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Abstract—Fabrication and design are now performed by dif-
ferent companies as semiconductor fabrication facilities (fabs or
foundries) seek to reduce costs by serving multiple clients and
consolidating resources. However, lack of immediate control and
observation reduces the trust which IC designers have in some
fabs. To help fabs increase trust in their processes, we propose
an approach for logging forensic information of the fab process
and printing the information on chips so that examination of
the chip reveals provable deviations from the design. Fab owners
can benefit by catching rogue employees and by demonstrating
high security standards to their customers. Our proposed solution
uses a light runtime system that interacts with a trusted platform
module (TPM).

I. INTRODUCTION

Modern integrated circuit (IC or chip) design follows a well

structured path from specification to fabrication as shown in

Fig. 1. In this supply-chain, engineers in a fabless design

house produce a design – the Intellectual Property (IP) of the

company – that is the starting point for fabrication. Often,

this chain starts with the design specified in a high-level

description language, followed by synthesis into a gate-level

netlist, and then given a physically realizable form by place-

and-route tools that generate a geometric representation of the

3D structure of the IC. This geometric representation, called

the GDS-II file, is essentially a large database of polygons

that drives fabrication processes. At any stage of the design

path, a design house may incorporate IP blocks sold by IP

vendors. Soft IP is distributed either as source code or as pre-

synthesized logic that is supported by a particular tool chain.

Hard IP is distributed as mask layers that are merged with the

designer’s GDS-II and are guaranteed for a particular fab’s

processes.

Chip designers send a finished design to a semiconductor

fabrication plant (fab or foundry) for chip manufacturing. The

GDS-II file is often optimized by the fab to match the physical

constraints (“rules”) of the fab’s processes. This involves

adding, removing, or modifying polygons within the GDS-

II: For example, making lines wider because fab machinery

cannot support too fine a resolution. After conforming to the

fab rules, the final version of the GDS-II drives the creation of

lithographic photomask (mask) layers that block light during

the layer-by-layer wafer etching process. Note that the masks

commit the IP to its physical form, thus we will focus on the

security of the IP between design and mask creation.

The current push in the semiconductor industry appears

to be toward collaborative efforts between a fab and various

IP vendors, for example Taiwan Semiconductor Manufactur-

ing Company’s Open Innovation Platform, or the Common

Platform and Joint Development partnership involving IBM,

Chartered, Samsung, and others. These efforts aim to form

an eco-community centered around fab processes, so that IP

vendors can provide hard IP that is well-matched to the fabs

in the collaboration. Thus, the fab owners become brokers for

both IP blocks and for traditional chip manufacturing.

Fab-oriented eco-communities show potential to benefit the

electronic design automation (EDA) community. Fabs benefit

because designs and IP vendors become more closely tied

to their fab processes. IP vendors benefit by having more

straightforward verification and control over the use of their

IP. EDA tool suppliers benefit by providing highly-targeted

synthesis and routing algorithms that have been shown to work

for a particular fab’s processes. Fabless design houses benefit

by having a consolidated source for both IP blocks and fabri-

cation, and have greater assurance that every tapeout implies

a correctly fabricated chip. Thus, the fab has become a natural

centerpiece for gathering and distributing IP. Unfortunately, the

growth of EDA eco-communities focuses primarily on how to

maximize fab and IP vendor revenues, and so far there has

been little discussion of security and protection for the fabless

design house’s IP.

Because the GDS-II file in effect contains the entire design

IP, design companies must place great trust in fabs. A single

rogue employee at a fab can maliciously tamper with the GDS-

II file, can copy and counterfeit the entire GDS-II, or can sell

the IP to interested third parties. Although the three attacks

(tampering, counterfeiting, and IP theft) can occur at various

places in the entire IC supply chain, the centralization of IP at

the fab makes it a natural location for both perpetrating attacks

and for mounting defenses.

Outsourced chip fabrication was identified as a security risk

to US government and industry in 2003 by the US Senate [1]

and in 2005 by the Defense Science Board [2]. Industry has

also acknowledged these threats [3]. DARPA has sponsored

research via the Trust in IC (TIC) program, which was initiated

in 2006 [4] and continued in 2007 [5]

The current fab processes are aimed at detecting defects in

the mask and wafer production. For example, mask inspection

is a well established field for detecting mask defects caused by

contaminants. Unfortunately, such techniques are not currently

applicable to detecting anomalies introduced by the editing

workstations, and provide no deterrence to counterfeiting or

IP theft.



