
A Hierarchical Key Pre-distribution Scheme

Mahalingam Ramkumar
Dept. of CSE, Mississippi State University

Nasir Memon
Dept. of CIS, Polytechnic University

Rahul Simha
Dept. of CS, The George Washington University

Abstract

We present an efficient, scalable, and renewable hier-
archical random key predistribution (KPD) scheme as an
enabler for a low complexity security infrastructure. As
the proposed KPD scheme employs only symmetric cryp-
tographic primitives it permits resource constrained nodes
to take part in the deployment. Further, two nodes need to
exchange only their IDs before they can establish a shared
secret. The proposed KPD scheme provides scalable secu-
rity for different levels of the hierarchy depending on avail-
able resources. In addition higher levels of the hierarchy
are protected from security breaches in lower levels.

1 Introduction

For many applications, for example wireless communi-
cation devices employed by soldiers belonging to a regi-
ment to communicate with each other, with their officers,
and perhaps soldiers belonging to other regiments, suggest a
natural hierarchy of devices deployed. Smooth operation of
such deployments calls for a security infrastructure which
“mirrors” the organization of the devices. In other words,
a hierarchical key distribution scheme is called for. This
would, for instance, permit devices (or personnel control-
ling such devices) higher up in the hierarchy, to monitor,
control and set permissions and policies for communica-
tions involving devices at lower levels.

A common approach for securing such hierarchical de-
ployments is by using a public key infrastructure (PKI).
However, solutions based on PKI may not be very suit-
able for all applications. For instance, the use of pub-
lic key cryptography may be impractical due to computa-
tional demands and bandwidth overhead (due to the need to
exchange signed public keys) necessitated by asymmetric
cryptography.

KPD schemes are inherently trade-offs between secu-
rity and resource utilization. Their significantly reduced
resource requirements (as compared to PKI) would permit

even resource constrained devices to be part of the deploy-
ment. Their limitation in security is the need to restrict sizes
of attacker coalitions, perhaps through some assurance of
tamper-resistance of the devices with preloaded secrets.

However, the increasing need for autonomous operation
of devices implies that tamper resistance is not optional.
This realization is already driving technology to improve
tamper-resistance of devices. While tamper resistance may
not be able to provide unconditional guarantees in the face
of an attacker with unlimited time and resources, it may be
able to provide “limited guarantees.” Fortunately (we ar-
gue), a combination of limited guarantees provided by tam-
per resistance, and periodic renewal of keys can dramati-
cally enhance the security of KPD schemes. However, even
though many KPD schemes have been proposed in litera-
ture, not all of them can effectively utilize the advantage
provided by key renewal. Further they do not extend read-
ily to hierarchical deployments.

In this paper, we propose a hierarchical random key pre-
distribution scheme. In the proposed scheme “child” nodes
are provided with a subset of keys belonging to the “par-
ent” nodes. Further, the subset of keys preloaded in child
nodes, are hashed (a variable number of times) using a cryp-
tographic, pre-image resistant hash function. The proposed
scheme enables a tree-hierarchical deployment, and pro-
tects higher levels of the hierarchy from security breaches
in lower levels. Under some realistic assumptions, we show
that an attacker may need to tamper with a few hundred
thousand nodes (in a finite period of time) in order to com-
promise the proposed KPD scheme.

In the Section 2 we provide a brief overview of various
KPD schemes, and divide them into 2 categories. Various
extents of attacks an attacker can inflict on KPD schemes
(by compromising nodes) are discussed. In Section 3 we
introduce a hierarchical random KPD scheme and provide
a quantitative analysis of its security. The proposed scheme
is an hierarchical extension of a previously proposed KPD
scheme, HARPS [1]. In addition to the hierarchical exten-
sion, this paper takes into consideration the effect of partial
read-proofing of secrets on the security of the scheme. In

Section 4 we provide some justification for the assumption
of partial read-proofing.

