
Security-Driven Compilation:

A New Direction for Compiler Research
�

Rahul Simha
�
, Alok Choudhary

�
, Bhagi Narahari

�
, Joseph Zambreno

�

October 24, 2004

Abstract

The growing importance attached to the security
of software systems has focused considerable atten-
tion on various problems related to security in com-
puting. A vast array of research efforts ranging
from highly technical cryptographic techniques all
the way to higher-level information policy are cur-
rently engaged in addressing the security needs of the
next generation of computing infrastructure. This pa-
per reviews the role that compilers and compiler re-
search can play in this realm. Because they routinely
extract useful program structure and transform code,
compilers are uniquely positioned in some ways to
have a direct impact in the creation of more secure
software. These features, among others, together
with a fresh approach towards software protection
based on compilation, can result in more robust ap-
plications and computing infrastructures. This paper
will review on-going efforts, explore future research
directions and make the case for renewed attention
in this important area at the intersection of compiler
and security research.

�
Supported in part by NSF grant ITR-0325207.�
Department of Computer Science, The George Washington

University, Washington, DC 20052. Email: simha@gwu.edu�
Department of Electrical and Computer Engineering,

Northwestern University, Evanston, IL. Email: choud-
har@ece.northwestern.edu�

Department of Computer Science, The George Washing-
ton University, Washington, DC 20052. Email: nara-
hari@gwu.edu	

Department of Electrical and Computer Engineering,
Northwestern University, Evanston, IL. Email: zam-
bro1@ece.northwestern.edu

1 Introduction

Research into software security or software protec-
tion has intensified in recent years following sev-
eral high-profile disruptions of computing systems.
Hackers all over the world know that the key steps
to attacking a software system is to first understand
the software, and then to tamper with the software
to enable a variety of full-blown attacks. The grow-
ing area of software protection aims to address the
problems of code understanding and code tamper-
ing along with related problems such as authoriza-
tion. The general objective of research efforts in this
area is to provide techniques to help proper autho-
rization of users, to prevent code from being tam-
pered with and to also make it harder for attackers to
extract information that could be used in identifying
system vulnerabilities. Computer security has wit-
nessed several decades of research that has produced
techniques in a variety of security-related areas in-
cluding among others: cryptography, security pro-
tocols, proof systems, intrusion detection, authen-
tication, policy definition and enforcement, secure
communication, and architectural support for secure
computing. Over time, security objectives have in-
vited cross-disciplinary interest as researchers in the-
ory, networking, architecture, data mining and signal
processing, have brought their expertise towards ad-
dressing problems in security.

The purpose of this paper is to review research that
addresses the following question: what role can com-
pilers and compiler research play in achieving secu-
rity objectives? By reviewing current efforts in this
area, and outlining potential directions for future re-
search, we make the case that the research commu-
nity can benefit from a greater level of attention di-



rected at the intersection of compilers and security.
Just as compiler and language research has evolved
over the years to encompass objectives such as par-
allelism, interpreted languages, virtual machines, ar-
chitecture and hardware description languages, so
too, we argue, should compilers take up security as a
primary objective.

The belief that that compilers should play a
stronger role in building future secure systems is
based on the following rationale: First, compilers are
well-positioned in their “gateway” role in software
creation: almost all executable software today is
created with compilers, and therefore, effective
techniques embedded in a compiler can automati-
cally reach executables without conscious effort on
the part of developers. Second, compilers already
extract a great deal of program structure, enabling
a more detailed automated analysis than may be
possible with pre or post-compilation tools. Third,
compilers modify code in various ways; these trans-
formations can be used for many security objectives.
In fact, this key feature is part of the foundation
of many existing software protection approaches.
Fourth, because decades of research in compiler
optimization have made their way into compiler in-
frastructures, the compiler is probably the best place
to manage security-performance trade-offs. Fifth,
many well-known compilers such as gcc centralize
architectural information in one place and therefore,
security transformations that are implemented at the
level of intermediate code or higher can immediately
impact code written for a variety of processors.
Sixth, compilers often exploit architectural features
such as instruction-level parallelism and are there-
fore well-positioned to exploit similar hardware
support for security. Finally, and perhaps most
importantly, because compiler research involves
managing entire compiler infrastructures, compiler
researchers tend to be experienced in all aspects
of compilers, ranging from language constructs
at the front-end to low-level hardware features at
the back-end. This encourages a comprehensive
top-down view in supporting security objectives.