Fig. 1. Modern IC Supply Chain Structure

We consider the question: How can fab owners strengthen

the security of their processes? There is a market incentive to

consider such an idea because fab owners are just as interested

in catching rogue employees as they are in demonstrating

security to their clients. In this paper, we describe an idea

for improving trust in a fab by instrumenting the supply-chain

with added forensic information that is then printed onto masks

so that every chip produced by the fab can carry a proof of

proper production and so that tampering and counterfeiting are

detected.

We propose to retrofit the IC supply chain with a multi-

round protocol between the design house and the fab for

the purpose of tracking changes made by fab workers. By

adding some trusted hardware to the fab computers, which edit

design files for various proper reasons, we suggest that foundry

owners can inject some much-needed trustworthiness to their

processes. By including the design house in the fabrication

process, alterations can be tracked and later audited.

II. CHIP PRODUCTION

We begin by identifying the flow of information in the

most relevant steps toward fabrication, shown in Fig. 1. A

design company, as described earlier, encodes its design in

the geometric data present in a GDS-II file, which we will

call D-GDS (for Design GDS-II). Upon receiving the D-GDS,

the fab edits it to conform to fab constraints (rules). After all

edits are made, the final GDS is converted to the format used

by the mask-printing machines, which then print the masks

used in fabricating the layers on each chip. (As mentioned,

the mask printer commits the design to a physical form; from

this stage onwards additional fabrication processes are used

to complete the wafer, which is packaged and returned as a

complete chip. For the purposes of forensics, we will not need

to consider the steps beyond mask printing.) Note that the GDS

files are typically edited using specialized editing software

on workstations either co-located with the mask printers or

connected by a network. The conversion to mask coordinates

(geometric coordinates in the plane) is also performed in

software on such workstations.

A. Threats

Some potential attacks include (1) modifying the geometry

to insert a malicious (Trojan) circuit to the GDS file, (2)

substituting an alternate malicious GDS file for the origi-

nal, and (3) copying the GDS file for producing counterfeit

chips. Additionally, the masks can be stolen even if the

other processes are secure. Another attack, which requires

collusion among fab workers, would involve producing more

chips than are ordered and selling the spares as counterfeits

(overbuilding). Numerous other attacks can be imagined and

realized in this setting; IP theft is also a possibility, requiring

reverse engineering of the GDS.

B. Assumptions

In our approach, the fab owner is trusted, but individual

employees are not. Our rationale is that fab owners are legally

and financially obligated to provide a trustworthy service,

whereas employees might be bought by competitors. Thus,

the attacker is a rogue employee capable of misusing fab

software, replacing editing applications, or loading a new

operating system. However, we assume that physical attacks

that involve manipulating computer hardware are not feasi-

ble for the attacker. Although loading software on the fab

workstations is feasible for a rogue employee, we assume that

opening the computer chassis and modifying the hardware is

not an option. Additionally, the ability to replace software

is mitigated somewhat by the use of the trusted platform

module (TPM) [6], which can provide integrity checks on

system software. Note that our approach is not perfect – a

resourceful employee may be able to circumvent the trusted

hardware on fab computers. However, our approach represents

a first barrier; the trust placed in fab workstations can be

strengthened in other ways (surveillance, for example), a topic

we do not consider here.



We also assume that it is sufficient to protect the chip

design only between the design house and the mask printing.

Although an adversary may be able to steal a set of masks,

they are unlikely to be usable with different fab technology.

Additionally, we assume that editing the mask to manipulate

the original chip design or the final, printed forensic informa-

tion that we add is also not possible for a rogue employee.

III. TRUSTED PLATFORM MODULE

Our solution uses TPMs, which provide generic security

related features in a hardware module. Using TPMs inside of

fab machinery allows a fab owner to provide secure logging of

the machines and to facilitate secure communication with chip

designers. Note that TPMs are not designed to be physically

secure or tamper-resistant. A more secure, more expensive

option is to use a secure coprocessor, e.g. the IBM 4758 [7].

Regardless, the functionality provided by a TPM is appropriate

for our solution.

