
A Simple Compiler-FPGA Tehnique to Detet Memory Spoo�ngin Enrypted-Exeution PlatformsEugen Leontie�, Olga Gelbart, Bhagirath Narahari, Rahul SimhaDepartment of Computer SieneThe George Washington UniversityWashington, DC 20052February 7, 2007AbstratIn an Enrypted Exeution and Data (EED) platform, instrutions and data are stored in enryptedform in memory whih the proessor derypts when fethed and re-enrypts for stores to memory. EEDplatforms, while aknowledging the overhead of deryption or re-enryption, have proven to be an attra-tive beause they o�er strong seurity against tampering and information leakage. Nonetheless, severalattaks are possible even with EED platforms. This paper presents an approah to address a lass ofsuh attaks that we term memory spoo�ng, in whih an attaker is assumed sophistiated enough toontrol the address bus and spoof memory bloks as they are loaded into the proessor. The approahpresented makes use of aompanying FGPA hardware, something that is now ommonly available onmany proessor hips, and exploits ahe boundaries to simplify integrity-heking. An additional ad-vantage of this approah is that all the EED primitives are implemented in the FPGA and therefore theentire ombination of CPU, ahe and memory ontroller is left untouhed. Experimental results usingthe MiBenh in SimpleSalar show an average of 6% overhead using this approah.1 IntrodutionWe fous on a lass of attaks that we term memory spoo�ng aimed at Enrypted Exeution and Data (EED)platforms. EED platforms are typially designed for attakers who use their aess to the address and databuses to sni� for information (intelletual property) or to manipulate memory and exeution diretly byontrolling the bus. EED platforms, inspite of their overhead, are espeially attrative in embedded systemsbeause small devies are physially in the hands of an attaker, who might have probes apable of sniÆngor ontrolling the bus. Nonetheless, as we argue, a sophistiated attaker using modern eletroni laboratoryequipment an mount several types of memory-spoo�ng attaks on EED platforms. These do not revealinformation but ontrol the ow of exeution, whih in turn may allow an attaker to irumvent lienseheks or other provide aess to unauthorized features.In this paper, we desribe an approah to deteting three types of memory-spoo�ng attaks on EEDplatforms. In the most elementary form of this attak, an attaker ontrols the bus, waiting for the proessorto feth a memory blok, and then supplies the wrong (but properly enrypted) memory blok; thus, theattaker, instead of derypting, merely plays with the already enrypted bloks. We lassify suh attaksinto three types: one in whih seeks to disrupt exeution by supplying a blok with random ontent, one inwhih an attaker \replays" a prior blok (that is therefore orretly enrypted) and a more sophistiatedone in whih ontrol-ow is hijaked.�Contat author: eugen�gwu.edu. This work is partially supported by NSF Grant ITR-0325207 and AFOSR grant FA9550-06-1-0152 1

To address this problem, we instrument the bak-end of the ompiler and propose the use of additionalhardware in the proessor hip. We assume that ompilation itself ours in a safe loation and that theadditional hardware annot be manipulated by the attaker sine it is inside a hip. For the hardware, we optfor FPGA (Field-Programmable Gate Array) tehnology that is now ommonly available on several proessorhips. The tehnique works as follows. First, the bak-end ompiler module instruments the exeutable sothat eah ahe blok has a speial label ontaining the start address of the blok. Seond, the FPGA module,whih we will all the guard, interepts ahe blok requests from the memory ontroller, and proesses eahenrypted ahe blok, heks against memory-spoo�ng and passes on the derypted ahe blok to theproessor. It is this module, as we desribe in detail later, that uses the ompiler-inserted labels to detetspoo�ng.The ore ontribution of this paper is the tehnique itself: the ontents of the ahe-blok labels, themanner by whih the labels are used in integrity-heking, and its eÆieny: an average of less than 6%overhead on ompute-intensive benhmarks. Our approah has several positive features and we aknowledge,one disadvantage. One attrative feature is that a single piee of information (in the label) is used to detetall three types of memory-spoo�ng attaks. A seond advantage is that the labels are easily inserted post-ompilation and, therefore, our approah an be applied to legay binaries. A third arises from the use ofFPGA's: we both show how a basi EED platform an be implemented using FPGA hardware, leaving thestandard proessor omponents unmodi�ed, and how the FPGA an be used to optimize the omputations in-volved in deryption and integrity-heking. Furthermore, beause the FPGA is reprogrammable, enryptionalgorithms an be hanged post-deployment. The industry also pays attention to providing FPGA logi withresistane to physial attaks [26℄ Our approah leaves intat the other protetions o�ered by EED platforms,against information leakage and ode tampering. There, however, is one disadvantage: our approah requiresknowledge of the ahe blok size and the address where the program is loaded, beause address o�sets arepart of the labels. This is