al. 2014) that indicate that human
pose specification surpasses the quality of automatically sug-
gested poses, especially if the purpose (functional objective)
of the grasp is taken into account.

In the following section, we will explain how to attach
articulation annotations to the constructed scaffolds.

3.2 Annotations for articulation

In this section we present an interactive method of specify-
ing a task-frame for the manipulation of objects that contain
simple joints. We make use of the scaffolds described in the
previous section and attach additional annotations that allow
the specification of articulations between the parts that they
represent.

3.3 Frame of reference and control strategies

In addition to the creation of these annotated objects, it
is important to define the reference frame for the annota-
tion of actions and manipulations. One option is to define
a task-frame for an object. The task-frame is a coordinate
frame attached to a manipulated object which allows certain
actions to be defined with respect to the object, rather than
the world-frame. Several formalisms have been developed
to specify this task frame in a way that may allow differ-
ent control strategies. Mason (1981) described a task-frame
formalism for active control of trajectories by employing
force-sensing information. A survey of formalisms is pre-
sented in Bruyninckx and De Schutter (1996), together with
a synthesis of control-oriented strategies (focusing on force-
control), and task-planning strategies (focused on sequences
of fine-motions). In the survey, strategies that use geometric
features in the manipulated objects are categorized under the
so-called CAD-based planning (Bruyninckx and De Schut-
ter 1996). Our approach is based on this formalism, and is
extended to ease the interactive specification of the object
and the task.

1 This paper is based on the first author’s Ph.D. thesis. This paper would
be the first peer-reviewed publication for this work.

3.4 Annotation scheme for articulations

We represent complex objects as an assembly of rigid links,
each of which can be fixed or “jointed” with respect to the
others. The construction of a complex shape consists of (1)
point cloud segmentation into links, (2) the insertion of the
scaffold for each link, and (3) the addition of joint constraints.
Once an object model has been constructed, the linking of
parts (scaffolds) into rigid assemblies or articulated chains is
a simple matter of specifying the grouping of parts into links
and placing the joint annotations.

For joint placement, we make use of the observation that
most of the articulated objects that the robot might manip-
ulate have joints whose axes of motion align to their linked
shapes: doors and windows rotate around an axis that is per-
pendicular to the floor; a drawer slides along an axis that
is perpendicular to its front and parallel to the ground; a lid
unscrews around the container’s central axis. This means that
we can take advantage of the scaffold proxy itself to initialize
the joint axis.

The waywe implement this principle is by using the link’s
position to prime the pose of an articulation widget that we
call the joint mover. This widget controls the desired motion
of the link, and can later be used to constrain themovement of
an interactinggripper (highlighted in cyan inFig. 3). The joint
axis that the joint mover will represent is defined as a point
and vector, where the point is the origin of the coordinate
frame, and the orientation is the z axis of that frame. The
joint mover must be placed so that it lies on top of the main
axis of motion (translation or rotation). If the joint mover’s
pose is not ideal, the annotator can easily adjust its pose. For
1-DoF joints, it is sufficient to place the joint mover along
the correct vector with the origin lying anywhere along that
axis.

Figure 3 shows the steps to specify a rotation with the
joint mover. The interaction can be recorded by the user by
saving the configuration of the joint mover and gripper with
respect to the initial scaffold placement. Waypoints are then
exported from the sequence of gripper poses generated by
the interaction.

3.4.1 Annotated object format

The final annotated object is a combination of individual
scaffolds which may be rigidly linked or jointed. For each
scaffold, we used a custom format where the pose of each
slice is recorded with respect to the center of the base slice
using the top 3× 4 components of a homogeneous transfor-
mationmatrixwhere the last row is always (0, 0, 0, 1) (unless
otherwise specified all poses use this format), and each han-
dle within its slice using polar coordinates with respect to the
slice center.
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Fig. 3 Articulation of a stapler: a initial joint mover coordinate frame.
The joint axis is defined by a point and vector, where the point is the
origin of the coordinate frame, and the orientation is the z axis of that
frame; b correctly placed joint mover, with the z-axis along the rota-
tion axis; c gripper pre-grasp pose; d gripper on stapler top; e, f joint
motion provokes the constrained gripper motion. The user may record
a waypoint at any stage in the process

