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tIn an En
rypted Exe
ution and Data (EED) platform, instru
tions and data are stored in en
ryptedform in memory whi
h the pro
essor de
rypts when fet
hed and re-en
rypts for stores to memory. EEDplatforms, while a
knowledging the overhead of de
ryption or re-en
ryption, have proven to be an attra
-tive be
ause they o�er strong se
urity against tampering and information leakage. Nonetheless, severalatta
ks are possible even with EED platforms. This paper presents an approa
h to address a 
lass ofsu
h atta
ks that we term memory spoo�ng, in whi
h an atta
ker is assumed sophisti
ated enough to
ontrol the address bus and spoof memory blo
ks as they are loaded into the pro
essor. The approa
hpresented makes use of a

ompanying FGPA hardware, something that is now 
ommonly available onmany pro
essor 
hips, and exploits 
a
he boundaries to simplify integrity-
he
king. An additional ad-vantage of this approa
h is that all the EED primitives are implemented in the FPGA and therefore theentire 
ombination of CPU, 
a
he and memory 
ontroller is left untou
hed. Experimental results usingthe MiBen
h in SimpleS
alar show an average of 6% overhead using this approa
h.1 Introdu
tionWe fo
us on a 
lass of atta
ks that we term memory spoo�ng aimed at En
rypted Exe
ution and Data (EED)platforms. EED platforms are typi
ally designed for atta
kers who use their a

ess to the address and databuses to sni� for information (intelle
tual property) or to manipulate memory and exe
ution dire
tly by
ontrolling the bus. EED platforms, inspite of their overhead, are espe
ially attra
tive in embedded systemsbe
ause small devi
es are physi
ally in the hands of an atta
ker, who might have probes 
apable of sniÆngor 
ontrolling the bus. Nonetheless, as we argue, a sophisti
ated atta
ker using modern ele
troni
 laboratoryequipment 
an mount several types of memory-spoo�ng atta
ks on EED platforms. These do not revealinformation but 
ontrol the 
ow of exe
ution, whi
h in turn may allow an atta
ker to 
ir
umvent li
ense
he
ks or other provide a

ess to unauthorized features.In this paper, we des
ribe an approa
h to dete
ting three types of memory-spoo�ng atta
ks on EEDplatforms. In the most elementary form of this atta
k, an atta
ker 
ontrols the bus, waiting for the pro
essorto fet
h a memory blo
k, and then supplies the wrong (but properly en
rypted) memory blo
k; thus, theatta
ker, instead of de
rypting, merely plays with the already en
rypted blo
ks. We 
lassify su
h atta
ksinto three types: one in whi
h seeks to disrupt exe
ution by supplying a blo
k with random 
ontent, one inwhi
h an atta
ker \replays" a prior blo
k (that is therefore 
orre
tly en
rypted) and a more sophisti
atedone in whi
h 
ontrol-
ow is hija
ked.�Conta
t author: eugen�gwu.edu. This work is partially supported by NSF Grant ITR-0325207 and AFOSR grant FA9550-06-1-0152 1



To address this problem, we instrument the ba
k-end of the 
ompiler and propose the use of additionalhardware in the pro
essor 
hip. We assume that 
ompilation itself o