not so muh a problem in embedded systems where, typially, this information isknown prior to deployment. However, it may require a speial seure loader ite Arbaugh paper for largeservers or for desktop omputers.We also point out that our approah and EED platforms in general are not aimed at higher-level attaksresulting from, say, bu�er overows or known vulnerabilities in operating systems. Instead, EED platformsare expressly targeted at bus-sniÆng or diret probing of memory, and omplement protetions for higher-levelattaks.The rest of the paper is organized as follows: Setion 2 disusses previous work; Setion 4 depits possibleattaks on enrypted exeution and the details of our approah; Setion 5 provides an analysis of our approah,fousing on seurity and performane optimization; Setion 7 presents the experimental results, after whihonluding remarks are given in Setion 8.2 Related workThe general area of omputer seurity, and in partiular, software protetion, has grown tremendously overthe past deade. Thus, even in our own nihe of ompiler or hardware-based approahes, there is now asigni�ant literature that inludes overview and survey artiles [5, 6, 8, 17, 41, 45℄. We will thus restritourselves to reviewing related work in ompiler-hardware approahes, and in FPGA-related work in the areaof seurity.Hardware approahes an be ategorized into o-proessor solutions [38, 43, 46, 42, 22℄, smartard ap-pliations [25℄ (whih is a type of o-proessor solution), solutions that speify partiular arhitetures oruse FPGA's. FPGA's have been used to implement aelerated versions of several well-known ryptographiprimitives suh as private-key algorithms [15, 21, 23, 24, 39℄, publi-key algorithms [16, 31, 36℄, and seurehash algorithms [19, 30℄). Muh of the reent work in this area has foused on implementing high-throughputor low-area Symmetri key Blok Cipher (SBC) arhitetures on FPGAs [49, 50℄. Examples inlude the DataEnryption Standard (DES) [34℄, the Advaned Enryption Standard (AES) [33℄, the International DataEnryption Algorithm (IDEA) [28℄, the Serpent [3℄ blok ipher, and the Two�sh [40℄ enryption algorithm.Among arhitetures spei�ally designed for software protetion, there is past work that on memory2

protetion [7, 44℄, on spei� attaks [37℄, or even the initialization of a system [1℄. Our own work in thisarea [47, 48℄ has foused on using ompiler-direted register alloation to embed watermarks that are thenheked in FPGA support hardware.A sublass of hardware approahes are those direted at EED platforms. Among the �rst of these is theXOM arhiteture [29℄ in whih instrutions stored in memory are enrypted and the XOM CPU deryptsbefore exeution. Nonetheless, attaks are possible on EED platforms and therefore a number of papers havefoused on addressing suh attaks. Among these are our own work [℄ and the work of Pande et al [52, 53℄. In[52, 53℄, the authors study the problem of information leakage when an attaker extrats patterns of aessin an EED platform and mathes those patterns against a database of well-known patterns extrated fromopen-soure software or from unenrypted exeutables run inside a debugger. Their �ndings suggest thatmany algorithms an be identi�ed by observing their memory aess pattern and that this signature patternan itself lead to both information leakage as well as additional types of attaks. They propose addressrandomization to foil suh attaks and study the performane of spei� arhitetural support hardware foraddress randomization. Finally, our own work in this area [18℄ has foused on ontrol-ow attaks. Thispaper presents an alternative approah that is based on exploting ahe-blok boundaries.3 Attaks on EED PlatformsBefore desribing our approah, we review several types of attaks on EED platforms that together onstitutethe attak model for our approah. To begin, let us �rst onsider the basi elements of an EED platform:exeutables are enrypted and remain in enrypted form in memory; when instrutions or data are fethedto the proessor (aross the untrusted bus), they are derypted inside the proessor, whih is assumed to betrusted. Likewise, when the CPU writes data bak to memory, the data is enrypted and then transmittedaross the bus to memory.At �rst glane, one assumes that a suÆiently strong key will ompletely protet exeution. After all, ifthe key an't be broken, no information is lost and no attaker an insert their own ode. However, enryptionis performed in bloks beause it is prohibitively time-onsuming or impossible (beause the ahe may notbe able to hold the entire program) to derypt the entire program at one. Thus, enryption is organizedaround smaller bloks that are individually derypted as and when needed. Similarly, data bloks whenwritten are enrypted in small bloks for the same reason, eÆieny.The fat that enryption ours in bloks enables a sophistiated attaker to mount some attaks on EEDplatforms, as we outline below. Suh an attaker will be able to not only sni� the bus but to atively ontrol it.Even more importantly, sine memory hips an be ontrolled externally, the attaker an supply the proessorwith any blok of their hoosing. The most e�etive form of attak tries to supply the proessor with anunexpeted blok; in doing so, an attaker might then observe the outome