Rigid links are an assembly of scaffolds where their rel-
ative poses are recorded with respect to the base scaffold.
Kinematic chains are sequences of links that can be saved in
different configurations by also saving the sequence of rela-
tive transforms between them. In our current implementation,
we save the motion of an articulated object as a sequence
of chain configurations where each relative motion between
links is controlled by the user’s interaction with the joint
mover. The single assemblies or kinematic chains contain all
the information necessary in order to be exported to various
other formats, for example the Unified Robot Description
Format (Sucan last accessed: March 2019) as well as the one
used in the Graspit! platform (Miller et al. 2003), which is
similar to the Virtual Reality Modeling Language (VRML)

3.5 Articulation annotations for robot interaction

An additional annotation that can be informed by the object’s
shape (scaffold) is themotion of a gripper that manipulates it.
Here, the task is to get the robot tomanipulate themechanism
fromone joint configuration to another.While the precise grip
force and orientation can be refined automatically, the high
level decision of where to grasp and how to actuate a joint
can be left to the operator.

In this work, we make use of the scaffold structure and
a simple set of tools to (1) place a virtual gripper, and (2)
specify its motion by recording waypoints to reconfigure an
articulated object. The motion is easy to constrain once the
joint is engaged to cause a change in the object’s configura-
tion.

This procedure is shown in Fig. 3e, f, which consists of
the following steps:

1. Select the joint mover widget for the first joint to recon-
figure (stapler top in Fig. 3e).

2. Since the jointmotion is constrained by thewidget, a valid
motion is achieved by rotating or translating the widget
along the desired constraining axis (blue axis rotation in
Fig. 3e).

3. As explained in Sect. 3.2, this will cause a constrained
motion of the attached gripper widget and the linked ele-
ments down the articulation (gripper in Fig. 3f).

4. Awaypoint is recorded by storing the configuration of the
articulation chain and the connected gripper.

When evaluating our approach we used a grasp evalua-
tion mechanism to test the validity of a candidate grasp. This
mechanism uses the GraspIt! API (Buehler 2015). It com-
putes the volume and ε-distance of the Grasp Wrench Space
obtained from the chosen grasp. We use these two metrics
to compare and contrast grasps obtained from different users
and approaches.

In order to annotate more complex objects, like a 3-link
chain with two revolute joints (see Fig. 5), or one link with a
multi-degree-of-freedom (multi-DOF) joint, the steps are the
same: (1) create the links by inserting scaffolds for each one;
(2) indicate the link order within the articulation chain; (3)
activate and place the joint mover widget for each link in the
chain; and (4) indicate the motion using the steps discussed
above. Since complex joints can be created by composing
revolute and prismatic ones, a multi-DOF joint is represented
by a single joint mover widget (for a joint that translates and
rotates along its z-axis), or by multiple superimposed joint-
mover widgets placed with z-axis in different directions.

To summarize, thewhole process consists of the following
steps: (1) construct an articulation model based on scaffolds,
(2) annotate the joint mover poses (primed by the shape
itself), and (3) specify the sequence of Cartesian-space way-
points that the object should follow. This causes the virtual
gripper to follow a constrained path that is then exported to
the actual robot for execution.

4 Experimental design

We carried out a user study to assess the ease of use, preci-
sion level, and quality of our approach when performed by
untrained human subjects.We created a set of scaffolds based
on actual objects and had 10 novice users annotate a manipu-
lation virtually by using our object-relative waypoints under
two scenarios: articulation annotation and unconstrained
gripper. These annotations were then exported to be exe-
cuted by the PR2 robot. As an experimental control, we had
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10 novice users perform articulation tasks using teleopera-
tion, andwe then compared the results against those obtained
though our approach.

4.1 Robotic platform and control strategy

For this projectwe used the PR2 robot platform and a position
based control strategy. The trajectories are generated from the
poses of the user-provided waypoints, and the PR2 native
PID (proportional integral derivative) controller determines
the torque, velocity, and acceleration necessary to execute it.
We use the standard gains for the PR2. We are able to use
this control schema successfully for this application due to
the actuators in the PR2, which are mechanically compliant.

ThePR2 robotmotion is effected usingOpenMotionPlan-
ning Library (OMPL) andKinematics andDynamics Library
(KDL). We used KDL to generate IK solutions for the end
effectorwaypoints and final configuration inCartesian space.
We then used OMPL to generate spline-based trajectories
between the resulting joint-space configurations.