2 Key Pre-distribution

A KPD scheme consists of a trusted authority (TA), and
� nodes with unique IDs (say ��� � � � ���). The TA
chooses � secrets � and two operators ��� and ���. The
operator ���, is used to determine the secrets �� that are
preloaded in node �. Any two nodes � and �, with preloaded
secrets �� and �� can discover a unique shared secret ���

using a public operator ��� without further involvement of
the TA. The restrictions on ��� and ��� in order to satisfy
these requirements can be mathematically stated as follows:

�� � ���	 ����

��� � ����	 ���� � ���� 	 ����

� ���	 ��� 	 ���� � ���	 ���	 ����
 (1)

As ��� is public, it possible for two nodes, just by exchang-
ing their IDs, to execute ��� and discover a unique shared
secret. As the shared secret is a function of their IDs, their
ability to arrive at the shared secret provides mutual assur-
ances to � and � that the other node possesses the necessary
secrets �� and ��, respectively, and can thus be “trusted.”
The secrets preloaded in each node is referred to as the
node’s key-ring. We shall represent by �, the size of the
key ring.

The established trust is based on the assumption that
no one else, apart from node � has access to the secrets
�� . Note that the main difference between KPD schemes
and conventional KDSs (like Kerberos, PKI) is that the
preloaded keys in different nodes are not independent - they
are all derived from the same set of � secrets�. Thus, if an
attacker manages to expose secrets buried in a finite number
of nodes, he may be able use this “knowledge” to “compro-
mise the system.” However, the phrase “compromising a
KPD scheme,” may have different meanings, depending on
the attacker’s motivation (and capabilities).

With access to secrets�� � ����� � ����� exposed from
� nodes (say by tampering with them), The attacker may
be able to determine��� , which allows him to masquerade
as node � for his interactions with node � (or vice-versa).
Some possible motivations then, of the attacker, would be
to determine��� for the following cases:

1. Eavesdropping Attack (AE): A specific �	 �. The
ability to engineer this attack (by compromising � �
�� nodes) permits the attacker to eavesdrop on any
communication between nodes � and �.

2. Synthesis Attack (AS): A specific �, when � is the TA.
A successful attack (by compromising � � �� nodes)
permits the attacker to effectively synthesize a (non-
compliant) node that can impersonate node � for any
interaction

There is thus a notion of “extent of damage” that an attacker
can inflict, depending on the capability and the efforts of the
attacker to expose secrets.

KPD schemes, are inherently trade-offs between secu-
rity and resource constraints in nodes. In general, more the
available resources in each node, more is the effort needed
by the attacker to compromise the system. However, dif-
ferent KPD schemes employ different mechanisms of trade-
offs. For instance, for some KPD schemes (say category
1), the effort needed (number of nodes that need to be com-
promised) for accomplishing any of the attacks (eavesdrop-
ping, synthesis, consummate) is the same. For other KPD
schemes (category 2), it may be substantially easier to ac-
complish eavesdropping attack and increasingly difficult to
accomplish synthesis and consummate attacks.

Category 1 KPDs that could resist compromises of up to
� nodes, are referred to as �-secure KPDs. Typically, the
category 1 KPD schemes are based on finite field arithmetic
techniques [2]-[5]. They need only � � ��� preloaded
keys in each node in order to be �-secure. But they suffer
from problems of catastrophic onset of failure. As long as �
nodes (or less) are compromised, the system is completely
secure. But with � � � compromised nodes the entire sys-
tem is compromised - or all three attacks become feasible.
Moreover, they are also computationally more expensive
due to the need for finite-field arithmetic. In addition, ex-
tension of category 1 schemes to hierarchical deployments
typically results in significant increase in complexity. Fur-
ther, with category I schemes, the same set of preloaded se-
crets that enable mutual authentication, cannot be used for
other security associations needed for multicast security.