urs in a safe lo
ation and that theadditional hardware 
annot be manipulated by the atta
ker sin
e it is inside a 
hip. For the hardware, we optfor FPGA (Field-Programmable Gate Array) te
hnology that is now 
ommonly available on several pro
essor
hips. The te
hnique works as follows. First, the ba
k-end 
ompiler module instruments the exe
utable sothat ea
h 
a
he blo
k has a spe
ial label 
ontaining the start address of the blo
k. Se
ond, the FPGA module,whi
h we will 
all the guard, inter
epts 
a
he blo
k requests from the memory 
ontroller, and pro
esses ea
hen
rypted 
a
he blo
k, 
he
ks against memory-spoo�ng and passes on the de
rypted 
a
he blo
k to thepro
essor. It is this module, as we des
ribe in detail later, that uses the 
ompiler-inserted labels to dete
tspoo�ng.The 
ore 
ontribution of this paper is the te
hnique itself: the 
ontents of the 
a
he-blo
k labels, themanner by whi
h the labels are used in integrity-
he
king, and its eÆ
ien
y: an average of less than 6%overhead on 
ompute-intensive ben
hmarks. Our approa
h has several positive features and we a
knowledge,one disadvantage. One attra
tive feature is that a single pie
e of information (in the label) is used to dete
tall three types of memory-spoo�ng atta
ks. A se
ond advantage is that the labels are easily inserted post-
ompilation and, therefore, our approa
h 
an be applied to lega
y binaries. A third arises from the use ofFPGA's: we both show how a basi
 EED platform 
an be implemented using FPGA hardware, leaving thestandard pro
essor 
omponents unmodi�ed, and how the FPGA 
an be used to optimize the 
omputations in-volved in de
ryption and integrity-
he
king. Furthermore, be
ause the FPGA is reprogrammable, en
ryptionalgorithms 
an be 
hanged post-deployment. The industry also pays attention to providing FPGA logi
 withresistan
e to physi
al atta
ks [26℄ Our approa
h leaves inta
t the other prote
tions o�ered by EED platforms,against information leakage and 
ode tampering. There, however, is one disadvantage: our approa
h requiresknowledge of the 
a
he blo
k size and the address where the program is loaded, be
ause address o�sets arepart of the labels. This is not so mu
h a problem in embedded systems where, typi
ally, this information isknown prior to deployment. However, it may require a spe
ial se
ure loader 
ite Arbaugh paper for largeservers or for desktop 
omputers.We also point out that our approa
h and EED platforms in general are not aimed at higher-level atta
ksresulting from, say, bu�er over
ows or known vulnerabilities in operating systems. Instead, EED platformsare expressly targeted at bus-sniÆng or dire
t probing of memory, and 
omplement prote
tions for higher-levelatta
ks.The rest of the paper is organized as follows: Se
tion 2 dis
usses previous work; Se
tion 4 depi
ts possibleatta
ks on en
rypted exe
ution and the details of our approa
h; Se
tion 5 provides an analysis of our approa
h,fo
using on se
urity and performan
e optimization; Se
tion 7 presents the experimental results, after whi
h
on
luding remarks are given in Se
tion 8.2 Related workThe general area of 
omputer se
urity, and in parti
ular, software prote
tion, has grown tremendously overthe past de
ade. Thus, even in our own ni
he of 
ompiler or hardware-based approa
hes, there is now asigni�
ant literature that in
ludes overview and survey arti
les [5, 6, 8, 17, 41, 45℄. We will thus restri
tourselves to reviewing related work in 
ompiler-hardware approa
hes, and in FPGA-related work in the areaof se
urity.Hardware approa
hes 
an be 
ategorized into 
o-pro
essor solutions [38, 43, 46, 42, 22℄, smart
ard ap-pli
ations [25℄ (whi
h is a type of 
o-pro
essor solution), solutions that spe
ify parti
ular ar
hite
tures oruse FPGA's. FPGA's have been used to implement a

elerated versions of several well-known 
ryptographi
primitives su
h as private-key algorithms [15, 21, 23, 24, 39℄, publi
-key algorithms [16, 31, 36℄, and se
urehash algorithms [19, 30℄). Mu
h of the re
ent work in this area has fo
used on implementing high-throughputor low-area Symmetri
 key Blo
k Cipher (SBC) ar
hite
tures on FPGAs [49, 50℄. Examples in
lude the DataEn
ryption Standard (DES) [34℄, the Advan
ed En
ryption Standard (AES) [33℄, the International DataEn
ryption Algorithm (IDEA) [28℄, the Serpent [3℄ blo
k 
ipher, and the Two�sh [40℄ en
ryption algorithm.Among ar
hite
tures spe
i�
ally designed for software prote
tion, there is past work that on memory2



prote
tion [7, 44℄, on spe
i�
 atta
ks [37℄, or even the initialization of a system [1℄. Our own work in thisarea [47, 48℄ has fo
used on using 
ompiler-dire
ted register allo
ation to embed watermarks that are then
he
ked in FPGA support hardware.A sub
lass of hardware approa
hes are those dire
ted at EED platforms. Among the �rst of these is theXOM ar
hite
ture [29℄ in whi
h instru
tions stored in memory are en
rypted and the XOM CPU de
ryptsbefore exe
ution. Nonetheless, atta
ks are possible on EED platforms and therefore a number of papers havefo
used on addressing su
h atta
ks. Among these are our own work [℄ and the work of Pande et al [52, 53℄. In[52, 53℄, the authors study the problem of information leakage when an atta
ker extra
ts patterns of a