Due to the natural stochasticity of the OMPL planners,
it is desirable to specify paths at a finer resolution (Rovida
et al. 2017). We performed the interpolation by subdividing
the waypoint-to-waypoint path position (to amaximum of 10
cm) using simple linear interpolation, and the orientations (to
a maximum of 15◦) by using spherical linear interpolation,
also known as slerp (Shoemake 1985). The constraints for
the motion are set so that every step (after interpolation) is
covered in 4.0 s and must end with zero acceleration and
velocity.

While this added computation extended the execution
times, it minimized the effects of the planning and execu-
tion control strategy on the results, thus permitting a better
evaluation of the user-annotated motions.

4.2 Measurements

We measured the precision of the interactions by compar-
ing actual link motions with respect to desired ones and
accumulated translational and rotational errors. Baselines for
measurements were determined by fixing a harness between
the robot and the table that the objects were placed on. The
door/window object was affixed to the harness to keep it from
moving. We measured linear distances (with respect to the
fixed table) using calipers and angles using a combination of
angle finders and marks added to the objects for this specific
purpose. We also measured the time it took to complete each
full articulation annotation.

We evaluated the quality of the resulting robot interac-
tion by assigning four levels to the complete manipulation,
including grasping and motion. The four levels are:

– fail There is at least one major collision, or the grasp
misses completely.

– incomplete The full task is not completed due to the
object slippingout of the grasp or criticalwaypoints being
skipped for exceeding the robot’s reach.

– rough There is at least one minor collision, or the end-
effector motion is misaligned with the degree of freedom
of the articulation so that it displaces the whole object,
rather than the intended link.

– good There are no major or minor collisions, the task is
completed, and only the desired links are moved.

Lastly, we evaluated the reuse of articulation annotation
using two steps: In the initial annotation stage, the annotator
uses the scaffold assembly to annotate grasps and joints, and
proceeds to record the sequence of steps (joint motions) to
achieve a target configuration. This is then exported to be
executed by the robot. In the reuse stage, a previously con-
structed model is applied to a new scene. To do this, a new
cloud is obtained with the original object having been placed
in a new location and configuration. The annotator must then
follow the next steps: (1) insert the existing model and place
it in the right spot; (2) adjust its starting configuration and
desired motions. For the reuse stage, we measure the time
needed to annotate, and the resulting precision and quality
of the interaction (as described above).

4.3 Test objects

We constructed a set of simple physical devices for the robot
to interact with. In addition, we included a set of every-day
objects with various types of articulations and articulation
chains. These were represented by models whose joint pose
parameters are described in Table 1 and shown in Fig. 4.

In order to minimize the effect of modeling inaccuracy on
interaction precision (just for the articulation evaluation), the
object scaffoldmodels were created beforehand by an expert.
In our current implementation, the waypoints are recorded
in Cartesian space (6 DoF poses for the end effector with
respect to the object) and are exported to be executed by the
controller. This approachwas used for all trials and therefore,
the results may vary given a different planning or execution
control strategy.

4.4 Constrained versus unconstrained gripper
motion

Under the articulation annotation approach, users were
asked to record a pre-grasp, and grasp locations as well as a
sequence of joint mover configuration changes that caused
the gripper to move in a constrained way. Figure 5 shows an
example of the articulation annotation approach using PCP,
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Table 1 Description of the objects used in the trial

Object Joint-type Joint-definition Interpolation method Figure

pwood Prismatic 1-DoF
joint

Defined by its axis (using a point
and vector) and the displacement
magnitude from its initial
location

For inserting intermediate points,
simple linear interpolation was
used

4a

rwood Revolute 1-DoF
joint

Defined by its axis and the
magnitude of revolution. This
joint has a maximum of 35◦
rotation

Simple linear interpolation
between angles every 15◦ 4b

prwood Cylindrical
(prismatic and
revolute)
2-DoF joint

Defined by its axis of motion
(translation and revolution), and
the magnitude of revolution and
of prismatic displacement

When needed, we interpolated in
the same way as with the pwood
object

4f

bwood Ball joint or
3-DoF revolute
joint

Defined by the position of the
center of the spherical joint, the
rotation of the second link (the
stick in the figure) from the
canonical starting position
(pointing straight up). This joint
has a maximum deviation of
25-degrees from the vertical

Spherical linear interpolation
(Shoemake 1985) was employed
whenever two ball-joint poses
differed in more than 15◦