The concept of �-secure KPDs, however does not read-
ily extend to describing the category 2 KPD schemes which
include random KPD schemes [1], [6] - [8] provide only
probabilistic guarantees of security - in which case a more
appropriate characterization would be ���	 ���-secure with
probabilities of compromise ���	 ��� respectively (��	 ��
nodes need to be compromised to engineer eavesdropping
and synthesis attacks with probabilities �� and �� respec-
tively). For example, a random KPD scheme may provide
an assurance that it could “resist” eavesdropping attack even
when �� nodes have been compromised - however with a
probability of failure of say �� � �����.

3 A Hierarchical Random KPD Scheme

HARPS is a simple random KPD where each node is
preloaded with a hashed subset of keys belonging to its par-
ent. A hierarchical deployment of HARPS starts with a
node� with � secrets� � ��� � � ��� �, at the root of the
tree (see Figure 1). The root node has many (say ��) chil-
dren, with IDs ��, � � � � ��, at level �. A node �� has a
set of �� secrets � � - which is a subset of the � secrets �,
repeatedly hashed a variable number of times. The choice of

α1 α 2 α 3 α4

α4β 1 α4β 2 α4β 3α1 1 α1 2β α1 3β α1 4β β α2 1 α2 2β α 3 α2 4β β β 2 α3β 1 α3β 2 α3β 3

α3β 2γ2 α3β 2γ3α3β 2γ1
Level 3

Level 2

Level 1

Level 0

R

α1β 2γ2 α1β 2γ3α1β 2γ1

Figure 1. A 4-Level Hierarchical Deployment
of HARPS

the subset of keys, and the number of times each chosen key
is hashed, is determined by a public operator ����, and the
node ID. Or, ����	 ���	 ���	 ���	

 	 ���	 ���� � ������.

In other words, the first coordinate ���	 ��	

 	 ��� indi-
cates the indexes of the preloaded keys (between 1 and�) in
node ��, and the second coordinates ���	 ��	

 	 ���, their
corresponding “hash-depths” - or the number of times each
chosen key is hashed. The hash depths of the keys in level
� nodes are uniformly distributed between 1 and ��. Thus
� � � � �������	��, where the function � ��, “chooses” the
keys dictated by the set of first coordinates of ������, and
hashes each key the required number of times (as dictated
by the set of second coordinates of ������). As a concrete
example, �� � ��	 �� � �� implies that the first preloaded
key in node �� is the the key indexed 23 (or��� of the TA)
repeatedly hashed 31 times.

The level � children of a node �� are ���� , � � � � ��,
and the level � children of the node � ��� are �����	, � �
� � ��
� . A public operator ������ determines the indexes
and hash depths of the keys preloaded in � ��� (w.r.t the par-
ent device ��) and a similar ����	� determines the indexes
and hash depths of the keys preloaded in � ����	 (w.r.t the
parent device ����). The secrets preloaded in nodes ����
and �����	 are therefore

� �� � � � �������	 � � � and � �� � � 	 � � �����	�	 � �� � �
 (2)

The indexes of the �� preloaded keys in level � devices
range between 1 and ��, and their hash depths between
�� � � and �� (�� � ��). Similarly the indexes of the
�� preloaded keys in level � range between 1 and �� and
the hash depths between �� � � and �� (�� � ��). Note
that as long as the hash function used is pre-image resistant,
compromise of secrets in lower levels of the hierarchy does
not affect the higher levels.

3.1 Security Analysis

The analysis of security of HARPS involves estimation
of the probability of success of attacks AE and AS by an
attacker who has managed to expose secrets from� nodes.
We shall assume that the attacker can expose only a fraction
� (� � � � �) of secrets1 by tampering with any node (we
shall provide a justification for this assumption in Section
4). Further, by doing so, the node is rendered unusable in
future.

The extent of damage an attacker can inflict, depends not
just on the value of� (the number of nodes tampered with)
and the fraction �, but also on the “position” of the nodes
in the hierarchy. Let us assume that the (partially) com-
promised nodes belong to the level 2, and that they are all
children of one level 1 node, say �� - or let the � nodes
be ���� � � �������. While knowledge of level 2 secrets
has no effect on the security of level 1 and level 0 secrets,
they could potentially be used for compromising communi-
cations involving other level 2 and level 3 nodes.