A. TPM Functionality

A TPM provides secure storage and security-related func-

tions. First, the TPM provides internal storage for the secret

key Es of a public key encryption pair, for a tree of derived

secret keys and other random values, and for a set of platform

configuration registers (PCRs) for storing cryptographic hash

values. Second, the TPM can be requested to add data to a

PCR, which causes the TPM to concatenate the value in the

PCR with the new data and to hash the sequence to generate

the new PCR value. Third, the TPM can cryptographically

sign data using Es. Fourth, the TPM can seal (via encryption

with a secret key) a blob of data dependent on a user-given

secret passphrase and the state of the PCRs; unsealing a blob

returns the original data only if the user provides the correct

passphrase and the PCRs are in the same state as when the

data was sealed. For our scheme, we make use of the first

three properties of the TPM; we do not require encryption for

protecting local storage, which is the purpose of sealing data,

but we do use encryption to protect communication between

the fab and the design house.

The primary applications for TPMs are digital rights man-

agement and platform authentication. For example, a TPM can

start from a known clean state and process a series of values by

the chained hashing. If the series is known to a remote authen-

ticator, the TPM provides remote attestation of the values that

were processed. Some challenges in TPM management include

defining the initial clean state and providing a deterministic

series of values for hashing. There are also security issues

depending on the assumptions made in deploying the TPM,

though some of these are corrected using appropriate design

assumptions or tamper-resistant hardware. In our setting, we

assume the TPM is not physically available to the attacker.

A newer feature of TPMs is the ability to measure the

integrity of a region of memory and then execute code stored in

that region. This ability, invoked with the skinit instruction

in AMD processors [8] and with the GETSEC[SENTER]

functionality in Intel processors [9], sets up a secure execu-

tion environment by disabling interrupts and DMA, verifying

single-core execution mode, hashing the region of memory,

storing the hash in a PCR, and executing the code in the region

of hashed memory. By placing code to verify other regions of

memory, the TPM can bootstrap integrity measurement of even

very large applications. Thus, skinit enables the TPM to

verify and execute specific memory contents, which is useful

for providing late launch of trusted code in isolation from the

rest of the system software.

Our approach to supply chain management is inspired

by research using TPMs. Flicker [10] uses the late launch

feature of skinit to provide a secure execution environment

with a very small trusted computing base. We protect the

software running on fab machinery with a mechanism similar

to Flicker’s. Paul and Tanenbaum [11] use TPM functionality

to protect the software of an electronic voting machine, which

builds on the work of Kauer [12].

B. Remote Attestation of Fab Processes

Fig. 2 shows several key fab processes enhanced with our

proposed features for increasing security. Each workstation

or device is equipped with an additional hardware-software

secure component that works in concert with the other secure

components to provide security by embedding forensic data

into the flow of information. The secure hardware component

is a TPM, as described above. Secure software is in the form

of a runtime environment, which can be verified using the

TPM and skinit to measure the integrity of the software,

thus preventing a rogue employee from completely replacing

the runtime with some other environment. This requires that

the hash of the editing application is provided by the fab.

We next describe our solutions in detail, describing the steps

at each fab-related stage of the IC supply chain depicted in

Fig. 2.

IV. TPM-BASED LOGGING

We present a TPM-based scheme using both cryptographic

hash functions and cryptographic signatures. If chip designers

only want to detect tampering, they can use our solution with a

fixed on-chip resource cost but reduced forensic information.

We also provide a more complete forensic solution, which

comes at a greater cost. A spectrum of solutions exist between

the two extremes, and chip designers can, in agreement with

the fab, configure an optimal solution.

The first two stages we instrument, edits to conform with fab

rules and conversion from GDS to mask overlay, are identical

for all of our proposed solutions. In the last stage, when

the mask is printed, we introduce both two options for how

forensic information gets placed on-chip and two options for

what information gets placed on-chip.

A. GDS-II Editing

Fig. 2 shows the process of editing the D-GDS to conform

with the fab rules. As a pre-processing step, the design

company uses the public key of the editing workstation to



Fig. 2. IC supply chain with security features added to untrusted (uncontrolled) processes. The security features include a trusted platform module (TPM)
and runtime software. The platform configuration register (PCR) of the TPM provides a cryptographic hash function used to construct a secure log of the
edits made to a design by the fab machinery.

encrypt an asymmetric private key along with the D-GDS in

order to establish a private, authenticated channel with the fab.