4i

drawer Prismatic 1-DoF
joint

Defined by its axis of displacement
and the magnitude of the
prismatic motion

Same interpolation as pwood
4c

stapler Revolute 1-DoF
joint

Defined by its axis and the
magnitude of revolution. This
joint has a maximum of 180◦
rotation

Same interpolation as rwood
4d

tmug Screw 1-DoF
joint

Defined by its axis of motion and
the magnitude of the relative
rotation. The screw pitch is
hardcoded, which is something
that could also be specified by a
user, but is beyond the scope of
this paper

Same interpolation as rwood
4e

door Kinematic chain
of two 1-DoF
revolute joints

Defined by a combination of the
configuration of two joints (same
as with rwood), with a rigid
transformation between the first
joint (door), and the second
(handle)

Independent interpolation (single
joint articulation per motion) and
in the same way as with rwood

4g

window Kinematic chain
of two 1-DoF
revolute joints

This is similar to the door chain,
but with a different revolution
axis for the first joint (parallel to
the ground instead of
perpendicular)

Same interpolation as for the door
4h

tripod Kinematic chain
of a cylindrical
2-DoF joint
with a revolute
1-DoF joint

Defined by the pose of the first
(cylindrical) joint (defined by its
axis of motion), and by the
translation and rotation
magnitudes of all three joints.
The revolute joint’s axis of
revolution is fixed with respect to
the cylindrical one

Interpolation was performed
independently similar to that of
the door

4j
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Fig. 4 Objects with general joint characteristics highlighted in blue:
a artificial prismatic; b artificial revolute; c drawer; d stapler; e travel
mug; f artificial cylindrical; g door; h window; i artificial ball; j tripod
(Color figure online)

as well as the equivalent moments during the execution of
the PR2.

We evaluated the constrained articulation approach using
a matched pairs experiment. For the control, users annotated
a grippermanipulation path in amanner similar to themanip-
ulations evaluated in (Frank-Bolton 2018). In this approach,
which we call unconstrained gripper, users use PCP to mark
the path by using a sequence of gripper pose waypoints (by
eyeball estimation only), with no joint motion to constrain
the object’s path. For the experimental group, the same group
of users would then use the articulation annotation approach
explained above. This was done to verify the effect of con-
strainedmotion on the annotation, while using the sameGUI.
Figure 6 shows a diagram for each approach.

For both our articulation annotation, and unconstrained
gripper approaches, users were taught to move the virtual
gripper and joint widgets (which took 2 min) and asked to
complete a sequence of actions for each approach. We then
recorded how long it took to annotate themotion, and the pre-
cision and success rate of the specified manipulation when
executed by the PR2. These tests were carried out on four
objects (drawer, prwood, bwood, door), with a combined
total of six joints: prismatic (drawer); cylindrical (prismatic
and revolute for prwood); ball (bwood), and two revolute
(door). For the case of the door, extreme misalignment of
the gripper motion with the degrees of freedom of the artic-
ulations resulted in the gripper slipping out, or the motion
sequence stopping (due to the robot compliance).

4.5 Teleoperation

To compare our approach with an alternative teleoperation
method, we had 10 novice users perform articulation tasks
using direct PR2 teleoperation. This was done using the
motion planning plug-in in theRVizGUI,which lets a user set
waypoints (in Cartesian space) to control the motions of the
PR2. This allowed us to contrast an actor-relative approach

Fig. 5 Articulation Annotation for the action of rotating a handle and
opening the door. The steps annotated in PCP are shown in a–c while
the execution of the same steps is shown in d–f. The pre-pose (red) and
grasp-pose (blue) are shown in (a) and (d). The joint mover change for
the handle is shown in (b) and (e); The joint mover change for the door
is shown in the bottom right corner of (c), and executed in (f) (Color
figure online)

Fig. 6 Matched pairs experiment using PCP: a we use unconstrained
gripper as the control group, where the user must move the gripper
manually fromwaypoint towaypointwhile attempting to visuallymatch
a desired motion (blue arrow); b we use articulation annotation as
the experimental group, where changing the mover configuration A
causes the constrained motion of the gripper B to a new pose (along the
desired arc). c shows an example drift of the gripper poses relative to
the rotated link for the unconstrained gripper (drifting orange tones);
the articulation annotation gripper pose (purple) remains fixed with
respect to the link (Color figure online)