By tampering with� nodes in level 2, ���� � � �������,
the attacker exposes a total of ���� secrets. The exposed
secrets are hashed versions (hash depths uniformly dis-
tributed between �� � � and ��) of a subset of secrets of
the root node �. With the exposed secrets, he could dis-
cover the shared secrets between various nodes (to accom-
plish attack AE) or synthesize nodes (to accomplish attack
AS).

3.1.1 Resistance of HARPS to Attack AE

What we are interested in now, is the probability �� that an
attacker can discover the shared secret between say,

SS nodes ���� and ���� (two siblings attempting to dis-
cover their secret and the compromised nodes are also
siblings of both nodes).

CS nodes ���� and ���� (two cousins try to discover a
secret when the compromised nodes are siblings of one
of the nodes).

SC nodes ���� and ���� (two siblings try to discover
a shared secret, and the compromised nodes are
cousins).

CC nodes ���� and ���� (two cousins try to discover a
secret when the compromised nodes are not siblings of
either node).

For the four different scenarios, the probability of eaves-
dropping �� (or the probability of success of attack AE) is
given by ����� � ��� ��� , where

� � ��
��

��� ����	�����	 ��

���	 �� �
��

���
����
��

�
���
�

��

(3)

1See for instance “partially openable chips” in [8].

Table 1. Expressions for �� and ����	�� in Eq (3) for scenarios SS, CS, SC and CC.
SS ���� 	 ���� �� � ���

�
� ����	�� �

�
�
�

�
�����

���� ����
���

CS ���� 	 ���� �� � ������
� ����	�� �

�
�
�

�
�����

���� ����
���

SC ���� 	 ���� �� � ���
�
� ����	�� �

�
�
�

�
�������

���� ������
���

CC ���� 	 ���� �� � ������
� ����	�� �

�
�
�

�
�������

���� ������
���

Table 2. Resistance of hierarchical HARPS to attack AE.
�� for SS �� for CS �� for SC �� for CC

�� / �� ��� / ���� / ����� ��� / ���� / ����� ��� / ���� / ����� ��� / ���� / �����

0.075 / 0.75 2400 / 505 / 190 2050 / 420 / 125 3150 / 675 / 253 2750 / 560 / 168
0.075 / 0.50 2400 / 505 / 190 1690 / 312 / 40 4700 / 1010 / 380 3400 / 625 / 81
0.050 / 0.75 2940 / 584 / 151 2560 / 470 / 60 3850 / 780 / 203 3400 / 625 / 81

The term �� is the probability that two nodes trying to dis-
cover a shared secret, share a particular key (say key in-
dex �, � � � � �). The term ����	�� is the probabil-
ity that exactly � instances of the ���key is present in the
set of all keys exposed by the attacker (by revealing a frac-
tion � of secrets from � nodes). The term ���	 �� is the
probability that maximum of the hash depths of the � ��key
shared by the two nodes attempting to discover shared se-
cret, is smaller that the minimum hash depth of the � in-
stances of the ���key that the attacker has access to. The
expressions for �� and ����	�� for the four different sce-
narios are given in Table 1. In the table, �� � ��

��
, and

�� � ��
�

. Table 2 depicts the relationship between �� and
�, for � � �
�. In other words, Table 2 depicts the num-
ber of nodes the attacker may need to tamper with (�) to
eavesdrop on communications between two nodes (for the
four different cases SS, CS, SC and CC), with probabilities
of �� � �
�, �� � ���� and �� � ����� respectively. The
results are based on the choice of � � �
�, � � ����, and
� � ���, for three different choices of �� and ��. As an
example, for �� � �
�	�	 �� � �
�� (row 2), for a scenario
where two cousins interact and the compromised nodes are
siblings of the interacting nodes (CS), the attacker needs to
tamper with 1690 nodes to be able to obtain the shared key
between the interacting cousins with a probability of �
�.