essin an EED platform and mat
hes those patterns against a database of well-known patterns extra
ted fromopen-sour
e software or from unen
rypted exe
utables run inside a debugger. Their �ndings suggest thatmany algorithms 
an be identi�ed by observing their memory a

ess pattern and that this signature pattern
an itself lead to both information leakage as well as additional types of atta
ks. They propose addressrandomization to foil su
h atta
ks and study the performan
e of spe
i�
 ar
hite
tural support hardware foraddress randomization. Finally, our own work in this area [18℄ has fo
used on 
ontrol-
ow atta
ks. Thispaper presents an alternative approa
h that is based on exploting 
a
he-blo
k boundaries.3 Atta
ks on EED PlatformsBefore des
ribing our approa
h, we review several types of atta
ks on EED platforms that together 
onstitutethe atta
k model for our approa
h. To begin, let us �rst 
onsider the basi
 elements of an EED platform:exe
utables are en
rypted and remain in en
rypted form in memory; when instru
tions or data are fet
hedto the pro
essor (a
ross the untrusted bus), they are de
rypted inside the pro
essor, whi
h is assumed to betrusted. Likewise, when the CPU writes data ba
k to memory, the data is en
rypted and then transmitteda
ross the bus to memory.At �rst glan
e, one assumes that a suÆ
iently strong key will 
ompletely prote
t exe
ution. After all, ifthe key 
an't be broken, no information is lost and no atta
ker 
an insert their own 
ode. However, en
ryptionis performed in blo
ks be
ause it is prohibitively time-
onsuming or impossible (be
ause the 
a
he may notbe able to hold the entire program) to de
rypt the entire program at on
e. Thus, en
ryption is organizedaround smaller blo
ks that are individually de
rypted as and when needed. Similarly, data blo
ks whenwritten are en
rypted in small blo
ks for the same reason, eÆ
ien
y.The fa
t that en
ryption o

urs in blo
ks enables a sophisti
ated atta
ker to mount some atta
ks on EEDplatforms, as we outline below. Su
h an atta
ker will be able to not only sni� the bus but to a
tively 
ontrol it.Even more importantly, sin
e memory 
hips 
an be 
ontrolled externally, the atta
ker 
an supply the pro
essorwith any blo
k of their 
hoosing. The most e�e
tive form of atta
k tries to supply the pro
essor with anunexpe
ted blo
k; in doing so, an atta
ker might then observe the out
ome and use that advantageously.For example, an atta
ker might noti
e that skipping a 
ertain blo
k leads to skipping a li
ense 
he
k. We
onsider the following types of atta
ks:� Exe
ution Disruptions : In this atta
k, an atta
ker tries to modify or repla
e a portion of an en
ryptedblo
k of instru
tions. Of 
ourse, if we assume the key has not been de
iphered, this atta
k merelypla
es random bits into a 
a
he blo
k. Nonetheless, these random bits will be de
rypted into possiblevalid instru
tions, whose out
ome 
an be observed 
arefully by our sophisti
ated atta
ker. We 
anestimate the probability that randomly-inje
ted bits result in valid op
odes. If the Instru
tion SetAr
hite
ture (ISA) happens to use n bits for ea
h op
ode, there are a total of 2n possible instru
tions.If, among these, v is the number of valid instru
tions, and if the en
ryption blo
k 
ontains k instru
tions,then the probability that the de
ryption will result in at least one invalid instru
tion in the blo
k is1�( v2n )k . Sin
e a good pro
essor ar
hite
ture doesn't waste op
ode spa
e with unused instru
tions, it ishighly probable that if the atta
ker supplies a random blo
k it will be de
rypted and exe
uted withoutdete
tion. For example if we 
onsider an en
ryption blo
k size of 16 bytes and if 90% of the op
odespa
e is used for valid instru
tions, the probability of an undete
ted disrupted exe
ution is 19%. Weterm this type of atta
k exe
ution disruption, be
ause the atta
ker is not really able to insert pre
iselyengineered 
ode, but is able to perturb normal exe
ution without dete
tion, whi
h in turn 
an lead to3