(teleoperation) with our object-relative strategy. In order to
ensure the best possible conditions for teleoperation, users
received a 15min training session that familiarized themwith
the interface; once the trialswere performed, several attempts
were completed for each task. In addition, teleoperation was
performed in the presence of the robot and its workspace,
and users were allowed to approach and visually verify their
positioning. This increased the level of accuracy and spatial
awareness for the operators. This situation is unusual in tele-
operation tasks, but it allowed us to contrast our approach
against teleoperation when performed in very favorable con-
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ditions. These tests were performed on two objects (prwood
and rwood) with a combined total of three joints (cylindrical,
or prismatic and revolute; and revolute).

Finally, to provide an additional baseline for comparison,
an expert in the use of both the PCP virtual annotation and
the RViz-teleoperation GUI performed the same tests on the
complete set of objects.

4.6 Data analysis

We used the stats package in R (R-Core-Team 2017) to ana-
lyze our data. To determine statistical difference between
approaches, we employed the Kruskal-Wallis test (Kruskal
and Wallis 1952) with post-hoc pairwise Chi-squared tests
with Bonferroni correction (Field et al. 2012) for multi-way
comparisons.

5 Results

5.1 Annotated articulation

Figure 7 illustrates the relative durations of modeling, articu-
lation annotation and its execution, and reuse annotation and
its execution. For the design of the articulation experiments
we prioritized accuracy over speed when creating the object
scaffolds.

The figure shows that after the initial modeling is per-
formed, annotating and executing manipulation takes little
effort to complete, and so does the reuse and its execution.
The modeling, manipulation and reuse stages are performed
(and timed) using PCP. The execute and re-execute phases
are performed (and timed) using OMPL inMoveIt!, which is
used to perform the annotated motions on the PR2. The win-
dow object is a special case because it has two different ways
of being opened. When turning the handle half way, it can
open as a door (Fig. 4g). If the handle is turned all the way up,
it can open as an awning window (Fig. 4h), which in this case
opens at the top. The scaffolds and joint mover annotations
for the two modes of use were placed when constructing the
first object (door), causing a slight increase in the modeling
and annotation time. On the other hand, for the annotation of
the interaction with the window, no modeling, and very little
manipulationwas required. Thismeans that amodeled object
with multiple uses requires no more than a single modeling
but can be annotated for multiple interactions.

5.2 User study

Figure 8 shows the results for articulation annotation (art),
unconstrained gripper (eye), and teleoperation (tele). As
seen in the figure, articulation annotation is significantly

Fig. 7 Duration of stages of annotation for an expert user. The number
of configuration changes is indicated in parenthesis (Color figure online)
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Fig. 8 Manipulation times (a) prismatic errors (b), and revolute errors
(c) for each method. All attempts are included for teleoperation

faster and more accurate than both unconstrained gripper
and teleoperation.

In addition, the quality distribution for each approach can
be seen in Fig. 9. Even the best teleoperation attempts do not
reach the quality of the articulation annotation approach. In
terms of the initial placement of the joint mover, out of the
six joints that required a change, only two (the door handle
and the door itself) required an adjustment so that the virtual
(joint mover) axis would match the real joint axis. These two
joints are those that cause the gripper to follow an arc.

We also compared speed and accuracywhen reusing anno-
tations (i.e. in contrast to constructing them from scratch).

As can be seen in Fig. 10, the reuse annotation stage
is significantly faster than the initial annotation stage with
acceptable errors.

The qualities for both stages were identical, with all
attempts except onemarked as having good quality, and a sin-
gle rough interaction under the reuse stage. Since the expert
and novice users performed similarly, the above results hold
even when including the expert to the user study results.

Lastly, when the expert user attempted all ten shapes under
the three approaches, the overall pattern ismaintained. Figure
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Fig. 10 Manipulation times (a) prismatic errors (b), and revolute errors
(c) for the initial (init) and reuse (reuse) stages

11 shows the time as well as the prismatic and revolute errors
for each approach. Figure 12 shows the quality distribution,
which was also very similar to that of the novice users.While
in general, faster times and lower errors were obtained com-
pared to novices, the qualitieswere overall slightly lower than
for novice users because of the inclusion of the additional
objects, in particular, the travel mug, the window, and the
tripod. Each of these had a particular difficulty with respect
to manipulation:

– the travel mug had a cap that was almost as wide as the
gripper’s maximum aperture;

– the window required large forces when opening as an
awning window. The PR2, being compliant, did not
always complete the full motion as annotated by the user;

– the tripod was an articulation chain of degree three. Each
joint change caused all outboard links to change loca-
tions. Since each joint change required a new grasp to be
employed, this exacerbated any inaccuracies of the anno-
tated articulation. On the other hand, as mentioned in the

discussion section, this is an example of why the reuse
capability is powerful.

