
Secure Execution with Components from Untrusted Foundries

Rahul Simha Bhagirath Narahari
Department of Computer Science

The George Washington University
Washington, DC 20052

{simha, narahari}@gwu.edu

Joseph Zambreno Alok Choudhary
Department of Electrical Engineering and Computer Science

Northwestern University
Evanston, IL 60208

{zambro1, choudhar}@eecs.northwestern.edu

Abstract

As the cost of manufacturing microprocessors contin-
ues to rise, chip makers have begun accelerating the ex-
port of fabrication capabilities to overseas locations. This
trend may one day result in an adversarial relationship
between system builders and chip producers. In this sce-
nario the foundries may hide additional circuitry to not
only compromise operation or leak keys, but also to en-
able software-triggered attacks and to facilitate reverse en-
gineering. At the same time, users desire modern computing
platforms with current software, along with the ability to
run both secure and non-secure applications at will. In this
paper we describe an approach to address this untrusted
foundry problem. We demonstrate a method by which sys-
tem builders can design trusted systems using untrusted
chips from these remote foundries. The key principle behind
our approach is that we use a multi-layer encryption pro-
tocol alongside a dual-processor architecture. Using this
approach any information leaked to an attacker will be of
little value.

1. Introduction

Computing systems today are manufactured in a com-
plex marketplace that features multiple chains of consumers
and producers. In this marketplace, for example, a hardware
producer such as Motorola sells chips but is itself a con-
sumer when it contracts out the actual physical production
of its design to a foundry. Similarly, producers of end-user

devices such as cellphones are consumers of the chips that
go into their devices. A recent development in this market-
place is that as the chip technologies pursue ever smaller
dimensions, foundries have become extremely expensive to
build and maintain [3]. As a result, the economics of this
marketplace have led to the current situation where most
foundries are concentrated outside the United States and
Europe. This situation raises the possibility that such exter-
nal foundries, which are not subject to the tight security cus-
tomary in government facilities, may be compromised. In
the case of a microprocessor, the most harmful type of com-
promise arises when an adversary exploits the sheer com-
plexity of modern circuits to insert a small, hard-to-detect,
so-called Trojan circuit into the chip.

What advantage might an adversary secure with such a
hidden Trojan circuit? We describe possible attacks on end
products such as radios or computers based on such chips
even when the software has been subject to rigorous stan-
dards of security in its design and operation. In the case that
the end product is a computer, such a high standard usually
means the entire execution occurs in encrypted form [7] -
software is completely encrypted in main memory and is
only decrypted at the time of execution in the processor.
A hidden circuit inside the processor can easily thwart this
approach by seizing control of the processor at an oppor-
tune moment and writing out decryption keys onto periph-
erals. This attack is commonly called a leakage attack. An
even more rudimentary attack is to simply halt the proces-
sor at the worst possible moment, at a critical or random
time long after the processor has been in use. Hidden cir-
cuits can also be set up to scan for electromagnetic signals



Cryptographic Accelerator

Stored
Keys

CPU

C
ac

he
Encrypted 

instruction and 
data fetches

Encrypted 
data written 

back to RAM

Main Memory

Plaintext data 
in caches

Encrypted Programs

Figure 1. Encrypted execution and data plat-
forms

so that a processor can be shutdown when provided the right
external cue. Another useful attack from the point of view
of the adversary is to use such circuits to facilitate reverse
engineering of system design. In this sense, the problem
we have described is not simply limited to military or gov-
ernment applications but is also of interest to commercial
entities concerned with guarding their intellectual property.

Networking hardware may be expecially vulnerable to
this sort of attack, as a compromised chip could be used
to facilitate remote exploits. For example, the chip manu-
facturing process could be subverted to produce hardware
firewalls that grant complete external access to the network
as a response to some trigger condition. This external acti-
vation could be as simple as a packet sent from a predeter-
mined network location or something more complex like a
key encoded as a series of requests to different ports. Such a
vulnerability would be very difficult to pinpoint, especially
if an attack is only triggered on rare occasions.

This paper focuses on the design of systems using chips
from untrusted foundries. We do not consider the equally
important problem of detecting such circuits by subjecting
chips to external black-box tests or imaging techniques. Our
primary goal is to detect the moment such a hidden circuit
”makes its move” and then to raise an alarm to the user. We
assume that the system is itself built in a trusted location
and that no collusion exists between foundries and system
developers (such as board makers or software developers).