Figure 1: Ar
hite
ture: the FPGA Guardother atta
ks. Moreover, by observing the pro
essor, the atta
ker 
an infer to some extent how knownbit sequen
es are de
rypted into instru
tions, thus providing ex
ellent 
ribs by whi
h the en
ryptionitself 
an be atta
ked.� Replay Atta
ks. In this type of atta
k, the atta
ker re-issues a blo
k of en
rypted instru
tions frommemory. This 
an be a

omplished either by freezing the bus and repla
ing the memory read valuewith an old one, overriding the address bus with a di�erent memory lo
ation than the one the pro
essorrequested or simply overwriting the memory at the targeted address. What is 
lear is that the in
orre
tblo
k is de
rypted into valid exe
utable 
ode. If the replayed blo
k has an immediate observable result(su
h as an I/O operation) the atta
ker 
an store the blo
k and replay it at any point of time duringprogram exe
ution, as many times as the a
tion needs to be triggered, without the atta
ker having toguess the entire instru
tion blo
k fun
tionality.� Control Flow atta
ks. As des
ribed in [52℄, an atta
ker 
an observe patterns on the bus to inferthe 
ontrol-
ow stru
ture of the exe
utable. This allows a so-
alled 
ontrol-
ow atta
k in whi
h a
ryptographi
ally valid, but 
ontrol-
ow invalid, blo
k is supplied to the pro
essor. There are twotypes of 
ontrol 
ow atta
ks that we distinguish. Consider three blo
ks A;B and C and suppose thatin normal exe
ution, blo
k A 
an transfer 
ontrol to either blo
k B or blo
k C. An atta
ker 
ansubstitute C when B is requested and observe the out
ome as a prelude to further atta
k. The se
ondtype of atta
k is when blo
ks A and B together form a loop. Then, upon observing this on
e withoutinterferen
e, and re
ording the blo
ks, the atta
ker 
an substitute blo
ks from an earlier exe
ution toprevent the loop from being 
ompletely exe
uted.Taken together, the atta
ks point out that mere en
ryption is not suÆ
ient to guarantee proper exe
utionand that these types of atta
ks 
an go undete
ted unless we provide expli
it support. We now turn toour approa
h in whi
h a 
ombination of 
ompiler-inserted information and supporting hardware forms theframework needed to dete
t su
h atta
ks.4 System Des
ription and Approa
hOur approa
h is 
urrently designed for a standard Harvard ar
hite
ture (with separate instru
tion and datamemory) and has three 
ore 
omponents. The �rst is ar
hite
tural: the use of supporting FPGA hardwarethat we refer to as the FPGA-Guard. The se
ond is a ba
kend 
ompiler module that instruments theexe
utable su
h that ea
h 
a
he blo
k has a label. The third is a dete
tion algorithm that examines thelabels of 
a
he blo
ks to verify proper exe
ution. This paper fo
uses ex
lusively on prote
ting instru
tionmemory; data memory issues, whi
h are similar in some ways but di�erent in others, will be addressed in aforth
oming paper.Figure 4 shows a pro
essor 
hip on the left and main memory on the right. We assume that the 
hip
omes with FPGA logi
, as do many 
ommer
ial pro
essors today. We use this logi
 to implement the guard4



Figure 2: FPGA Guard { detailed viewfun
tionality we need to verify memory a

esses. To see how this works, 
onsider how memory a

esses takepla
e without su
h guard logi
: when a 
a
he miss o

urs, the memory management logi
 issues a read tomemory on the bus, after whi
h, following the bus proto
ol, the memory dumps the 
ontents on the bus.These bits are then routed into the instru
tion 
a
he. Our ar
hite
ture is 
onstru
ted so that every reada

ess to memory also goes through the guard. The guard logi
 is then aware of the start address of aninstru
tion 
a
he blo
k. Furthermore, in our ar
hite
ture, the bus lines are routed through the guard so thatthe guard re
eives memory 
ontents before the pro
essor. The guard logi
 is then able to perform de
ryptionand examine the 
ontents of ea
h instru
tion 
a
he blo
k before it is fed into the instru
tion 
a
he. Andthat is the key to ensuring trust: the blo
ks that rea
h the 
a
he have been veri�ed by the guard so that thepro
essor sees (and therefore exe
utes) only validated blo
ks.Next, we fo
us on what the guard examines in ea
h de
rypted 
a
he blo
k { see Figure 4; the de
ryptionitself is straightforward and has been studied in many of the papers 
ited in Se
tion 2. As part of post-
ompilation, ea
h blo
k of instru
tions has a label inserted into the blo
k; the label itself is stripped fromthe blo
k and is not passed into the 
a
he. Ea
h label 
onsists of two pie
es of information: the o�set ofthis blo
k from the base address of the exe
utable, and an integrity-
he
ksum of the blo
k. Thus, the guardis able to examine whether the blo
k is a
tually the blo
k 
orresponding to the memory a