We omit the details of establishing and maintaining the secure

channel, and assume that any further communication between

the design house and the fab machines is secure.

When the D-GDS file arrives at the fab, the TPM decrypts

the file and then measures the integrity of the runtime by using

the skinit instruction. The computed hash initializes a PCR,

and the runtime environment is executed. The runtime instructs

the TPM to add the hash of the D-GDS to the hash of the

runtime. Other PCRs are set to zero and unused. As the D-

GDS is edited, the edits are logged by the runtime on the edit

workstation. The runtime also tracks provenance information

such as user login, location, and timestamps. To prevent

unbounded growth of this provenance information, we require

that user logins, locations, and timestamps be unambiguously

represented as x-, y-, and z-bit numbers respectively.

When a user commits edits made, the runtime requests

the TPM to hash the edits and provenance information with

the PCR used previously and to sign the result. The edits,

provenance information, and signed PCR are encrypted and

sent back to the design company, where the data can be re-

hashed along with the publicly available hash of the runtime

software and the original D-GDS. The computed hash is then

compared with the signed hash. The edits made to the GDS-II

are thus authenticated. These steps may repeat until the GDS-

II description matches the fab rules. By receiving the edits and

provenance information, the design company is able to verify

the actions made by fab machines.

B. Mask Conversion

The next phase of fabrication is the construction of individ-

ual mask geometries from the GDS-II description. As depicted

in Fig. 2, augmentations to the mask conversion process are

similar to the editing stage.

The mask conversion workstation first receives the GDS-

II and PCR value from the editing workstation and uses

the signed PCR for authentication and integrity checking.

As before, the TPM initializes a PCR to the hash of the

runtime, and then hashes in the PCR received from the editing

workstation. Sometimes the same machine used for editing

is also used for mask conversion, in which case passing and

initializing is a no-op. (Conversely, multiple machines might

be involved in each of these phases, but we simplify to a single

machine per phase.)

During the conversion of the GDS-II to mask overlays,

the runtime constructs a digest that summarizes the geometry

of the mask overlays. This geometric digest, together with

the provenance information associated with digest creation,

is joined together by the runtime to form the chip geometry

package (CGP). Then the CGP is hashed into the PCR and

signed, after which the CGP, signature, and hash are passed to

both the mask printer and the design company. The CGP is a

compact representation of all the changes made to the D-GDS,

together with provenance information.

C. Mask Printing

We provide two parameters that can be configured based on

the needs of chip designers. These two parameters are how and

what forensic information is placed on to the chip. We first

describe the how. Regardless of the configuration, logging of

the mask printing is identical, as shown in Fig. 2.

On receiving the CGP from the mask conversion worksta-

tion, the mask printer’s TPM initializes a PCR with the hash

of the runtime. The runtime then verifies the signature on the

CGP and adds the received hash value to the PCR, before

requesting the TPM for a unique serial number. The serial

number, generated from a pool given to the fab, identifies a

single production run at a particular fab. Thus a serial number

provides identification of the foundry of origin. Next, the

runtime adds the serial number to the CGP and requests the

TPM both to hash the serial number and to sign the hash.

Finally the CGP, hash, and signature are sent back to the

design company. The hash pre-image is now all the forensic

information gathered thus far: the provenance data, edits log,

conversion digest, printer digest, and serial number.



The next step is to put forensic data on the chip, for which

we provide two options.

• Imprint with mask. The masks can be marked and lay-

ered such that previously unused areas of the chip will

store the forensic information. During photolithography,

the information will be transferred from each mask to

its respective layer in the chip. Such etching of non-

functional information is just like printing a picture (a

silhouette) on to the chip. Later, the information can be

recovered using non-destructive imaging techniques.

• Register imprint. This option involves more design and

takes up significantly more chip area but does not need

imaging to recover the forensic data – they can be read

from one of the chip’s pins. We describe the idea for a

single mask; it is easy to replicate the idea for each mask

for which a hash is desired. Suppose we wish to store a

hash of k bits. The idea is to include a k-bit read-only

register in the original design such that every register

bit is set to 1. Now, the data lines from the register are

routed along the target layer (corresponding to the target

mask) with a deliberate gap so that no bit can be read

from the register unless the gap is closed. Then, to store a

particular bit pattern, the gap is closed for the 1’s in the bit

pattern by including gap-closing rectangles in the mask.