and use that advantageously.For example, an attaker might notie that skipping a ertain blok leads to skipping a liense hek. Weonsider the following types of attaks:� Exeution Disruptions : In this attak, an attaker tries to modify or replae a portion of an enryptedblok of instrutions. Of ourse, if we assume the key has not been deiphered, this attak merelyplaes random bits into a ahe blok. Nonetheless, these random bits will be derypted into possiblevalid instrutions, whose outome an be observed arefully by our sophistiated attaker. We anestimate the probability that randomly-injeted bits result in valid opodes. If the Instrution SetArhiteture (ISA) happens to use n bits for eah opode, there are a total of 2n possible instrutions.If, among these, v is the number of valid instrutions, and if the enryption blok ontains k instrutions,then the probability that the deryption will result in at least one invalid instrution in the blok is1�(v2n)k . Sine a good proessor arhiteture doesn't waste opode spae with unused instrutions, it ishighly probable that if the attaker supplies a random blok it will be derypted and exeuted withoutdetetion. For example if we onsider an enryption blok size of 16 bytes and if 90% of the opodespae is used for valid instrutions, the probability of an undeteted disrupted exeution is 19%. Weterm this type of attak exeution disruption, beause the attaker is not really able to insert preiselyengineered ode, but is able to perturb normal exeution without detetion, whih in turn an lead to3

Figure 1: Arhiteture: the FPGA Guardother attaks. Moreover, by observing the proessor, the attaker an infer to some extent how knownbit sequenes are derypted into instrutions, thus providing exellent ribs by whih the enryptionitself an be attaked.� Replay Attaks. In this type of attak, the attaker re-issues a blok of enrypted instrutions frommemory. This an be aomplished either by freezing the bus and replaing the memory read valuewith an old one, overriding the address bus with a di�erent memory loation than the one the proessorrequested or simply overwriting the memory at the targeted address. What is lear is that the inorretblok is derypted into valid exeutable ode. If the replayed blok has an immediate observable result(suh as an I/O operation) the attaker an store the blok and replay it at any point of time duringprogram exeution, as many times as the ation needs to be triggered, without the attaker having toguess the entire instrution blok funtionality.� Control Flow attaks. As desribed in [52℄, an attaker an observe patterns on the bus to inferthe ontrol-ow struture of the exeutable. This allows a so-alled ontrol-ow attak in whih aryptographially valid, but ontrol-ow invalid, blok is supplied to the proessor. There are twotypes of ontrol ow attaks that we distinguish. Consider three bloks A;B and C and suppose thatin normal exeution, blok A an transfer ontrol to either blok B or blok C. An attaker ansubstitute C when B is requested and observe the outome as a prelude to further attak. The seondtype of attak is when bloks A and B together form a loop. Then, upon observing this one withoutinterferene, and reording the bloks, the attaker an substitute bloks from an earlier exeution toprevent the loop from being ompletely exeuted.Taken together, the attaks point out that mere enryption is not suÆient to guarantee proper exeutionand that these types of attaks an go undeteted unless we provide expliit support. We now turn toour approah in whih a ombination of ompiler-inserted information and supporting hardware forms theframework needed to detet suh attaks.4 System Desription and ApproahOur approah is urrently designed for a standard Harvard arhiteture (with separate instrution and datamemory) and has three ore omponents. The �rst is arhitetural: the use of supporting FPGA hardwarethat we refer to as the FPGA-Guard. The seond is a bakend ompiler module that instruments theexeutable suh that eah ahe blok has a label. The third is a detetion algorithm that examines thelabels of ahe bloks to verify proper exeution. This paper fouses exlusively on proteting instrutionmemory; data memory issues, whih are similar in some ways but di�erent in others, will be addressed in aforthoming paper.Figure 4 shows a proessor hip on the left and main memory on the right. We assume that the hipomes with FPGA logi, as do many ommerial proessors today. We use this logi to implement the guard4