ess that wasrequested, and whether the blo
k has been tampered with.We will use this 
ode snippet in assembly, assumed to be part of a single 
a
he blo
k, to illustrate theabove ideas:1. MOV R0, #3 ; Load a bit mask (2'b11) into R02. ADD R1, R2, #100 ; ADD the 
ontent of R2 with 100 and put in R13. CMP R2, #3 ; Compare R2 with '3'4. BEQ 100(R1) ; bran
h on equal to 100+R15. CMP R3, #2 ; Compare R3 with '2'6. BEQ 0x010C ; bran
h on equal to 0x010CWe see that after exe
uting the instru
tions in lines 1-3, the pro
essor exe
utes the bran
h instru
tion at line4. Depending on the out
ome of the 
omparison, the program 
ounter is loaded with either 100+R1 or PC+4(where PC is the program 
ounter). If this target address is not in the 
a
he, the 
a
he 
ontroller issues a readto memory, during whi
h the guard 
aptures the read address and issues the remaining 
a
he-blo
k memoryread operations. The guard then de
rypts, 
he
ks integrity and label 
orre
tness and delivers the 
a
he blo
kas needed by the 
a
he 
ontroller. The label 
he
k 
ompares the label+base to the address 
aptured by theFPGA. If, on the other hand, the target address is already in the 
a
he, it was de
rypted and 
he
ked earlierand is hen
e safe.The following summarizes the roles of the 
ompiler and the FPGA guard logi
:5



� Compiler role:{ Divide the 
ode into blo
ks the size of a 
a
he blo
k.{ Reserve spa
e in ea
h blo
k for the label information. This involves re-
omputing bran
h labels.{ Compute ea
h blo
k's label: the relative address of the �rst instru
tion in ea
h blo
k, and integrity
he
ksum.{ En
rypt the 
a
he blo
k using a unique key for the program.� FPGA guard role:{ Ea
h time there is a miss in 
a
he memory, the 
a
he 
ontroller makes a request to main memoryto fet
h the blo
k.{ The guard inter
epts the �rst address { let's 
all this the snooped address { and stores it in aregister (inside the guard).{ The guard generates all the remaining requests to memory for the rest of the blo
k. In themeantime, the pro
essor waits.{ When the main memory supplies the 
ontents and when the guard has read the entire blo
k, theguard de
rypts the blo
k using the (private) key.{ Next the guard extra
ts the label in the blo
k, and 
he
ks if label o�set + base address is equalto the snooped address.{ If the validation su

eeds, the guard 
ontinues by 
he
king integrity.{ If the validation or integrity 
he
k fails, the guard either stops the exe
ution or loads a pie
e of
ode lo
ated at a predetermined stati
 lo
ation in memory to handle the ex
eption.{ Assuming integrity su

eeds, the guard feeds the de
rypted 
a
he blo
k into the pro
essor repla
ingthe label with NOP instru
tions.5 Atta
k AnalysisWe �rst explain how our simple me
hanism dete
ts the three types of atta
ks des
ribed earlier before dis-
ussing, in the following se
tion, the validity of the assumptions made in our approa
h. First, note thatexe
ution disruptions are dete
ted using the the message-digest, as in any blo
k-based EED platform. Se
-ond, replay and 
ontrol-
ow atta
ks are dete
ted be
ause the guard always returns the 
orre
t blo
k to the
a
he; in other words, when the 
a
he 
ontroller requests an blo
k (by providing the start address), thelabel-
he
king me
hanism assures that no other blo
k is delivered to the 
a
he.To see how this works, 
onsider �rst a 
ontrol-
ow atta
k. Suppose blo
k A transfers 
ontrol to eitherblo
k B or blo
k C, depending on runtime 
onditions, and that blo
k A initially generates the address for(the start of) blo
k B, whi
h the atta
ker remembers and stores. Later, when the atta
ker noti
es that blo
kA requests blo
k C, the atta
ker 
an substitute blo
k B. However, the label for blo
k B will 
on
i
t withthe blo
k C address that the guard 
aptures, thus allowing the guard to dete
t the substitution. Similarly, ina replay atta
k, the atta
ker 
an substitute blo
k A itself, whi
h again will be 
aught by the guard be
auseits label 
on
i
ts with the a
tual request.Are bu�er-over
ow atta
ks dete
ted? Here, it is important to distinguish between the bu�er-over
owevent (
aused by a programmer error, say) and the standard sta
k-smashing atta
k that seeks to inje
t 
ode.Be
ause bu�er-over
ows are 
onsidered a language \feature" in an EED platform, neither the standarden
ryption nor our labeling me
hanism 
he
ks against array boundaries. However, any 
ode inje
tion is
aught be
ause the 
ode inje
ted would have to be properly en
rypted. Furthermore, even if the inje
ted
ode is a replay of a known en
rypted blo
k, it will not have the 
orre
t label and hen
e will be 
aughtthrough our labeling me
hanism. 6