3.1.2 Resistance of HARPS to Node Synthesis
For accomplishing attack AS, the attacker should be able
to expose all keys buried in a node. If he has exposed a
fraction � of keys from� nodes, the probability of synthesis
of a specific node is �� � ��� �
�� , where

�
 � �
�
��

��� �
���	���
��	 ��

�
��	 �� �
�

�

��
���

�
���
�

�� (4)

and �
� � ��
�

� ��, the probability that a targeted node
has a particular key (say index �, � � � � �). �
���	��
is the probability that exactly � instances of the ���key is
present in the set of all keys exposed by Oscar. The term

Table 3. Resistance of hierarchical HARPS to
attack AS (or node synthesis).

S C
�� �� � �
	� �� � �
�� �� � �
	� �� � �
��

0.075 101000 101000 133000 196000
0.050 181000 181000 238000 353000

�
��	 �� is the probability that hash depth of the ���key
in the target node is smaller that the minimum hash depth
of the � instances of the ���key that the attacker has access
to. For the case of synthesis of a node by attacking other
sibling nodes (S) or cousin nodes (C),

�
���	�� �

� �
�
�

�
�����

���� ����
��� (S)�

�
�

�
�������

���� ������
��� (C)

(5)

where �� � ��
��

. With access to � nodes, the attacker can

expect to successfully synthesize one node if � � �

��
. Ta-

ble 3 illustrates the number of nodes the attacker needs to
tamper with in order to successfully engineer attack AS for
two different scenarios (the compromised nodes may be sib-
lings (S) or cousins (C)), for � � ����	 � � ���	 � � �
�)
for four different values of ��	 ��. Note that he has to com-
promise over 100000 nodes for all situations.

It should be pointed out here that the results reported in
Table 3 based on Eq (4) assume that in order to synthesize
a node, the necessary keys are obtained by tampering with
other nodes. However, a fraction � of the desired keys are
obtained by tampering with the target node itself. Thus we
only need to obtain the remaining fraction �� � by tamper-
ing with other nodes. The revised estimate �� (of �, the
number of nodes an attacker needs to tamper with) can be
easily obtained by adjusting the estimates of � in Table 3
as�� � ��� ���� �.

However, for small �, �� � �. Obviously, if � � �,
an attacker needs to tamper with only one node in order to
synthesize one node.

3.2 Summary of Properties

The performance of hierarchical HARPS obviously de-
pends on many factors like � (the size of the key ring, which
is different for each level), � (the range of hash depths in
each level - which may be different for each level), the frac-
tion � (the “guarantee” provided by tamper resistance) and
the choice of the ratios of key ring sizes between levels (like
�� and �� in our discussion) and the desired probability of
failure. Due to limitations of space we have restricted our-
selves to reporting the values for a fixed ��, � and �. How-
ever the estimates of� for other cases can be easily extrap-
olated.

In order to increase � (or resistance to attacks), apart
from optimizing the values of �� and ��, we could increase
the value of �� and / or strive to reduce � (by improving
technology for tamper resistance). An increase in �� by a
factor � results in a � fold increase in the value of �. Also,
an increase in � by a factor � reduces� by the same factor.
In other words� � ��

�
.

The value of � can also be increased by increasing �
- however the relationship is not linear. Numerical evalua-
tions show that � increases approximately 3 fold as � in-
creases from 32 to 512. The exact nature of the relationship
is currently being investigated.

The value of �� determines the security of interactions
between nodes in different branches of the deployment. A
small value of �� results in reduced security of inter branch
interactions. However, the loose coupling between branches
results in increased resistance to a compromises in other
branches. However, any desired level of security can al-
ways be obtained at the expense of increased complexity
(increasing the number of preloaded keys).