Figure 2: FPGA Guard { detailed viewfuntionality we need to verify memory aesses. To see how this works, onsider how memory aesses takeplae without suh guard logi: when a ahe miss ours, the memory management logi issues a read tomemory on the bus, after whih, following the bus protool, the memory dumps the ontents on the bus.These bits are then routed into the instrution ahe. Our arhiteture is onstruted so that every readaess to memory also goes through the guard. The guard logi is then aware of the start address of aninstrution ahe blok. Furthermore, in our arhiteture, the bus lines are routed through the guard so thatthe guard reeives memory ontents before the proessor. The guard logi is then able to perform deryptionand examine the ontents of eah instrution ahe blok before it is fed into the instrution ahe. Andthat is the key to ensuring trust: the bloks that reah the ahe have been veri�ed by the guard so that theproessor sees (and therefore exeutes) only validated bloks.Next, we fous on what the guard examines in eah derypted ahe blok { see Figure 4; the deryptionitself is straightforward and has been studied in many of the papers ited in Setion 2. As part of post-ompilation, eah blok of instrutions has a label inserted into the blok; the label itself is stripped fromthe blok and is not passed into the ahe. Eah label onsists of two piees of information: the o�set ofthis blok from the base address of the exeutable, and an integrity-heksum of the blok. Thus, the guardis able to examine whether the blok is atually the blok orresponding to the memory aess that wasrequested, and whether the blok has been tampered with.We will use this ode snippet in assembly, assumed to be part of a single ahe blok, to illustrate theabove ideas:1. MOV R0, #3 ; Load a bit mask (2'b11) into R02. ADD R1, R2, #100 ; ADD the ontent of R2 with 100 and put in R13. CMP R2, #3 ; Compare R2 with '3'4. BEQ 100(R1) ; branh on equal to 100+R15. CMP R3, #2 ; Compare R3 with '2'6. BEQ 0x010C ; branh on equal to 0x010CWe see that after exeuting the instrutions in lines 1-3, the proessor exeutes the branh instrution at line4. Depending on the outome of the omparison, the program ounter is loaded with either 100+R1 or PC+4(where PC is the program ounter). If this target address is not in the ahe, the ahe ontroller issues a readto memory, during whih the guard aptures the read address and issues the remaining ahe-blok memoryread operations. The guard then derypts, heks integrity and label orretness and delivers the ahe blokas needed by the ahe ontroller. The label hek ompares the label+base to the address aptured by theFPGA. If, on the other hand, the target address is already in the ahe, it was derypted and heked earlierand is hene safe.The following summarizes the roles of the ompiler and the FPGA guard logi:5

� Compiler role:{ Divide the ode into bloks the size of a ahe blok.{ Reserve spae in eah blok for the label information. This involves re-omputing branh labels.{ Compute eah blok's label: the relative address of the �rst instrution in eah blok, and integrityheksum.{ Enrypt the ahe blok using a unique key for the program.� FPGA guard role:{ Eah time there is a miss in ahe memory, the ahe ontroller makes a request to main memoryto feth the blok.{ The guard interepts the �rst address { let's all this the snooped address { and stores it in aregister (inside the guard).{ The guard generates all the remaining requests to memory for the rest of the blok. In themeantime, the proessor waits.{ When the main memory supplies the ontents and when the guard has read the entire blok, theguard derypts the blok using the (private) key.{ Next the guard extrats the label in the blok, and heks if label o�set + base address is equalto the snooped address.{ If the validation sueeds, the guard ontinues by heking integrity.{ If the validation or integrity hek fails, the guard either stops the exeution or loads a piee ofode loated at a predetermined stati loation in memory to handle the exeption.{ Assuming integrity sueeds, the guard feeds the derypted ahe blok into the proessor replaingthe label with NOP instrutions.5 Attak AnalysisWe �rst explain how our simple mehanism detets the three types of attaks desribed earlier before dis-ussing, in the following setion, the validity of the assumptions made in our approah. First, note thatexeution disruptions are deteted using the the message-digest, as in any blok-based EED platform. Se-ond, replay and ontrol-ow attaks are deteted beause the guard always returns the orret blok to theahe; in other words, when the ahe ontroller requests an blok (by providing the start address), thelabel-heking mehanism assures that no other blok is delivered to the ahe.To see how this works, onsider �rst a ontrol-ow attak. Suppose blok A transfers ontrol to eitherblok B or blok C, depending on runtime onditions, and that blok A initially generates the address for(the start of) blok B, whih the attaker remembers and stores. Later, when the attaker noties that blokA requests blok C, the attaker an substitute blok B. However, the label for blok B will onit withthe blok C address that the guard aptures, thus allowing the guard to detet the substitution. Similarly, ina replay attak, the attaker an substitute blok A itself, whih again will be aught by the guard beauseits label onits with the atual request.Are bu�er-overow attaks deteted? Here, it is important to distinguish between the bu�er-overowevent (aused by a programmer error, say) and the standard stak-smashing attak that seeks to injet ode.Beause bu�er-overows are onsidered a language \feature" in an EED platform, neither the standardenryption nor our labeling mehanism heks against array boundaries. However, any ode injetion isaught beause the ode injeted would have to be properly enrypted. Furthermore, even if the injetedode is a replay of a known enrypted blok, it will not have the orret label and hene will be aughtthrough our labeling mehanism. 6