6 Dis
ussion of AssumptionsThere are several points worth 
larifying at this time, starting with the post-
ompilation pass over theexe
utable. First, note that the labels 
an be inserted into exe
utables without knowledge of the baseaddress be
ause only the o�set is needed. Se
ond, although we 
all this a post-
ompilation modi�
ation, it
ould be used dire
tly with exe
utables and 
an thus be applied to lega
y 
ode with some additional e�ort toextra
t and modify bran
h targets. Third, the label generation and bran
h target modi�
ation 
an easily bedone in a single pass sin
e the 
a
he blo
k size and label size is �xed, and 
an therefore be used 
ompute thenew bran
h targets. Fourth, we have not expli
itly provided the details of 
omputing the integrity 
he
ksum,nor the en
ryption itself, be
ause both are relatively straightforward and, being the 
ornerstone of EEDplatforms, have been addressed elsewhere.Fifth, turning to the guard, we observe that the guard's a
tions are 
ompletely independent of thepro
essor and require no modi�
ation of the pro
essor's internals whatsoever. Furthermore, the manner bywhi
h the guard intera
ts with the pro
essor is 
ompatible with various 
a
he 
ontroller algorithms su
h as
riti
al-word-�rst or sequential-requests. Similarly, the use of the guard requires no 
hange to main memorysin
e the guard is programmed to use the standard bus proto
ol. However, what does 
hange is performan
e:be
ause the label is repla
ed by a NOP, both the size of the program and the exe
ution time in
reases. Weexplore this issue further in the se
tion on experimental results. Also, be
ause the guard is implemented inFPGA logi
, a variety of optimizations 
an be introdu
ed to perform de
ryption in parallel with integrity
he
king, an issue we dis
uss later in this paper.Next, we note that the guard needs to know the base address for a program. In a simple embedded system,this assumption is quite reasonable sin
e the load addresses are usually known ahead of time. However, adesktop system with a sophisti
ated operating system presents two problems: the �rst is that the load addressis not known prior to deployment, and the se
ond is that the base address will need to be swit
hed when apro
ess is swit
hed. Clearly, a kernel module that supplies the base addresses to the FPGA (using en
rypted
ommuni
ation) is one way to handle this 
ase. However, that requires a high degree of trust in the operatingsystem.Note that we have also assumed that the 
a
he size is known at 
ompile time. This is not an unreasonableassumption in many appli
ations, but it does redu
e portability of the en
rypted exe
utables. Ca
he sizesusually range from 8 to 512 bytes, typi
al of pro
essors su
h as ARM, PowerPC, Mi
roblaze, or OpenRISC.Although our 
urrent experiments were designed for a 32 bit ar
hite
ture, the model is easily extended for a64 bit pro
essor with relative small 
hanges.Finally, to a

elerate the validation in the guard, we 
onsidered the possibility of using more than oneAES de
ryption engine that de
rypt in parallel. For a 32 byte 
a
he blo
k, for example, we 
ould use two16-byte AES de
ryption blo
ks. But this speed-up approa
h raises another issue. Instead of the serial AES in
ipher blo
k 
haining (CBC) mode [13℄, we need to use the Ele
troni
 CodeBook (ECB). Ea
h 128 bit blo
ksis individually en
rypted. This allows individual blo
ks to be repla
ed. For this reason, before en
ryption,ea
h blo
k goes through a permutation operation that takes 50% of the label bits and pla
es in the se
ondblo
k. The guard performs the inverse permutation after de
rypting the data. For 64 byte 
a
he blo
ks,ea
h AES blo
k 
ontains 25% of the label. Even if the speedup gained 
ould be invaluable when 
onsideringreal-time and speed optimized systems, the pri
e payed is higher area taken by the FPGA logi
 and a weakerprote
tion. Although the 
han
e of produ
ing a valid 
a
he blo
k remains 1 n 232, the atta
ker 
an targetonly one AES blo
k, with 1 n 216 
han
es of su