In this way, the register’s output can be programmed by

the mask. Finally, the register can be set up so that it can

be read out JTAG-style from one of the chip’s pins.

Both options maintain the economy of scale by requiring

just a single set of masks per production run. Our solution

does not provide unique per-chip tracking, for which effective

solutions exist in research on IC activation, IC authentication,

and hardware metering [13]–[19]. Such techniques should be

straightforward to incorporate in our proposed scheme, as they

tend to focus on design-side solutions.

D. On-chip Costs

One concern for chip designers is the cost of our solution

in terms of consumed fabric space. We provide a fixed-

price solution that reduces forensics and a solution with full

forensic information but a variable cost, for which we provide

a measure. Solutions between the two are also possible.

First, just the final hash value can be put on-chip. The

advantage of just printing one hash value is a fixed, low fabric

space cost while still providing tamper-evident fabrication. The

cost is that if a chip is tampered with, there is no forensic

information available for tracing the deviation to its source.

Second, the provenance data and all of the hashes, along

with the production runs serial number, can be put on-chip,

in addition to the final hash value. The cost then becomes a

function of the size of the provenance information per edit

times the number of edits, which is on the order of (x + y +
z +h) ∗n) transistors, where x, y, z, and h are the number of

bits in the login ID, location ID, timestamp, and hash function

output respectively, and n is the number of logged edits. Note

that x, y, z, and h are fixed cost, and so the space cost will

vary with n. n may be anywhere from 1 to arbitrarily large,

where a value of 1 indicates a single machine with one user

providing editing, conversion, and serial number assignment.

In the more likely scenario, multiple fab workstations (and

workers) are involved in each phase, so n will vary. Note that

we have not included the cost of the access circuitry needed

to read the register.

As we mentioned previously, other solutions are possible

that will cost between the two we described and will pro-

vide differing amounts of forensic information as well. For

example, the three phases at the fab can be segmented so

that multiple edits are grouped together; perhaps by time or

by creating “user groups.” Segmenting the phases can provide

a fixed cost solution while reducing the ability to precisely

identify the source of tampering.

The cost of three phases of edits is straightforward to

estimate. First, x would be about 16 bits for a compact,

numerical login ID sufficient for more than 64,000 IDs. Next,

y would be smaller, depending on the number of workstations,

say 8-bits, sufficient for 256 location IDs. The timestamp

might be a bit longer, probably 32 bits, enough to differentiate

more than 100 years at the granularity of a second. As before,

the hash would be around 256 bits. Thus, the fixed cost of

x + y + z + h is 312, which would be a transistor count of

936 transistors (per mask) for three logs.

E. Recovering Forensic Data

The unique commitment to hardware can be recovered from

every chip, e.g. by non-destructive imaging for the first option

or directly reading the imprint register in the second option.

Design companies can verify fabricated chips by comparing

the recovered data with values stored during the fabrication

process. The amount of information printed on chip will

determine how well tampering or counterfeiting can be traced

to its source. If only the hash was printed, then only tampering

will be detected. Correct but duplicated hash values are still

useful for determining the source of counterfeit chips. If all

of the provenance data is printed, then investigators can find

exactly where the data received by the chip designer deviated

from the fab process.

The provenance information provides a legal basis for

remedial action and, like any strong security measure, may

deter attacks in the first place. For counterfeit detection, the

values stored in the printing stage can be used, along with the

data sent back to the design company, to answer the usual who,

when, and where questions. (Of course, we assume the secure

components remain secure in all three phases, otherwise the

forensic data can be easily spoofed, wiped clean, or forged.)

V. ATTACKS AND LIMITATIONS

A naı̈ve Trojan circuit insertion into the GDS-II is prevented

by monitoring the edits made at a workstation. Since the

editing software cannot be replaced without causing the hash

computed during the skinit instruction, a rogue employee

is unlikely to succeed at implanting a Trojan directly in the

GDS-II. Because the secure component records the edits, and

the true D-GDS is available to the design house, then, with



the fab owner’s assistance, the design house can determine if

the edits are malicious. A clever attacker will wait until the

final round of edits and modify the GDS-II that is sent to

the mask conversion workstation, where the geometric digest

will show that the hash of the GDS-II differs from the last

round’s hash received by the design company. Similarly, if the

mask conversion workstation adds the Trojan circuit, then the

digest that the mask printer produces and prints to the mask

will differ from the digest returned by the mask conversion

workstation. An attacker that attempts to simply replace the

mask, perhaps by loading a mask produced elsewhere, is

frustrated by the digest constructed for printing.