Furthermore, our solution is targeted at a very high level
of security and therefore we assume encrypted execution,
as will be explained in the next section. Our approach to
the untrusted foundry problem can be summarized as fol-
lows. We utilize a multi-layer encryption protocol, a two-
processor architecture, and a trusted tool-chain under the
supervision of architects and developers of the targeted se-
cure applications. The core of our approach is the way in
which the two processors are used: one is configured as a
gateway, while the other is configured as an execution en-
gine.

The remainder of this paper is organized as follows. In
Section 2, we provide a brief summary of related work in
the area of hardware support for security. In the following
sections, we describe our proposed approach in more detail,
and then discuss our future plans for evaluating its effective-
ness.

2. Related Work

Many previous secure architectures have focused on pro-
viding an encrypted execution environment. Figure 1 shows
an encrypted program residing in main memory where the
cryptographic keys are in the processor. When instructions
or data are loaded into the processor, they are decrypted in-
side the processor. Likewise data that is written back to
main memory is encrypted using these same stored keys.
The purpose of the encryption is to prevent information
leakage over the bus. Such leakage can occur when the
product is captured by an attacker with access to a sophisti-
cate laboratory in which the attack can snoop on the bus or
directly manipulate the bus itself.

Encrypted execution has been studied by various re-
searchers. In [7], an architecture for tamper-resistant soft-
ware is proposed, based on an eXecute-Only Memory
(XOM) model that allows instructions stored in memory
to be executed but not manipulated. Specialized hardware
is used to accelerate cryptographic functionality needed to
protect data and instructions on a per-process basis. Much
of the recent research in this field has focused on improving
the overhead of the required cryptographic computation in
the memory fetch path - examples include the architectural
optimizations proposed in [11, 16].

Pande et al. [19] address the problem of information
leakage on the address bus wherein the attacker would be
snooping the address values to gain information about the
control flow of the program. They provide a hardware ob-
fuscation technique which is based on dynamically random-
izing the instruction addresses. This is achieved through
a secure hardware coprocessor which randomizes the ad-
dresses of the instruction blocks, and rewrites them into new
locations.

Some of the earliest work in this area involves a number



Hidden
Circuit

Cryptographic Accelerator

CPU

C
ac

he

Main Memory

Stored
Keys

Figure 2. A hidden circuit leaking information

of secure coprocessing solutions. Programs, or parts of the
program, can be run in an encrypted form on these devices
thus never revealing the code in the untrusted memory and
thereby providing a tamper resistant execution environment
for that portion of the code. A number of secure copro-
cessing solutions have been designed and proposed, includ-
ing systems such as IBM’s Citadel [14], Dyad [12], and the
Abyss [13].

Smart cards can also be viewed as type of secure copro-
cessor; a number of studies have analyzed the use of smart
cards for secure applications [6, 10]. Sensitive computa-
tions and data can be stored in the smart card but they offer
no direct I/O to the user. Most smart card applications fo-
cus on the secure storage of data although studies have been
conducted on using smart cards to secure an operating sys-
tem [2]. As noted in [1], smart cards can only be used to
protect small fragments of code and data.

3. Our Approach

Given this background into these encrypted execution
and data systems, one observes that a hidden circuit in the
processor can easily leak the keys onto the bus to aid an
attacker, as shown in Figure 2.

Our approach includes features at both the architectural
and compiler levels. These features can be incorporated
into a standard architecture that also runs applications in
non-secure mode for the sake of efficiency. Figure 3 shows

this dual-use architecture. The regular or non-secure appli-
cations execute as usual on a standard CPU, even though
the data path from memory to CPU goes through the secure
gateway processor (which we describe below). Standard
applications are assumed to be constructed using a standard
compiler tool chain. The box to the right shows how the
same architecture can be applied to peripherals, a matter
which we discuss in the following section.

The secure applications are doubly encrypted by the
compiler and execute using the dual-processor components
of this architecture. One of these processors serves as a
gateway whose only function is to perform an initial decryp-
tion of the instructions and data before sending the results
of this first-level decryption onto the execution processor.
The execution processor decrypts this stream a second time
to reveal the actual instructions. This part can be performed
in a manner similar to the conventional encrypted execution
depicted in Figure 1.