6 Disussion of AssumptionsThere are several points worth larifying at this time, starting with the post-ompilation pass over theexeutable. First, note that the labels an be inserted into exeutables without knowledge of the baseaddress beause only the o�set is needed. Seond, although we all this a post-ompilation modi�ation, itould be used diretly with exeutables and an thus be applied to legay ode with some additional e�ort toextrat and modify branh targets. Third, the label generation and branh target modi�ation an easily bedone in a single pass sine the ahe blok size and label size is �xed, and an therefore be used ompute thenew branh targets. Fourth, we have not expliitly provided the details of omputing the integrity heksum,nor the enryption itself, beause both are relatively straightforward and, being the ornerstone of EEDplatforms, have been addressed elsewhere.Fifth, turning to the guard, we observe that the guard's ations are ompletely independent of theproessor and require no modi�ation of the proessor's internals whatsoever. Furthermore, the manner bywhih the guard interats with the proessor is ompatible with various ahe ontroller algorithms suh asritial-word-�rst or sequential-requests. Similarly, the use of the guard requires no hange to main memorysine the guard is programmed to use the standard bus protool. However, what does hange is performane:beause the label is replaed by a NOP, both the size of the program and the exeution time inreases. Weexplore this issue further in the setion on experimental results. Also, beause the guard is implemented inFPGA logi, a variety of optimizations an be introdued to perform deryption in parallel with integrityheking, an issue we disuss later in this paper.Next, we note that the guard needs to know the base address for a program. In a simple embedded system,this assumption is quite reasonable sine the load addresses are usually known ahead of time. However, adesktop system with a sophistiated operating system presents two problems: the �rst is that the load addressis not known prior to deployment, and the seond is that the base address will need to be swithed when aproess is swithed. Clearly, a kernel module that supplies the base addresses to the FPGA (using enryptedommuniation) is one way to handle this ase. However, that requires a high degree of trust in the operatingsystem.Note that we have also assumed that the ahe size is known at ompile time. This is not an unreasonableassumption in many appliations, but it does redue portability of the enrypted exeutables. Cahe sizesusually range from 8 to 512 bytes, typial of proessors suh as ARM, PowerPC, Miroblaze, or OpenRISC.Although our urrent experiments were designed for a 32 bit arhiteture, the model is easily extended for a64 bit proessor with relative small hanges.Finally, to aelerate the validation in the guard, we onsidered the possibility of using more than oneAES deryption engine that derypt in parallel. For a 32 byte ahe blok, for example, we ould use two16-byte AES deryption bloks. But this speed-up approah raises another issue. Instead of the serial AES inipher blok haining (CBC) mode [13℄, we need to use the Eletroni CodeBook (ECB). Eah 128 bit bloksis individually enrypted. This allows individual bloks to be replaed. For this reason, before enryption,eah blok goes through a permutation operation that takes 50% of the label bits and plaes in the seondblok. The guard performs the inverse permutation after derypting the data. For 64 byte ahe bloks,eah AES blok ontains 25% of the label. Even if the speedup gained ould be invaluable when onsideringreal-time and speed optimized systems, the prie payed is higher area taken by the FPGA logi and a weakerprotetion. Although the hane of produing a valid ahe blok remains 1 n 232, the attaker an targetonly one AES blok, with 1 n 216 hanes of suessfully disrupting the exeution..7 Experimental ResultsFor the overall simulation of our system, we used the SimpleSalar simulation suite [2℄ for an ARM proessorarhiteture [4℄. The performane of our arhiteture was observed for a memory hierarhy that ontains onelevel separate instrution and data ahes. The instrution ahe has 32Kb of available 32-way assoiativememory. Data ahe is 32Kb , 64-way assoiative. The analysis was performed on 32-byte line and 64-byteline ahes, sine ahe blok size has the most impat on the system performane. The rest of the simulation7

parameters are synthesized in the table 7. The simulator used is sim-outorder.Parameter Name Parameter Value Parameter Name Parameter Valuebpred bimod deode:width 4issue:width 4 issue:inorder falseissue:wrongpath true ommit:width 4ahe:dl1 dl1:16:32:64:l ahe:dl1lat 1ahe:dl2 none ahe:dl2lat 1ahe:il1 il1:32:32:32:l ahe:il1lat 1ahe:il2 none ahe:il2lat 1ahe:ush false ahe:iompress falsemem:lat (depends on ahe size) mem:width 8mem:pipelined false res:ialu 4res:imult 1 res:memport 1res:fpalu 4 res:fpmult 1Table 1: SimpleSalar parametersThe benhmarks hosen for the simulations were omputational intensive appliations from MiBenh [20℄: bitount - tests the bit manipulation abilities of a proessor by ounting the number of bits in an arrayof integers; r - heksum alulation for a �le; dijkstra - an implementation of the graph