Another attack is to steal masks and produce counterfeit

chips at another fab, the so-called counterfeit chip problem (or

cloning). However, these chips will contain the mask digest

which, if recovered, can become the basis for identifying a

rogue employee or for implicating a particular shift at the

original fab. A related attack is to simply produce more chips

at the fab than were ordered, known as overbuilding. This

attack would re-use serial numbers in the mask printer, or

produce serial numbers that are beyond an agreed range based

on the number of chips ordered. In both cases, the forensic

information can serve as the basis for further investigation.

We also acknowledge that our approach has some limita-

tions. First, the approach focuses on detection and does not

prevent the insertion of Trojan circuits or the production of

counterfeit chips. Second, following suspicion, chip designers

need to perform some post-deployment testing and recovery

of on-chip forensic information. Third, a resourceful attacker

could locate the mask digest and subvert it by superposed

etching. Fourth, all of the information used in constructing the

provenance information must be saved by the chip designer in

order to verify fabricated ICs. Finally, a practical concern is

the US export control of cryptographic hardware and software;

most foundries exist overseas, so deploying our solution may

require some special licensing.

VI. RELATED WORK

The problems of intellectual property (IP) theft, counterfeit

chips, and malicious chip alterations (known as Trojan circuits

or hardware Trojans) are well-known in the academic realm.

Identifying and defending against the threats caused by an

insecure IC supply chain is an active research area, with

ongoing research investigating the various problems of Trojan

circuits, IP theft, and chip counterfeiting.

Trojan circuit detection is relevant to the general concern

of securing the IC supply chain. Two primary methods of

detection are current research trends in Trojan detection: logic-

based testing [20]–[23] and side-channel analysis [24]–[26].

Other literature in the field discusses alternate defense methods

[27]–[29] or novel attacks [30].

Although some defensive techniques against IP theft and

counterfeiting are instrumented in design stages through obfus-

cation techniques [19], the majority of existing work focuses

on authentication, typically by linking each chip to its source

or consumer. Three primary approaches to authentication are

heavily studied: IP watermarking [31]–[38]; physical device

fingerprinting via manufacturing variability and physically

unclonable functions (PUFs) [39]–[44]; and IC activation (or

deactivation) [14]–[19]. Watermarking is primarily useful for

detecting and tracking IP theft, while device fingerprinting and

IC activation can be used more aggressively for prevention,

similar to digital rights management (DRM) solutions. For

example, many of the device fingerprinting and IC activation

techniques involve unique identifiers (keys, tokens, or random

values) which can provide hardware metering, the ability for

IP producers to track IP usage and charge per consumer [13].

Our solution does not cleanly fit in any of the above areas of

authentication, because we are attempting to provide a method

for foundry owners to prevent IC supply chain attacks. Past

work has focused on the fab as an untrusted, untrustworthy

black box; we suggest research should also explore how

to make the box more transparent. Some of our proposed

methods are straightforward and, we suspect, can be improved

using techniques borrowed from the existing IC authentication

literature.

VII. CONCLUSIONS

We have presented an approach to help a fab assert that it is

secure and trustworthy. Our approach relies on the existence of

some secure components (TPM hardware and a simple runtime

system) that are added to the fab’s machines to provide edit

logging and tracking. The edits and logs are incorporated with

geometric digests and a per-production run serial number, all

of which are hashed and printed onto every chip. An advantage

of printing edits and logs over just stamping serial numbers

on to each set of masks is to provide tracking during an audit

so that the perpetrator might be discovered. Not only does our

solution authenticate the foundry that produces a chip, but it

also encodes data about the employees and workstations that

were involved in the production run.

A number of open questions remain, such as what makes an

effective geometric digest, what detailed information should

be logged, and could other useful information be stored on

the chip? There are also some practical issues to resolve,

such as how much time and money the proposed solution

costs and how to balance that cost with the risk of supply

chain problems. These complex issues have important and far-

reaching impact on the long-term viability of adding forensics

capabilities to fab machinery.
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