Data values that need to be written back to memory are
encrypted first by the execution processor and then once
again by the gateway using its own keys. Note that the ex-
ecution processor is physically unable to access the bus; in-
deed the output of the execution processor is captured by
the gateway processor so that any potential leakage can be
examined at the gateway.

We assume that all components are individually assumed
to be produced at untrusted foundries. Furthermore, we
assume that no collusion exists between the foundries that
produced the gateway processor and the one that produced
the engine processor. We will examine the implications of
this assumption in the following section.

We now describe to what extent our approach addresses
the foundry threat. A foundry compromise of the execution
processor can result in one of three problems:

1. The execution processor can try to write to memory
(either to leak information or to disrupt program flow)

2. The execution processor can try to leak information on
its pins

3. The execution processor can simply stall or deny ser-
vice

For the first problem, note that only the gateway is phys-
ically connected to memory (the execution processor is
physically isolated); the gateway validates all writes to
memory. For the second problem, the encryption mecha-
nism at the gateway will detect invalid data. For the third
problem, we can use a heartbeat (separately clocked timer)
at the gateway to detect denial of service from the execution
processor.

Now consider a foundry compromise of the gateway pro-
cessor. A compromised gateway exposes different system
vulnerabilities:



Regular
Compiler

Secure
Compiler

Regular
Apps

Secure
Apps

Secure LoaderDrivers

Operating System

Application Memory /
Tool Chain

System Bus

Gateway Processor

Execution
Processor Regular

CPU

Key(s) System HW

Disable
Signal

Gateway Processor

Execution
Processor Regular

Peripheral

Key(s)

Disable
Signal

Figure 3. Our approach to obtaining security through untrusted foundries

1. The gateway will be able to leak information on the
bus

2. The gateway will be able to write anywhere in mem-
ory, including where secure applications reside

3. The gateway will be able to deny service to the execu-
tion processor

For the first problem, observe that the gateway can only
leak encrypted (by the execution processor) instructions,
leaving the instructions secure. For the second problem,
note that a write into secure memory can be eventually de-
tected by the execution processor because the gateway is not
provided access to the keys for the inner layer of encryption;
therefore any overwriting of instructions will be detected as
an improper instruction block by the engine. For the third
problem, the denial of service can be detected through a
heartbeat assigned to the engine processor. Finally, observe
that the gateway can attempt a replay attack on the code.
This would have to be done by the gateway in a blind fash-
ion since the instructions are encrypted. Such replays can
be detected through compiler techniques aimed at detecting
control-flow attacks [5, 17].

In sum, the only way for a foundry attack to work is for
both chips (foundries) to collude. In the next section, we
describe ways in which this risk can be minimized.

4. Discussion

4.1. Validity of Assumptions

Some of the assumptions above are fairly straightforward
and constitute standard practice today: (1) system design
and implementation given the untrusted chips can be per-
formed in a secure location; (2) there is no collusion be-
tween system designers and foundries; (3) encryption is
easily performed as part of the compilation process; (4) the
two-processor architecture itself imposes no requirement on
the software beyond dual-encryption.

However, one might question some of the other assump-
tions. Of these, perhaps the most troublesome is our as-
sumption that no collusion exists between the foundries that
manufactured the two processors. This assumption can be
strengthened in several ways, as we now describe. First, we
can reduce the possibility of collusion by using two chips
made by foundries in different countries. Second, we can
use soft processors (with reconfigurable technology) for one
or both processor chips so that a foundry has no means of
guessing the purpose of the chip. A third technique is to use
keys that are programmed post-foundry, using either recon-
figurable hardware or by hand using an electromechanical
device. When used in combination, these techniques can
help minimize the risk of collusion.



4.2. Performance

Although this paper is mainly a concept paper, we can
make a few comments related to performance. First, a naive
implementation of the two processor architecture may sig-
nificantly slow performance. An example of a naive imple-
mentation would be to implement the cryptographic func-
tions in software. Although straightforward, such an imple-
mentation will quickly become the bottleneck and is likely
to result in an order of magnitude degradation of perfor-
mance in applications that are cache-sensitive. A better ar-
chitectural implementation would involve building custom
hardware that pipelines the various units of computation
(using pipelined implementations of AES [4, 18], for exam-
ple) so that the processor is never starved of instructions. At
the same time, because the data is encrypted when written
to memory, there will always be a substantial performance
hit when a cache writeback occurs. This penalty would also
be incurred in a standard encrypted execution environment.
Proper pipelining and prefetching [8, 9] can help mitigate
the effect of our additional encryption.