For the expert articulation annotation we noted that out
of the 15 joints that had to be annotated for all the objects
(10), the joint mover had to be adjusted only for six of them:
those causing the gripper to follow an arc. These were the
rpwood object, the stapler, the door and its handle, and the
window and its handle.

6 Discussion

We found that the scaffold structure itself provides an initial
joint placement for links that is often immediately usable or
that requires minimum effort to adjust. This follows from the
structural properties of manufactured objects (where there is
often an alignment of surfaces to joint axes). For the cases
where the joint mover placement was not initially correct (in
6 out of 15 joints for the whole set), a single displacement
or right angle rotation (trivial to apply with our approach)
proved sufficient (Fig. 3a, b). All of these motions corre-
sponded to actions that caused the gripper to follow an arc.

The object modeling stage required little time for con-
structing each of the chosen set of objects. Once thesemodels
were created, very little time was needed (≈ 2 min) to anno-
tate a manipulation per joint motion. Strikingly, novice users
performed the annotation in a very similar amount of time
as the expert (as can be seen from the time plots of Figs. 8a,
11a), indicating an interface that is simple to learn.

Reuse times were shorter than the initial annotations
since, in most cases, only the placement of the object in
the scene was necessary. In addition, it was clear from the
user study that the constrained articulation annotation (mov-
ing the part would cause a motion on the gripper) helped
shorten annotation times when compared to unconstrained
gripper annotation (moving the gripper directly). The case
of the window object annotation shows that, for any object
whosemodel is available, thewhole annotation and execution
sequence can take fewer than 5 min (it took 8 min for both
the initial and reuse stages, each with two joint manipula-
tions). These times are comparable to the times spent solving
manipulation sub-tasks in the DRC (Norton et al. 2017).

Prismaticmotion for the articulation annotation approach
was significantly more accurate than teleoperation and
unconstrained gripper. The object-relative approach helps
maintain precision and reduce the application of force against
joint constraints during linear displacements. This was seen
in the PR2 robot action when attempting to move an object:
the moved link would get stuck along the chosen path and the
gripper would slip out or the compliance mechanism would
prevent the whole motion. This also indicates that uncon-
strained gripper annotation, with no constraints for motion
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ficient points to determine significant differences), and revolute errors
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Fig. 12 Quality for the expert attempts on all objects including only
best attempts (best) and all attempts (all) for teleoperation

or feedback for distance, is insufficient for precise distance
estimation, which supports previous work indicating the dif-
ficulties of perceiving precise relative positions of objects in
3D (St. John et al. 2001; Tory et al. 2006).

The strongest benefits were noted with respect to the pre-
cision of manipulating a mechanism with revolute joints,
where articulation annotation was significantly more pre-
cise than teleoperation. With no constraints, teleoperation of
roll-rotations of the gripper were hard to specify because
of the difficulty of aligning the gripper and joint axes of
rotation. This problem does not arise in the object-relative
approach, where joint motion happens with respect to the
annotated axes of motion. For articulation annotation, all
revolute motions were precise, whereas for unconstrained
gripper, motions that required both the position and ori-
entation to change (motion along an arc), obtained lower
manipulation quality and precision.

The quality of grasps throughout the interaction was
higher in the articulation annotation approach (for both
expert andnovice users). Forarticulation annotation, “rough”
articulations stemmed from slight misalignment of the joint-
mover’s axis with the actual joint’s axis. In one case, the
interaction problems were due to the difficulty of the grasp
(the gripper was almost the same size as the travel mug
lid). On the other hand, “rough” articulations under teleop-
eration or unconstrained gripper would contend with more
points of failure: in addition to the misalignment between the
joint’s degree of freedom and the application of force, each
motion between waypoints would have a slightly different
arc, causing the relative grip point to vary between trajectory
segments.