algorithm foralulating the shortest paths between nodes; �t - Fourier transforms are used in digital signal proessing to�nd the frequenies ontained in a given input signal; sha - the standard seure hashing algorithm used inmost seurity transations; stringsearh searh algorithm for given words in phrases using a ase insensitiveomparison algorithm; susan - an image proessing suite - with three variants : orners , edges, smoothing.Field, Pointer, Transitive and Update are data intensive benhmarks.Sine the tehnique used operates at ahe blok level, the overhead inurred by the enryption and thevalidation mehanism a�et eah ahe blok feth from main memory. Whenever a ahe miss ours,thedelays by the Guard's operations are added to the aess time to the lower level memory . The overallperformane penalty is a�eted by three fators: inreased ahe misses, extra instrution exeutions andderyption. The inrease in the program size omes from reserving the extra spae for the validation andthis auses more ahe misses, sine less of the original instrution �t in the same ahe memory spae. Theaverage inrease in ahe miss rate is 19.18% for the 32 byte ahe bloks. A detailed ahe miss graph foreah benhmark is depited in Figure ??.The seond penalty soure is the exeution of the extra nop instrution in eah ahe blok. The enryptionand validation adds a �xed penalty for eah memory feth for eah instrution ahe blok. The operationsperformed by the Guard an be modeled as an inreased lateny in the instrution feth. Figure 7 depits

Figure 3: FPGA Guard Details8

how the penalty yles were estimated for a 32byte ahe blok. In the arhiteture onsidered, the proessorspeed is 200Mhz and the FPGA half its speed (100Mhz), so every FPGA omputation yles that doesnot overlap proessor exeution reates 2 proessor penalty yles. Reent FPGA implementations of AESmanage to ahieve high throughput by pipelining the exeution path and unrolling tehniques [33℄. The AESderyption implementation hosen by our model is one that minimizes the deryption penalty sine highthroughput is not the target in this arhiteture. The 10 FPGA yles for the deryption translates into 20proessor penalty yles that are added to the ahe miss penalty. The other Guard proessing are : 1 ylefor address validation and one yle for the inverse permutation of the ahe blok bits. Cahe miss penaltyis omputed aording to the equation :MissPenalty = d profreqfpgaf req e � (AESDeryptionCyles+ V alidationCyles) +MemAessBenhmark Cahe miss penalty(%) Added Penalty by nop(%) Overall Penalty(%)Bitount 18.76 6.43 6.47Cr 17.1 12 12.03Dijkstra 18.98 2.71 2.74Fft inv 22.81 3.45 3.7Fft 23.21 1.65 2.78Sha 16.05 -1.07 -0.96Stringsearh 18.6 -0.66 6.87susan.orners 18.29 3.92 6.35Susan.edges 21.69 2.25 3.64susan.smoothing 17.62 3.46 3.53Field 17.29 10.03 10.05Pointer 16.67 0.17 0.19Transitive 16.06 -3.13 4.13Update 16.78 2.07 14.41Average 18.56 3.16 5.42Table 2: Performane penalty parameters for 32 byte ahe bloksThe baseline to whih the penalties are omputed is a standard program exeution with no enryption orany other seurity method. Tables 7 and 7 show the performane of the system with details on how muh theextra nop, inserted in the instrution stream, a�ets the exeution, and how muh penalty omes from theextra enryption and validation in the Guard. As expeted the larger ahe bloks inur less overhead, sinethe ratio of nop:original instrutions is larger. On average the extra penalty aused by the nop insertion is3.51% and the added validations aounts for a total of 4.71%. The performane penalty is even less for thesystem with 64 bytes ahe bloks:2.12% from the nop exeution and 2.91% total. The inrease in programsize is also a major onern in embedded appliations. Using only 32 bits for keeping the integrity validationdata, the protetion sheme that we are proposing inreases the overall program size by only 12.5% for the32 byte ahe bloks and 6.25% for the 64byte ones.The last table (7) ompares the overhead of the protetion mehanism for both 32 and 64 byte ahebloks with a baseline onsisting in EED exeution. The results show that the size of the ahe blok hasa major inuene on the performane of the benhmarks. Sine the major performane penalty omes fromthe exeution of the extra nop and the ahe misses that it auses, the larger ahe blok has a smaller ratioof overhead ode per workload ode and though ahieves better results. For all the benhmarks analyzed,the miss rate for the instrution ahe is very small - 0.001% on average - and so the added penalty for theenryption is signi�antly lower than the overhead of the nop. This observation motivates further analysis onhow to eliminate passing the extra nop to the proessor, modifying the guard to at as an additional upperlevel ahe ontroller. The spae utilization by the fpga guard is very low, the major omponent being theaes-deryption (284 slies and 7 BRAM for a synthesis on XUPXilinxVirtex2Pro) and with minimal on-hipmemory (urrent address bu�er and proess keys). 9