4.3. System Issues

The system as described above thus far addresses mono-
lithic self-contained applications. Care must be taken to
ensure that an operating system can execute in encrypted
mode. This is not a trivial task by any means, because of
the sometime complex interaction between peripherals, the
processor and the operating system. If sensitive data is en-
tered via peripherals, then those chipsets may be just as eas-
ily compromised by a foundry. Thus, the architecture needs
to be properly extended to peripheral components as well.

5. Implementation Options

5.1. Virtual Machine Implementation

The key principle in our approach combines three ideas:
the use of bi-layer encryption, dual mutually-distrusting
processors and trusted compilation of secure applications.
Note that this principle can be applied not only to hardware
(as described above) but to software as well. As an exam-
ple of the latter, consider a system constructed out of COTS
processors running virtual machines. Two virtual machines
(whether on the same board, or connected through the In-
ternet) connected in the above architecture can perform the
same roles as the two processors, as shown in Figure 4.

There are several advantages to starting with virtual ma-
chines: (1) proof-of-concept can be more easily and visi-
bly demonstrated; (2) virtual machines can be instrumented
with hooks for red team benchmarking; (3) they can be de-
signed to provide accurate performance estimates; (4) they

Execution
VM

Untrusted
Processor

VM

Gateway
VM

Memory VM

Compiler

Figure 4. Virtual machine implementation

are easy to modify and replicate, and (5) they are much
cheaper than hardware. Each box in Figure 4 represents
a virtual machine running in its own process. Two of the
boxes represent virtual machines or emulators for the two
processors in our secure component. The lower-left box
represents the regular (untrusted) processor used for non-
secure applications. Finally, on the right side, main memory
is shown as containing both secure and non-secure applica-
tions. The secure applications are compiled by a trusted
compiler that performs the bilayer encryption.

5.2. FPGA Implementation

One interesting and valuable intermediate option be-
tween pure hardware and pure software is to use reconfig-
urable hardware built out of Field Programmable Gate Ar-
rays (FPGAs). FPGAs offer several advantages:

• They can be reconfigured in the field to support multi-
ple instruction sets

• It is harder to hide hidden circuits in them because they
are easier to test and their structure is simple

• Their technology curve scales as fast as ASIC technol-
ogy

• They can be optimized both at the hardware and soft-
ware levels through intelligent manipulation of design
tradeoffs.

We plan on prototyping our hardware system using the
Xilinx ML310 FPGA development board (Figure 5). The
ML310 contains a XC2VP30 FPGA that has two PPC 405
processors and 13696 reconfigurable CLB slices. The board
and FPGA can act as a fully-fledged PC, with 256 MB on-
board memory, some solid-state storage, and several stan-
dard peripherals.

The flexibility of the Virtex II Pro FPGA allows us to
utilize the built-in PPC processors as our standard CPUs,
while leveraging soft processors built using reconfigurable
logic (such as the Xilinx MicroBlaze [15] processor) as our
gateway processors.



On-board
Peripherals
On-board

Peripherals

EthernetM
em

ory C
ontrollers

P
er

ip
he

ra
l C

on
tr

ol
le

rs

CPU
Resources 
(PPC, MB)

CPU
Resources 
(PPC, MB)

Xilinx XC2PV30 FPGA

On-chip
Memory

Resources

On-chip
Memory

Resources

On-chip Interconnect
(PLB, OPB)

UART

On-board
Storage

On-board
Storage

USB

256 MB
DDR DIMM

512 MB
CF Card

64 Kb Serial
EEPROM PCI

Figure 5. Architectural view of the Xilinx
ML310 development platform

6. Summary

We have described the untrusted foundry problem, some-
times also known as the hidden circuit problem or the Tro-
jan circuit problem. We presented a solution to this problem
that consists of an architectural component and a software-
process (compilation) component. This paper is intended
as a concept paper to outline the solution approach. Future
work will evaluate the performance of applications to deter-
mine the class of applications for which our approach works
best.