In this paper, we review on-going efforts in many
sub-areas of compiler-security research. These in-
clude high-level language design issues as well as
low-level hardware issues. Because compiler re-

search includes this broad span of issues, there are
equally many promising directions for future re-
search.

To help frame our discussion of issues, we divide
attacks on software integrity into four kinds. In a
code tampering attack, executable code is tampered
with for a variety of purposes including interfering
with licensing, changing the feature-set and using
the code to attack other devices. A typical example
is the well-known buffer-overflow attack on the net-
working stack. An authorization attack is when code
tampering is used to circumvent a vendor’s checking
of permission in executing software on a particular
hardware. A data tampering attack refers to mod-
ifications of data such as passwords or internet ad-
dresses to enable hackers to exert control of software
behavior. Finally, the term code understanding is
self-explanatory: it is the necessary first step to any
of the other attacks.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe past and on-going
work in the field of software protection, categorizing
them in various areas that we hope will be helpful to
the reader. We follow that in Section 3 by describ-
ing a few projects in a little more detail, especially
focusing on projects that we are most familiar with.
Finally, Section 4 speculates on future directions.

2 Related Areas of Research

In this section, we review past and current work
in the general area of software security as related
to compilers. A broad survey of several software
protection techniques appears in [25]; these range
from tamper resistant packaging to hardware copy-
right notices. A survey of the broader area of soft-
ware security in the context of DRM appears in
[10, 62]. Note that several companies have formed
the so-called Trusted Computing Platform Alliance
(TPCA) to provide hardware-software solutions for
software protection [69]. Finally, an excellent survey
of tools for open-source software is provided in [16],
with a summary of analysis tools (some of which in-
volve source code parsing) as well as runtime tools
(such as StackGuard) that can be broadly considered
in the area of languages and compilers. Our review

2



will therefore focus on projects that also feature code
generation.

2.1 Copyright notice and Watermarking

The oldest “prevention” technique is to embed a
copyright notice into the code and to check for the
existence of the copyright upon execution. Because
an ordinary insertion of text is easy to find, compiler
techinques can be used to generate a number of inge-
nious watermarks by transforming the code. For ex-
ample, the arrangement pattern of basic blocks or the
order of functions in memory can be used to encode
a unique pattern that is hard to discern. A survey and
taxonomy of watermarking techniques can be found
in [13, 14].

Watermarks are very useful in tracking and iden-
tifying code that may be illegally copied because
unique watermarks can be used to trace the original
owner. However, they cannot prevent attacks dur-
ing execution unless accompanied by code that peri-
odically checks for the presence of the watermarks.
Note also that this form of software protection is
probably the easiest to hack: the code that checks
is simply removed or routed around. Also, a copy-
right check even if valid does not prevent a hacker
from actually modifying the code for unauthorized
purposes.

2.2 Obfuscating Compilers

In this technique, now receiving much attention,
code is deliberately mangled while maintaining cor-
rectness to make understanding difficult – a survey
of obfuscation techniques appears in [12]. Obfusca-
tion techniques range from simple encoding of con-
stants to more complex ones that re-arrange or trans-
form code [11, 12]. Techniques in [57, 58] also pro-
pose transformations to the code that make it difficult
to determine the control flow graph of the program,
and show that determining the control flow graph of
the transformed code is NP-hard. Theoretical limita-
tions are discussed in [6]. Obfuscation is attractive
because it is simple to use, does not involve any keys
and addresses the code understanding problem. It
can be used in conjunction with other techniques that

address code tampering. Obfuscation can also si-
multaneously provide a watermark. However, many
obfuscation techniques can be attacked by designing
tools that automatically look for obfuscations. An-
other approach to attacking obfuscation techniques is
to run the code in a debugger and to identify vulnera-
bilities by stepping through the code in the debugger.

2.3 Compiler-Generated Signatures

A digital signature [51] is a standard cryptographic
technique to help identify whether a block of text has
been modified. Typically, a text is hashed to form a
digest and the digest is signed with a key. Then, any
attack that modifies the text can be detected since the
modified text will result in a different digest with ex-
tremely high probability. Often, the hash is simply a
checksum, an idea that has been exploited for com-
puting digests of executable code.