Benhmark Cahe miss penalty(%) Added Penalty by nop(%) Overall Penalty(%)Bitount 13.02 3.99 4.02Cr 13.5 2 2.03Dijkstra 11.89 2.15 2.18Fft inv 17 2.47 2.62Fft 16.85 2.55 2.64Sha 10.82 4.22 4.29Stringsearh 12.72 -1.44 3.57susan.orners 12.68 3.33 4.87Susan.edges 15.42 1.98 2.88susan.smoothing 12.72 -0.01 0.04Field 13.31 9.24 9.27Pointer 14.1 -0.3 -0.28Transitive 12.01 3.53 10.53Update 11.81 2.44 14.26Average 13.42 2.58 4.49Table 3: Performane penalty parameters for 64 byte ahe bloks8 Conlusions and Future WorkThis paper proposed a powerful method of ode protetion from physial attaks and stops most of thebu�er overows attaks. Our work ontinues with a sheme to use the FGPA Guard in an eÆient way toprotet data loated in the untrusted memory and on tehniques to redue the ahe miss rates. An atualimplementation on the system on a Virtex2 FPGA Testing platform from Xilinx is also the target of oururrent work.9 AknowledgmentsAuthors want to thank Stefan Popoveniu for preliminary disussion and analysis on EED attaks.Referenes[1℄ W. Arbaugh. A Seure and Reliable Bootstrap Arhiteture. Proeedings of the IEEE Symposium onSeurity and Privay, pp. 65{71, May 1997.[2℄ T. Austin, E. Larson, and D. Ernst. Simplesalar: an infrastruture for omputer system modeling,Computer (Feb 2002).[3℄ E. Biham, R. Anderson, and L. Knudsen. Serpent: A New Blok Cipher Proposal. Proeedings of theInternational Workshop on Fast Software Enryption (FSE), pp. 222{238, 1998.[4℄ D. Brash.The arm arhiteture version 6, ARM Whitepaper available at www.arm.om (January 2002).[5℄ S. Cheng, P. Litva, and A. Main. Trusting DRM software. Proeedings of the Workshop on Digital RightsManagement for the Web, January 2001.[6℄ C. Collberg, C. Thomborson and D. Low, A taxonomy of obfusating transformations, Tehnial Report148, Department of Computer Siene, University of Aukland (July 1997).[7℄ M. Corliss, E. Lewis, and A. Roth. Using DISE to Protet Return Addresses from Attak. Proeedingsof the Workshop on Arhitetural Support for Seurity and Anti-Virus, Otober 2004.10

Benhmark 32byte(%) 64byte(%)Bitount 6.44 3.99Cr 12 2.01Dijkstra 3.2 2.74Fft inv 7.18 6.95Fft 4.7 5.01Sha -1.04 4.23Stringsearh 2.81 1.78susan.orners 6.78 6.41Susan.edges 4.08 3.93susan.smoothing 3.52 0.06Field 10.02 9.23Pointer 0.18 -0.31Transitive 0.05 2.33Update 5.24 0.51Average 4.65 3.49Table 4: Performane penalty ompared to EED[8℄ C. Cowan. Software Seurity for Open Soure Systems. IEEE Seurity and Privay Magazine, Vol. 1,No. 1, pp. 35{48, February 2003.[9℄ C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.Stakguard: Automati adaptive detetion and prevention of bu�er-overow attaks, USENIX SeuritySymposium (1998).[10℄ Dallas Semiondutor, In. Features, Advantages, and Bene�ts of Button-based Seurity. Available atwww.ibutton.om, 1999.[11℄ A. Dandalis, V. Prasanna, and J. Rolim. An Adaptive Cryptographi Engine for IPSe Arhitetures.Proeedings of the IEEE Symposium on Field-Programmable Custom Computing Mahines (FCCM), pp.132{144, 2000.[12℄ A. Das, G. Memik, D. Nguyen, J. Zambreno, and A.Choudhary. An FPGA-based Network IntrusionDetetion Arhiteture. IEEE Transations on Information Forensis and Seurity (to appear), 2007.[13℄ M. Dworkin, Reommendation for blok ipher modes of operation, NIST Speial Publiation 800-38A(2001 Edition).[14℄ J. Dyer, M. Lindemann, R. Perez, R. Sailer, S. Smith, L. van Doorn, and S. Weingart. Building the IBM4758 Seure Coproessor. IEEE Computer, Vol. 34, pp. 570-66, Otober 2001.[15℄ A. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA Implementation and Performane Evaluation ofthe AES Blok Cipher Candidate Algorithm Finalists. The Proeedings of the 3rd Advaned EnryptionStandard (AES3) Candidate Conferene, pp. 13{27, 2000.[16℄ M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blumel. A Reon�gurable System on Chip Imple-mentation for Ellipti Curve Cryptography over GF(2n). Proeedings of the International Workshop onCryptographi Hardware and Embedded Systems (CHES), pp. 381{399, 2002.[17℄ M. Fisher. Proteting Binary Exeutables. Embedded Systems Programming, Vol. 13, No. 2, February2000.[18℄ O. Gelbart, P. Ott, B. Narahari, R. Simha, A. Choudhary, and J. Zambreno. CODESSEAL: A Com-piler/FPGA Approah to Seure Appliations, Proeedings of the IEEE Conferene on Intelligene andSeurity Informatis (ISI), 2005. 11

[19℄ T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T. Lehman, and B. Shott. Compara-tive Analysis of the Hardware Implementations of Hash Funtions SHA-1 and SHA-512. Proeedings ofthe International Conferene on Information Seurity (ISC), pp. 75{89, 2002.[20℄ M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown, Mibenh: Afree, ommerially representative embedded benhmark suite, IEEE 4th Annual Workshop on WorkloadCharaterization (2001).[21℄ A. Hodjat and I. Verbauwhede. A 21.54 Gbits/s Fully Pipelined AES Proessor on FPGA. Proeedingsof the IEEE Symposium on Field-Programmable Custom Computing Mahines (FCCM), pp. 308{309,2004.[22℄ N. Itoi. Seure Coproessor Integration with Kerberos V5. IBM Researh Report RC-21797, IBM TJWatson Researh Center, July 2000.[23℄ K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta. A Fully Pipelined Memoryless 17.8 Gbps AES-128Enryptor. Proeedings of the International Symposium on Field Programmable Gate Arrays (FPGA),pp. 207{215, 2003.[24℄ J.-P. Kaps and C. Paar. Fast DES Implementation for FPGAs and its Appliation to a Universal Key-Searh Mahine. Proeedings of the Annual Workshop on Seleted Areas in Cryptography (SAC), pp.234{247, 1998.