7. Acknowledgments

This work was supported in part by the National Science
Foundation (NSF) under grant CCR-0325207, by the Air
Force Office of Scientific Research (AFOSR), and also by
an NSF graduate research fellowship.

References

[1] H. Chang and M. Atallah. Protecting software code by
guards. In Proceedings of the ACM Workshop on Security
and Privacy in Digital Rights Management, pages 160–175,
Nov. 2000.

[2] P. Clark and L. Hoffman. BITS: A smartcard protected op-
erating system. Communications of the ACM, 37(11):66–70,
Nov. 1994.

[3] International Technology Roadmap for Semiconductors
(ITRS). International technology roadmap for semiconduc-
tors, 2004 update. available at http://public.itrs.net, Sept.
2005.

[4] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta. A fully
pipelined memoryless 17.8 Gbps AES-128 encryptor. In
Proceedings of the International Symposium on Field Pro-
grammable Gate Arrays (FPGA), pages 207–215, 2003.

[5] D. Kirovski, M. Drinic, and M. Potkonjak. Enabling trusted
software integrity. In Proceedings of the 10th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-X), pages 108–
120, Oct. 2002.

[6] O. Kommerling and M. Kuhn. Design principles for
tamper-resistant smartcard processors. In Proceedings of the
USENIX Workshop on Smartcard Technology, pages 9–20,
May 1999.

[7] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy
and tamper resistant software. In Proceedings of the 9th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-IX),
pages 168–177, Nov. 2000.

[8] C.-K. Luk and T. Mowry. Cooperative prefetching: Com-
piler and hardware support fo effective instruction prefetch-
ing in modern processors. In Proceedings of the 31st Annual
Internation Symposium on Microarchitecture (MICRO-31),
Dec. 1998.

[9] G. Reinman, B. Calder, and T. Austin. Fetch directed in-
struction prefetching. In Proceedings of the 32nd Annual In-
ternational Symposium on Microarchitecture (MICRO-32),
Nov. 1999.

[10] B. Schneier and A. Shostack. Breaking up is hard to do:
modeling security threats for smart cards. In Proceedings
of the USENIX Workshop on Smartcard Technology, pages
175–185, May 1999.

[11] W. Shi, H.-H. Lee, M. Ghosh, C. Lu, and A. Boldyreva.
High efficiency counter mode security architecture via pre-
diction and precomputation. In Proceedings of the 32nd
International Symposium on Computer Architecture (ISCA),
pages 14–24, June 2005.

[12] D. Tygar and B. Yee. Dyad: A system for using physically
secure coprocessors. Technical Report CMU-CS-91-140R,
Department of Computer Scence, Carnegie Mellon Univer-
sity, May 1991.

[13] S. White and L. Comerford. ABYSS: A trusted architecture
for software protection. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, pages 38–51, Apr. 1987.

[14] S. White, S. Weingart, W. Arnold, and E. Palmer. Intro-
duction to the Citadel architecture: Security in physically
exposed environments. Technical Report RC 16682, IBM
Research Division, T.J Waston Research Center, May 1991.

[15] Xilinx, Inc. MicroBlaze processor reference guide. available
at http://www.xilinx.com, 2005.

[16] J. Yang, Y. Zhang, and L. Gao. Fast secure processor for
inhibiting software piracy and tampering. In Proceedings
of the 36th International Symposium on Microarchitecture
(MICRO), pages 351–360, Dec. 2003.

[17] J. Zambreno, A. Choudhary, R. Simha, and B. Narahari.
Flexible software protection using HW/SW codesign tech-
niques. In Proceedings of Design, Automation, and Test in
Europe (DATE), pages 636–641, Feb. 2004.

[18] J. Zambreno, D. Nguyen, and A. Choudhary. Exploring
area/delay tradeoffs in an AES FPGA implementation. In
Proceedings of the 14th International Conference on Field
Programmable Logic and Applications (FPL), pages 575–
585, 2004.

[19] X. Zhuang, T. Zhang, and S. Pande. HIDE: an infrastruc-
ture for efficiently protecting information leakage on the ad-
dress bus. In Proceedings of the International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XI), Oct. 2004.