4 Partial Read-Proofing

A fundamental difference between KPDs and conven-
tional KDSs is that KPDs typically have multiple secrets
in each node, while a KDS based on Kerberos or PKI have
only one secret for each node. In other words, for PKI and
Kerberos, there are times when the entire secret needs to be
stored in RAM2 (whenever the key is needed for some com-
putation). However, for KPDs, only one of the � keys stored
in a node is actually needed for computation at any point in
time. For instance, even though a shared secret ��� be-
tween two nodes � and � may be a function of � keys,
the actual calculation of the secret��� may need only one
key at a time. This difference provides a significant advan-
tage for KPDs - and a more practical way of realizing “par-
tial read-proofness” - it is easier to keep most KPD secrets
“protected” at any point in time!

2This is not strictly true for asymmetric ciphers like RSA which need
to perform exponentiation using the private key. At any time only one bit
of the private exponent is needed.

In other words, we can ensure that all keys are always en-
crypted at any point in time except for one, (or a small set of
keys) currently in use - or we decrypt only when necessary! 3

A single key �� used for encrypting (and decrypting) the
KPD keys could itself be stored in a volatile CPU register.
Whenever some intrusion is sensed, as long as the key��

is erased, very few (or just one) KPD keys which are cur-
rently unprotected could be exposed by tampering.

For example, an attackers strategy may be to suddenly
immerse a functioning chip in liquid nitrogen and freeze
all “bits” in their current state. As long as a sensor (which
would perhaps sense sudden changes in temperatures) could
react fast enough to erase the single volatile key�� stored
in RAM, the attacker may be able to expose only a small
fraction of keys which are currently unprotected. In theory,
there is no reason why it should not be possible to ensure
that no more than one secret is “exposed” at any point in
time (if a node has 1000 secrets in its key-ring this translates
to � � �
���).

While it may be easy to protect a single key �� when
a device is in use, protecting the key when the device is at
rest may be more difficult. However physical unclonable
functions (PUFs) [10] offer a nice solution to this problem.
PUFs employ uncontrollable and unique delays in fabri-
cated chips (even though many chips may be manufactured
with identical masks, each chip would have some differ-
ences in the delays in their circuits). The delays could be
used to implement a unclonable one-way function. Thus
a one-way function provided by the PUF could be pro-
vided a challenge� to obtain a response�� . The secret to
be protected at rest could be encrypted with�� and stored
in non-volatile memory, along with � . When the device is
powered on, the key�� could be regenerated by challeng-
ing the PUF with � . However, when the device is powered
off, there is no way for an attacker to determine �� from
�!

However, the use of PUFs may not be feasible for very
low powered devices like wireless sensors. But for such ap-
plications, typically, the effective lifetime of a device may
be limited by the battery life. In other words, such devices
may remain powered-on throughout their useful lifetime.
When the battery dies down, the secrets stored in the de-
vice would be rendered unusable as �� (which is used to
encrypt all secrets) is lost.

4.1 Node Synthesis and Key Renewal

Accomplishment of attack AS (the ability to “fool” the
TA), implies successful “synthesis” of a node by an attacker.
Increased resistance of KPD schemes to node synthesis (or
attack AS) can be used advantageously by periodic renewal
of keys. For renewal, each node would authenticate itself to
its parent using all its preloaded secrets, and receive a set of

3In [9] this is referred to as the DOWN policy.

new keys. If � � the attacker can only expose a fraction of
the keys by tampering with a target node. For determining
other keys, the attacker has to carry out a synthesis attack.
As long as synthesis attack is prohibitively expensive (with
the down policy in place - or � � �

�
, the attacker may have

to compromise one secret from a few million nodes in order
to engineer attack AS) the attacker cannot take part in key
renewal with a synthesized node.

After key updates, the efforts of an attacker to gather se-
crets that made it possible for him to perform attack AE, are
rendered useless. Category 2 KPD schemes benefit from
such a key renewal infrastructure, which obviously is not
nearly as useful for category 1 KPD schemes. Thus (for
category 2 KPD schemes) a combination of “some extent
of tamper resistance” and “periodic renewal” of keys has
the ability to render them a lot more secure.