The work in [8] introduces the concept of guards,
pieces of executable code that perform checksums to
guard against tampering. In [29], the authors propose
a dynamic self-checking technique to improve tam-
per resistance. The technique consists of a collection
of ”testers” that test for changes in the executable
code as it is running and reports modifications. A
tester computes a hash of a contiguous section of
the code region and compares the computed hash
value to the correct value. An incorrect value triggers
the response mechanism. They note that the perfor-
mance is invariant until the code size being tested
exceeds the size of the L2 cache, and a marked dete-
rioration in performance was observed when this oc-
cured. The techniques in [8, 29] are compatible with
copy-specific watermarking and other tamper resis-
tant techniques and requires using these to provide
a high level of software protection. In [4] a self-
checking technique is presented in which embedded
code segments verify integrity of the program dur-
ing runtime. The above proposed ”self-checking”
approaches essentially compute checksums on code
to assert code integrity [8, 29]. This computation is
exactly the same as any other digest or MAC compu-
tation for secure communication: it relies on the high
probability that a modification to the code will create
a modified checksum.

Such digest checking is attractive because digests

3



can detect any kind of modification to code or data,
and is relatively inexpensive in terms of computation
effort. Furthermore, no keys are required if the di-
gests are well-hidden. At the same time, these tech-
niques strongly rely on the security of the check-
sum computation itself. If these checksum compu-
tations are discovered by the attacker, they are eas-
ily disabled. However, in many system architec-
tures, it is relatively easy to build an automated tool
to reveal such checksum-computations. For exam-
ple, a control-flow graph separates instructions from
data even when data is interspersed with instructions;
then, checksum computations can be identified by
finding code that operates on code (using instructions
as data). This problem is acknowledged but not ad-
dressed in [29].

2.4 Static Analysis and Runtime Support

Static code analyzers scan source code and alert the
programmer about problems that might be exploited
for attacks. An excellent survey of tools, both static
analyzers as well as those with runtime comple-
ments, is provided in [16]. Static analysis tools such
as BOON [56] and CQual [26] scan C source code
to find potential buffer overflows or inconsistent us-
age of values. MOPS [9] uses a finite state machine
model of of what is considered valid behavior for a
particular program. If a property is violated during
analysis, i.e., an illegal state is reached in the finite-
state automaton, the programmer is alerted about a
potential vulnerability.

Static analysis is often complemented by runtime
support. This idea is not new – languages that en-
force array bound checking have existed since the
early days of computing. However, what is new is
that these ideas can be carried over into languages
like C with the help of tools such as StackGuard
[55] (to ensure that return addresses are valid) and
FormatGuard [17] (to address attacks on C’s printf
function). While static and runtime analysis are fo-
cused on particular types of attacks, the general idea
of ensuring correct behavior can be made stronger by
guaranteeing properties, as we discuss next.

2.5 Proof Carrying Code

Proof-Carrying Code (PCC) is a technique by which
a host can verify code from an untrusted source
[38, 40, 41, 2, 5, 7]. Safety rules, as part of a
theorem-proving technique, are used on the host as
guarantees for proper program behavior. Applica-
tions include browser code (applets) [5] and even op-
erating systems [38]. PCC is attractive for several
reasons. One advantage of proof-carrying software is
that the programs are self-certifying, independent of
encryption or obscurity. A second advantage is that
one can formally assert properties and state guaran-
tees. There is ongoing work on providing a compiler
that can build proofs automatically during compila-
tion. The PCC method is essentially a self-checking
mechanism and is vulnerable to the same problems
that arise with the code checksum methods discussed
earlier; in addition they are static methods and do not
address changes to the code after instantiation.

2.6 Programming Languages

A compelling approach to incorporating security into
software is to force the issue at the early development
stages, into a programming language itself or in tools
that rewrite programs to achieve security objectives.
Several efforts [31, 34, 39, 45] have taken up this
approach, resulting in techniques that use type-safe
assembly [37], language modification [31, 39] or ref-
erence monitors [23, 45]. Comprehensive surveys of
the general approach can be found in [34, 45].