[25℄ O. Kommerling and M. Kuhn. Design Priniples for Tamper-Resistant Smartard Proessors.Proeedingsof the USENIX Workshop on Smartard Tehnology,, May 1999.[26℄ J. Kumagai, Chip detetives [reverse engineering℄, Spetrum, IEEE (Nov 2000).[27℄ J. Lah, W. Mangione-Smith, and M. Potkonjak. FPGA Fingerprinting Tehniques for Proteting In-telletual Property. Proeedings of the IEEE Custom Integrated Ciruit Conferene, pp. 299{302, May1998.[28℄ X. Lai and J. Massey. A Proposal for a New Blok Enryption Standard. Proeedings of the Workshopon the Theory and Appliation of Cryptographi Tehniques, pp. 389{404, 1990.[29℄ D. Lie, C. Thekkath, M. Mithell, P. Linoln, D. Boneh, J. Mithell, and M. Horowitz, Arhiteturalsupport for opy and tamper resistant software, ASPLOS (2000).[30℄ R. Lien, T. Grembowski, and K. Gaj. A 1 Gbit/s Partially Unrolled Arhiteture of Hash FuntionsSHA-1 and SHA-512. Proeedings of the Cryptographers' Trak at the RSA Conferene (CT-RSA), pp.324{338, 2004.[31℄ N. Mentens, S. Ors, and B. Preneel. An FPGA Implementation of an Ellipti Curve Proessor overGF(2m). Proeedings of the ACM Great Lakes Symposium on VLSI (GLVLSI), pp. 454{457, 2004.[32℄ M. Milenkovi, A. Milenkovi, and E. Jovanov, Hardware support for ode integrity in embedded proes-sors, CASES (2005).[33℄ National Institute of Standards and Tehnology, U.S. Department of Commere. FIPS PUB 197 - Ad-vaned Enryption Standard (AES). Available at http://sr.nist.gov, 2001.[34℄ National Institute of Standards and Tehnology, U.S. Department of Commere. FIPS PUB 46-3 - DataEnryption Standard. Available at http://sr.nist.gov, 1999.[35℄ Alef One, Smashing the stak for fun and pro�t, Phrak, vol.7, no. 49, Nov. 1996.[36℄ S. Okada, N. Torii, K. Itoh, and M. Takenaka. Implementation of Ellipti Curve Cryptographi Copro-essor over GF(2m) on an FPGA. Proeedings of the International Workshop on Cryptographi Hardwareand Embedded Systems (CHES), pp. 25{40, 2000.12

[37℄ H. Ozdoganoglu, C.E. Brodley, T.N. Vikaykumar, and B.A. Kuperman. Smashguard: A hardware solu-tion to prevent attaks on the funtion return address, CACM (2005).[38℄ E. Palmer. An Introdution to Citadel|A Seure Crypto Coproessor for Workstations. Researh ReportRC 18373, IBM T.J. Watson Researh Center, 1992.[39℄ G. Saggese, A. Mazzeo, N. Mazzoa, and A. Strollo. An FPGA-Based Performane Analysis of theUnrolling, Tiling, and Pipelining of the AES Algorithm. Proeedings of the International Conferene onField-Programmable Logi and its Appliations (FPL), pp. 292{302, 2003.[40℄ B. Shneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson. The Two�sh EnryptionAlgorithm: A 128-Bit Blok Cipher. John Wiley and Sons, 1999.[41℄ R. Simha, A. Choudhary, B. Narahari, and J. Zambreno. An Overview of Seurity-Driven Compilation.Proeedings of the Workshop on New Horizons in Compiler Analysis, Deember 2004.[42℄ S. Smith and S. Weingart, Building a High-Performahe Programmable Seure Coproessor, ComputerNetworks, Vol. 31, pp. 831{860, 1999.[43℄ J. Tygar and B. Yee. Dyad: A System for Using Physially Seure Coproessors. Proeedings of theHarvard-MIT Workshop on Protetion of Intelletual Property, April 1993.[44℄ E. Withel, J. Cates, and K. Asanovi. Mondrian Memory Protetion. Proeedings of the InternationalSymposium on Arhitetural Support for Programming Languages and Operating Systems (ASPLOS),2002.[45℄ J. Wyant. Establishing Seurity Requirements for More E�etive and Salable DRM Solutions. Proeed-ings of the Workshop on Digital Rights Management for the Web, January 2001.[46℄ B. Yee and J. Tygar. Seure Coproessors in Eletroni Commere Appliations, Proeedings of theUSENIX Workshop on Eletroni Commere, pp. 155{170, July 1995.[47℄ J. Zambreno, A. Choudhary, B. Narahari, N. Memon, and R. Simha. SAFE-OPS: A Com-piler/Arhiteture Approah to Embedded Software Seurity, ACM Transations on Embedded Com-puting Systems, Vol. 4, No. 1, February 2005.[48℄ J. Zambreno, A. Choudhary, D. Honbo, B. Narahari, and R. Simha. High Performane Software Prote-tion using Reon�gurable Arhitetures. Proeedings of the IEEE, Vol. 94, No. 2, February 2006.[49℄ J. Zambreno, D. Nguyen, and A. Choudhary. Exploring Area/Delay Tradeo�s in an AES FPGA Imple-mentation. Proeedings of the International Conferene on Field Programmable Logi and Appliations(FPL), pp. 575{585, 2004.[50℄ J. Zambreno, D. Honbo, and A. Choudhary. Exploiting Multi-Grained Parallelism in Reon�gurableSBC Arhitetures. Proeedings of the IEEE Symposium on Field-Programmable Custom ComputingMahines (FCCM), pp. 333{334, 2005.[51℄ J Zambreno, T Anish, and A Choudhary, A run-time reon�gurable arhiteture for embedded programow veri�ation, Proeedings of the NATO Advaned Researh Workshop (ARW) on Seurity andEmbedded Systems (2005).[52℄ X. Zhuang, T. Zhang, H-H. Lee, and S. Pande. Hardware Assisted Control Flow Obfusation for Embed-ded Proessors. Proeedings of the International Conferene on Compilers, Arhiteture, and Synthesisfor Embedded Systems (CASES), September 2004[53℄ X. Zhuang, T. Zhang, and S. Pande. HIDE: An Infrastruture for EÆiently Proteting InformationLeakage on the Address Bus. Proeedings of the International Symposium on Arhitetural Support forProgramming Languages and Operating Systems (ASPLOS), Otober 2004.13