The tree-hierarchical deployment also helps avoid up-
date floods for the renewal process. Note that each node
only needs to approach its parent for renewal. The renewal
process could start with the root node replacing some of its
� secrets with new secrets. It is also possible that some se-
crets may be replaced with their pre-images (under the one-
way hash used for HARPS4). Nodes in Level 1 approach the
root node for key updates. After a level 1 node has renewed
its secret it child nodes (in Level 2) can renew its secrets by
interacting with the parent node.

5 Conclusions

The main motivation of this paper is the extension of
a KPD scheme to hierarchical deployments, and an anal-
ysis of its security under some “reasonable” assumptions
of guarantees provided by tamper resistance. Our analysis
demonstrates that it may be impractical for an attacker to
compromise a security infrastructure based on hierarchical
HARPS.

While dependence on tamper resistance has, and perhaps
will continue to be a controversial issue [11]-[14] among
cryptographers, there is no denying the fact that it is indeed
mandatory for deployments with autonomous devices. We
could therefore expect technology, driven by need, to pro-
vide suitable solutions to this problem.

References

[1] M. Ramkumar, N. Memon, “An Efficient Random Key
Pre-distribution Scheme for MANET Security,” IEEE
Journal on Selected Areas of Communication, March
2005.

4In order to do this the root node should have generated a one-way
chain of such secrets and used the last key in the chain as the corresponding
root secret - this could be done for each of the � secrets.

[2] R. Blom, “An Optimal Class of Symmetric Key Gen-
eration Systems,” Advances in Cryptology: Proc. of
Eurocrypt 84, Lecture Notes in Computer Science,
209, Springer-Verlag, Berlin, pp. 335-338, 1984.

[3] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U.
Vaccaro, M. Yung, “Perfectly-Secure Key Distribution
for Dynamic Conferences,” Lecture Notes in Com-
puter Science, vol 740, pp 471–486, 1993.

[4] T. Matsumoto, M.E.Hellman, “New Directions in
Cryptography,” IEEE Transactions on Information
Theory, IT-22(6), Dec. 1976, pp.644-654.

[5] D. R. Stinson, T. van Trung, “Some New Results on
Key Distribution Patterns and Broadcast Encryption,”
Designs, Codes and Cryptography, 14 (3) pp 261–279,
1998.

[6] M. Dyer, T. Fenner, A. Frieze and A. Thomason, “On
Key Storage in Secure Networks,” Journal of Cryptol-
ogy, 8, 189–200, 1995.

[7] M. Ramkumar, N. Memon, R. Simha, “Pre-Loaded
Key Based Multicast and Broadcast Authentication in
Mobile Ad-Hoc Networks,” Globecom-2003.

[8] T. Leighton, S. Micali, “Secret-key Agreement with-
out Public-Key Cryptography,”Advances in Cryptol-
ogy - CRYPTO 1993, pp 456-479, 1994.

[9] M. Ramkumar, “DOWN with Trusted Devices,” sub-
mitted to the New Security Paradigms Workshop
(NSPW 2005).

[10] B. Gassend, D. Clarke, M. van Dijk, S. Devadas,
“Controlled Physical Random Functions,” 18th An-
nual Computer Security Applications Conference, San
Diego, CA, Dec 2002.

[11] M.G. Zapata, “Secure Ad hoc On-demand Distance
Vector Routing,” Mobile Computing and Communi-
cations Review, 6(3), 2001.

[12] R. Anderson, M. Kahn, “Tamper Resistance - a Cau-
tionary Note,” Second USENIX Workshop on Elec-
tronic Commerce Proceedings, pp 1-11, Oakland, CA
1996.

[13] Semiconductor Insights Inc., “Tamper Re-
sistance - A Second Opinion,” available at
http://www.smartcard.co.uk/resources/articles/tamper-
res.html.

[14] E. Auer, “Tamper Resistant Smart Cards - At-
tacks and Counter Measures,” available at
http://www-krypt.cs.uni-sb.de/teaching/ semi-
nars/ss2000/auer.pdf, Sep 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