A reference monitor is a piece of software, some-
times with hardware support, that observes the exe-
cution of a program to see whether memory bounds
or forbidden accesses are violated. Such monitoring
capability may be incorporated into a trusted operat-
ing system or may be “in-lined” into existing com-
piled code [23]. The paradigm of typed intermedi-
ate languages [27, 28] provides for type information
to be maintained and verified through the backend
of the compilation process [28, 37]. A type-checker
then verifies type safety, allowing programmer errors
as well as tool-chain errors to be caught. This ap-
proach, similar to the proof-carrying code concept
described earlier, is taken a step further in the notion
of a certifying compiler. For example, the Java com-

4



piler can be said to certify that it produces type-safe
bytecode, some properties of which are checked at
load time by the JVM. Language-based approaches
also include formal language methods, such as the
extension of pi-calculus for security [1].

These approaches form a useful complement to
the compiler-based approaches described thus far.
Language-based approaches go a step further in se-
curity by attacking the general problem of correct-
ness and incorporating safeguards against program-
mer errors. At the same time, direct modifications
to a language require a buy-in from the community
and may take time to find their way into standards.
The long-term impact of language-based approaches
is that useful features often find acceptance in the
next generation of languages, as Java has shown.

2.7 Compiling for Cryptographic Architec-
tures

We now describe some custom hardware approaches
to software protection because their relevance in
terms of compilers is that code generation is usually
followed by encryption, a feature that can be consid-
ered a back-end compiler function.

In a secure coprocessor, programs can be run in
an encrypted form on these devices thus never re-
vealing the code in untrusted main memory memory
and thereby making it difficult to understand or tam-
per with. A number of secure coprocessing solutions
have been designed and proposed, including systems
such as IBM’s Citadel[43], Dyad [53, 63, 64], the
Abyss and � Abyss systems [61, 60, 59], and the
commercially available IBM 4758 which meets the
FIPS 140-1 Level 4 validation [30, 49, 50]. An al-
ternative to a co-processor is a processor that is de-
signed to directly execute encrypted code, such as the
architecture proposed in [35], in which an execute-
only memory (XOM) allows instructions stored in
memory to be executed but not manipulated.

Like a custom processor, a custom operating sys-
tem on a standard processor presents an alternative
approach to software security. However, they are ex-
pensive to build and maintain. A more promising
approach might be an operating system such as SE-
Linux [36] with features that enable customizable se-

curity.

FPGA’s have been used for security applications
mainly for the purpose of speeding up cryptographic
computations [19, 44, 52, 33]. The FPGA manufac-
turer Actel [15] offers commercial IP cores for im-
plementations of the DES, 3DES, and AES crypto-
graphic algorithms and is currently developing new
anti-fuse technologies that would make FPGAs more
difficult to reverse-engineer [20].

2.8 Joint Compiler-Hardware Approaches

The hardware solutions described above that operate
on fully-encrypted executables are attractive because
of the quality of security they are able to provide. At
the same time, they require a substantial buy-in from
hardware manufacturers and can considerably slow-
down execution speed.

Such a highly-secure hardware approach and the
obfuscation techniques described earlier together
form two ends of a security-performance spectrum.
At one end are the hardware schemes that are either
slower or require special purpose processors, and
at the other end are obfuscation like schemes that
are efficient but provide limited security. These
extremes invite an approach that allows system
designers to position themselves where they choose
on the security-performance spectrum.

In [65, 66] we describe a joint compiler-hardware
approach that is designed to allow systems to be po-
sitioned at various points in the spectrum. The hard-
ware used is an FPGA (Field Programmable Gate Ar-
ray), which offers field-programmability and is read-
ily available with many processor cores. This ap-
proach is described next in Section 3.2.

3 Some Current Projects

3.1 HIDE - Hardware Assisted Bus-
Leakage Protection

When memory and processor communicate across an
open bus, it is relatively easy to record the bus traf-
fic in order to extract information, even if the data
is encrypted. When memory and processor are on

5



the same board, a sophisticated attacker with access
to modern electronic laboratory equipment can insert
probes to record the traffic between memory and pro-
cessor for the same purpose.