Finally, the benefits of reusing the annotated scaffolds
become apparent when considering that (1) objects withmul-
tiple uses can be modeled once and annotated several times
(such as the window object in Fig. 7); and (2) there is a sig-
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nificant time gain with a minimal precision loss when simply
placing the annotated object into a new scene.

7 Limitations

The presented approach is most effective when used for
objects with rigid links in relatively short articulation chains.
For example, deformable bodies have not been considered
in this study. The annotation scheme itself, while simplified,
currently depends on sequences of actions that can be some-
times confusing or that take time to remember.

We noticed that, in some instances, annotators had to
spend some time to regain the sense of direction and position
of the indicated gesture. The interface itself could be made
more intuitive by incorporating visual reference points (like
the ground or fixed furniture) so that the user can quickly
orient themselves.

Grasping the lid of the travel mug was difficult to annotate
virtually before seeing the actual robot motions. This is due
to the relative size of the gripper to the lid.While grasps were
successfully placed by the expert, we decided to discard this
item from the user study in order to focus on the annotation.
While we do not directly address this issue, grasp-adjustment
methods exist (Hsiao et al. 2010; Chebotar et al. 2016; Hogan
et al. 2018) that may help deal with this low-level problem.

The worst quality in the articulation annotation approach
was seen when actuating the last joint of the tripod: a 3-DOF
kinematic chain where re-grasping was used. Small inac-
curacies were propagated along the chain, causing visible
deterioration of precision as the action chain was extended.
This points to a limit in the length of action chains that can be
specified in a single annotation. While problematic, this only
means that complicated mechanical interactions that require
re-grasping of the object would benefit from an intermediate
scan and adjustment of the model’s pose with respect to the
actual object. This underlines the power of the reuse capa-
bility, which would allow the annotation of longer sequences
of actions by interleaving saved actions with minor position
adjustments provided by a user.

One other aspect to consider is that our results are tied to
the chosen control strategy. A better control strategy could
conceivably obtain even better results. In addition, the current
implementation does not integrate the articulation annotation
and the MoveIt! KDL solver, which might not find an IK
solution.

Lastly, objects might have stiff joints, causing certain
annotatedmotions to be rough despite being accurate accord-
ing to geometry. Again, the use of adaptive methods during
the execution of the manipulation could counter these issues.

8 Conclusions

This study introduced a simple method for rapidly annotat-
ing and executing manipulation tasks involving articulated
objects. The approach was tested with the PR2 robot plat-
form and showed a high success rate even for novice users.
The constructed models could be quickly reused and refined
for new circumstances and exhibited sufficient precision for
manipulating articulated kinematic chains with up to three
degrees of freedom.

This approach is an alternative for teleoperation for the
cases when an object-relative approach is better suited to the
challenge. These include cases where the POV for teleoper-
ation gets occluded due to the operation, where precise joint
rotations are required, or when action duplication is expected
to occur. The object-relative manipulation using scaffolds
constitutes simple annotation that product makers can add to
their objects, indicating recommended modes of use.

The object-relative approach permits successful interac-
tion with a multitude of different joint types and kinematic
chains, which can be found in common household objects.

9 Future work

The current interaction and annotation mechanism described
here appears to work well for articulated objects but is not
required for scaffold construction and annotation. It is pos-
sible to replace mouse-based interactions with touch-based
interaction using a tablet, or even through gestures cap-
tured from a mixed-reality head-set. Another extension is
to include the point-capture stage within PCP. This could be
done in conjunction with the use of the mixed-reality head-
set in order to have a user scan an object and interact with
the resulting point cloud through gestures to construct and
annotate the virtual models.

We are also interested in extending PCP with a point-
cloud-based joint estimationmethod. Thiswould help further
refine the annotation scheme and allow its initial position to
be estimated by providing sequences of point clouds (snap-
shots) for each configuration. This could be provided by a
humandemonstrator or by the action of an autonomous agent.
Additionally, cues for the insertion of possible joints could
be obtained by using techniques that can predict part mobil-
ity from an input 3D model (Hu et al. 2017). An additional
improvement might be gained from using extracted features
from the scene to bootstrap the position estimation of the
annotated scaffold, thus speeding the reuse of previously con-
structed models. The aforementioned object databases could
be integrated with PCP to obtain these bootstrapping cues.
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Lastly, PCP could be integrated with the IK solver in order
to quickly adapt the annotations if no IK solution was found.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-021-09983-
8.
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