essfully disrupting the exe
ution..7 Experimental ResultsFor the overall simulation of our system, we used the SimpleS
alar simulation suite [2℄ for an ARM pro
essorar
hite
ture [4℄. The performan
e of our ar
hite
ture was observed for a memory hierar
hy that 
ontains onelevel separate instru
tion and data 
a
hes. The instru
tion 
a
he has 32Kb of available 32-way asso
iativememory. Data 
a
he is 32Kb , 64-way asso
iative. The analysis was performed on 32-byte line and 64-byteline 
a
hes, sin
e 
a
he blo
k size has the most impa
t on the system performan
e. The rest of the simulation7



parameters are synthesized in the table 7. The simulator used is sim-outorder.Parameter Name Parameter Value Parameter Name Parameter Valuebpred bimod de
ode:width 4issue:width 4 issue:inorder falseissue:wrongpath true 
ommit:width 4
a
he:dl1 dl1:16:32:64:l 
a
he:dl1lat 1
a
he:dl2 none 
a
he:dl2lat 1
a
he:il1 il1:32:32:32:l 
a
he:il1lat 1
a
he:il2 none 
a
he:il2lat 1
a
he:
ush false 
a
he:i
ompress falsemem:lat (depends on 
a
he size) mem:width 8mem:pipelined false res:ialu 4res:imult 1 res:memport 1res:fpalu 4 res:fpmult 1Table 1: SimpleS
alar parametersThe ben
hmarks 
hosen for the simulations were 
omputational intensive appli
ations from MiBen
h [20℄: bit
ount - tests the bit manipulation abilities of a pro
essor by 
ounting the number of bits in an arrayof integers; 
r
 - 
he
ksum 
al
ulation for a �le; dijkstra - an implementation of the graph algorithm for
al
ulating the shortest paths between nodes; �t - Fourier transforms are used in digital signal pro
essing to�nd the frequen
ies 
ontained in a given input signal; sha - the standard se
ure hashing algorithm used inmost se
urity transa
tions; stringsear
h sear
h algorithm for given words in phrases using a 
ase insensitive
omparison algorithm; susan - an image pro
essing suite - with three variants : 
orners , edges, smoothing.Field, Pointer, Transitive and Update are data intensive ben
hmarks.Sin
e the te
hnique used operates at 
a
he blo
k level, the overhead in
urred by the en
ryption and thevalidation me
hanism a�e
t ea
h 
a
he blo
k fet
h from main memory. Whenever a 
a
he miss o

urs,thedelays by the Guard's operations are added to the a

ess time to the lower level memory . The overallperforman
e penalty is a�e
ted by three fa
tors: in
reased 
a
he misses, extra instru
tion exe
utions andde
ryption. The in
rease in the program size 
omes from reserving the extra spa
e for the validation andthis 
auses more 
a
he misses, sin
e less of the original instru
tion �t in the same 
a
he memory spa
e. Theaverage in
rease in 
a
he miss rate is 19.18% for the 32 byte 
a
he blo
ks. A detailed 
a
he miss graph forea
h ben
hmark is depi
ted in Figure ??.The se
ond penalty sour
e is the exe
ution of the extra nop instru
tion in ea
h 
a
he blo
k. The en
ryptionand validation adds a �xed penalty for ea
h memory fet
h for ea
h instru
tion 
a
he blo
k. The operationsperformed by the Guard 
an be modeled as an in
reased laten
y in the instru
tion fet
h. Figure 7 depi
ts

Figure 3: FPGA Guard Details8



how the penalty 
y
les were estimated for a 32byte 
a
he blo
k. In the ar
hite
ture 
onsidered, the pro
essorspeed is 200Mhz and the FPGA half its speed (100Mhz), so every FPGA 
omputation 
y
les that doesnot overlap pro
essor exe
ution 
reates 2 pro
essor penalty 
y
les. Re
ent FPGA implementations of AESmanage to a
hieve high throughput by pipelining the exe
ution path and unrolling te
hniques [33℄. The AESde
ryption implementation 
hosen by our model is one that minimizes the de
ryption penalty sin
e highthroughput is not the target in this ar
hite
ture. The 10 FPGA 
y
les for the de
ryption translates into 20pro
essor penalty 
y
les that are added to the 
a
he miss penalty. The other Guard pro
essing are : 1 
y
lefor address validation and one 
y
le for the inverse permutation of the 
a
he blo
k bits. Ca
he miss penaltyis 
omputed a