As shown in [67, 68], applications have specific
execution patterns that are easily identifiable from
the trace of memory addresses that bus snooping pro-
vides. The HIDE project [67, 68] describes an ap-
proach to obfuscate these access patterns by chang-
ing the locations of data during program execution.
Their approach is to randomly permute data ad-
dresses so that a particular piece of data is regularly
moved to new locations, and accessed from the new
locations in order to obfuscate the true access pattern.
They show that a modest addition to hardware can
implement the permutation efficiently enough to im-
pose a minimal overhead on overall execution time.

3.2 SAFEOPS - A Joint Com-
piler/Hardware Approach

SAFEOPS (Software/Architecture Framework for
the Efficient Operation of Protected Software)
[65, 66] is a compiler/FPGA technique in which
the processor is supplemented with an FPGA-based
secure hardware component that is capable of
fast decryption and, more importantly, capable of
recognizing and certifying strings of “codes” (keys)
hidden in regular unencrypted instructions - see
Figure 1. Parts of executable code are either fully
encrypted with standard private-key techniques [18]
or contain embedded keys. The fully encrypted
segments are decrypted by the FPGA. The segments
containing embedded keys are processed by the
FPGA before they reach the L2 cache, allowing
the FPGA to examine the veracity of the keys.
For example Figure 1 shows that the first part of
the executable is encrypted whereas the second
part of the executable shows a hidden code � and,
at a distance � from � , an instruction ��� . Upon
recognizing � , the FPGA will expect � �����	� ��
 at
distance � (where � is computed inside the FPGA);
if the executable is tampered with, this match is
highly unlikely to occur and the FPGA will halt the
processor. The code sequences are hidden within
both within instructions and data.

One way to embed codes through compilation is

to use the register allocator, since register assign-
ment presents some degrees of freedom. Consider
a sequence of instructions comprising the instruction
stream that use registers. If we focus on, say, the first
register in each register-based instruction, the result-
ing sequence of registers so used in the instruction
stream is called the register stream.

The key observation is that this register stream is
determined by the register allocation module of the
compiler. In the FPGA hardware, the register stream
can extracted from the instruction stream, in addition
to other information such as particular opcodes of in-
terest in the embedding mechanism.

Suppose we use register �� to encode ‘0’ and ���
to encode ‘1.’ Then, the particular sequence of reg-
isters ��������������������������������� corresponds to the key
0 1 1 0 0 1. This key is then compared against a
cryptographic function of the opcode stream in the
FPGA.

Thus, in the general technique, the compiler per-
forms instruction filtering to decide which instruc-
tions in opcode stream will be used for checking.
The compiler then uses the flexibility of register
allocation to bury a key sequence in the register
stream. Upon execution, the entire instruction stream
is piped through the secure FPGA component, which
is set up to recognize the particular register stream of
interest. The FPGA then extracts both the filtered
opcodes and the register sequences for comparisons.
If a violation is detected, the FPGA halts the proces-
sor. If the code has been tampered with, there is a
very high probability that the register sequence will
be destroyed or that the opcode filtering will pick out
a different instruction.

As described in [65, 66], the technique can be
applied to in its simplest form to small embedded
processors with FPGA cores that have little capa-
bility for full encryption. More importantly, the
register allocation is a proper register allocation so
that the executables can run on processors that don’t
feature a policing FPGA. Finally, by using private
keys in the FPGA, a higher level of security can
be achieved by using the private key against the
stream along with cryptographic hashing. These
techniques together with the compiler’s ability to ex-
tract program structure and perform register alloca-

6



Processor
Core

I$

L1
Cache

D$

FPGA Validation
Cache

Instruction
Filters

Instruction
Translators

Secure Hardware Component

Other resrcs:
- DSPs
- FPGAs
- ASICs
- RAMs
- etc.

System Bus

L2
Cache

Unencrypted 
but with 

embedded 
codes

Encrypted 
portions

Hidden code in 
instructions

Instruction 
at offset d

Executable Program

A

d

A’

Main Memory

Processor
Core

I$

L1
Cache

D$

FPGA Validation
Cache

Instruction
Filters

Instruction
Translators

Secure Hardware Component

Other resrcs:
- DSPs
- FPGAs
- ASICs
- RAMs
- etc.