ording to the equation :MissPenalty = d pro
freqfpgaf req e � (AESDe
ryptionCy
les+ V alidationCy
les) +MemA

essBen
hmark Ca
he miss penalty(%) Added Penalty by nop(%) Overall Penalty(%)Bit
ount 18.76 6.43 6.47Cr
 17.1 12 12.03Dijkstra 18.98 2.71 2.74Fft inv 22.81 3.45 3.7Fft 23.21 1.65 2.78Sha 16.05 -1.07 -0.96Stringsear
h 18.6 -0.66 6.87susan.
orners 18.29 3.92 6.35Susan.edges 21.69 2.25 3.64susan.smoothing 17.62 3.46 3.53Field 17.29 10.03 10.05Pointer 16.67 0.17 0.19Transitive 16.06 -3.13 4.13Update 16.78 2.07 14.41Average 18.56 3.16 5.42Table 2: Performan
e penalty parameters for 32 byte 
a
he blo
ksThe baseline to whi
h the penalties are 
omputed is a standard program exe
ution with no en
ryption orany other se
urity method. Tables 7 and 7 show the performan
e of the system with details on how mu
h theextra nop, inserted in the instru
tion stream, a�e
ts the exe
ution, and how mu
h penalty 
omes from theextra en
ryption and validation in the Guard. As expe
ted the larger 
a
he blo
ks in
ur less overhead, sin
ethe ratio of nop:original instru
tions is larger. On average the extra penalty 
aused by the nop insertion is3.51% and the added validations a

ounts for a total of 4.71%. The performan
e penalty is even less for thesystem with 64 bytes 
a
he blo
ks:2.12% from the nop exe
ution and 2.91% total. The in
rease in programsize is also a major 
on
ern in embedded appli
ations. Using only 32 bits for keeping the integrity validationdata, the prote
tion s
heme that we are proposing in
reases the overall program size by only 12.5% for the32 byte 
a
he blo
ks and 6.25% for the 64byte ones.The last table (7) 
ompares the overhead of the prote
tion me
hanism for both 32 and 64 byte 
a
heblo
ks with a baseline 
onsisting in EED exe
ution. The results show that the size of the 
a
he blo
k hasa major in
uen
e on the performan
e of the ben
hmarks. Sin
e the major performan
e penalty 
omes fromthe exe
ution of the extra nop and the 
a
he misses that it 
auses, the larger 
a
he blo
k has a smaller ratioof overhead 
ode per workload 
ode and though a
hieves better results. For all the ben
hmarks analyzed,the miss rate for the instru
tion 
a
he is very small - 0.001% on average - and so the added penalty for theen
ryption is signi�
antly lower than the overhead of the nop. This observation motivates further analysis onhow to eliminate passing the extra nop to the pro
essor, modifying the guard to a
t as an additional upperlevel 
a
he 
ontroller. The spa
e utilization by the fpga guard is very low, the major 
omponent being theaes-de
ryption (284 sli
es and 7 BRAM for a synthesis on XUPXilinxVirtex2Pro ) and with minimal on-
hipmemory (
urrent address bu�er and pro
ess keys). 9



Ben
hmark Ca
he miss penalty(%) Added Penalty by nop(%) Overall Penalty(%)Bit
ount 13.02 3.99 4.02Cr
 13.5 2 2.03Dijkstra 11.89 2.15 2.18Fft inv 17 2.47 2.62Fft 16.85 2.55 2.64Sha 10.82 4.22 4.29Stringsear
h 12.72 -1.44 3.57susan.
orners 12.68 3.33 4.87Susan.edges 15.42 1.98 2.88susan.smoothing 12.72 -0.01 0.04Field 13.31 9.24 9.27Pointer 14.1 -0.3 -0.28Transitive 12.01 3.53 10.53Update 11.81 2.44 14.26Average 13.42 2.58 4.49Table 3: Performan
e penalty parameters for 64 byte 
a
he blo
ks8 Con
lusions and Future WorkThis paper proposed a powerful method of 
ode prote
tion from physi
al atta
ks and stops most of thebu�er over
ows atta
ks. Our work 
ontinues with a s
heme to use the FGPA Guard in an eÆ
ient way toprote
t data lo
ated in the untrusted memory and on te
hniques to redu
e the 
a
he miss rates. An a
tualimplementation on the system on a Virtex2 FPGA Testing platform from Xilinx is also the target of our
urrent work.9 A
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