System Bus

L2
Cache Processor

Core

I$

L1
Cache

D$

FPGA Validation
Cache

Instruction
Filters

Instruction
Translators

Secure Hardware Component

Other resrcs:
- DSPs
- FPGAs
- ASICs
- RAMs
- etc.

System Bus

L2
Cache Processor

Core

I$

L1
Cache

D$

Processor
Core

I$

L1
Cache

D$

FPGA Validation
Cache

Instruction
Filters

Instruction
Translators

FPGA Validation
Cache

Instruction
Filters

Instruction
Translators

Secure Hardware Component

Other resrcs:
- DSPs
- FPGAs
- ASICs
- RAMs
- etc.

System Bus

L2
Cache

Unencrypted 
but with 

embedded 
codes

Encrypted 
portions

Hidden code in 
instructions

Instruction 
at offset d

Executable Program

A

d

A’

Main Memory

Unencrypted 
but with 

embedded 
codes

Encrypted 
portions

Hidden code in 
instructions

Instruction 
at offset d

Executable Program

A

d

A’

Unencrypted 
but with 

embedded 
codes

Encrypted 
portions

Hidden code in 
instructions

Instruction 
at offset d

Executable Program

A

d

A’

Unencrypted 
but with 

embedded 
codes

Encrypted 
portions

Hidden code in 
instructions

Instruction 
at offset d

Executable Program

A

d

A’

Main Memory

Figure 1: Conceptual view

tion provide the means for controlling the security-
performance tradeoff, a key goal of the project.

3.3 CODESSEAL - Key Management for
Encrypted Execution

CODESSEAL (COmpiler DEvelopment Suite for
SEcure AppLications) [42] is a project focused
on joint compiler/hardware techniques for fully
encrypted execution, in which the program and data
are always in encrypted form in memory. This tech-
nique involves the use of an FPGA placed between
main memory and the cache that its closest to main
memory (L1 or L2, depending on the system). The
instructions and data are loaded into the FPGA in
blocks and decrypted by keys that are exclusive
to the FPGA. Thus, the decrypted code and data
are visible “below” the FPGA, typically inside a
chip, thereby preventing an attack that sniffs the
address/data lines between processor and memory.
The original code and data are encrypted by a
compiler that uses the same keys. The assumption is
that both FPGA loading and compilation occur at a
safe site prior to system operation.

Note that FPGA’s can be used to detect code tam-
pering even when full encryption is not used. A sim-

ple approach, in this case, is to compute hashes of
instruction code blocks. For example, instructions
block hashes using SHA-1 are maintained inside the
FPGA, and as each instruction block is loaded, the
SHA-1 hash is computed in the FPGA. If the hash
does not match the stored hash, tampering is as-
sumed and the processor is halted. Even when full
encryption is used, it is desirable to perform a hash
check because a tampering attack can be used to dis-
rupt execution without decryption.

Data tampering is more complicated because a
write operation necessitates a change in the encryp-
tion: data needs to be re-encrypted on write-back to
RAM. Also, because data can get significantly larger
than code, a large set of keys might be needed to en-
crypt data, resulting in a key management problem.
We propose the following approach to key manage-
ment. Blocks of keys are themselves encrypted with
a small subset of master keys and stored in RAM.
When a data block is brought into the FPGA for de-
cryption, the start address is used as a hash to iden-
tify its key block, following which the key block is
loaded from memory if required. The key is then re-
trieved and the data block is decrypted. Upon write-
back, the block is re-encrypted and written to main
memory. For new data blocks, a fresh key may need

7



to be generated, with its key block re-written to main
memory.

4 Future Research Directions

In this section, we briefly identify future research di-
rections in the area we have termed security-driven
compilation:

� Integrated approaches. Clearly, it is desirable
to combine the simple efficiency of obfusca-
tion and checksum methods with hardware ap-
proaches. Integrated approaches also have gthe
advantage of creating executables that flexibly
execute on both on processors with supporting
security hardware as well as those without.

� Security-performance tradeoffs. While the per-
formance impact of individual techniques have
been studied [8, 29, 35, 65], future compilers
should provide system designers with features
that allow explicit tradeoff between security and
performance that go beyond key length. For ex-
ample, a combination of partial encryption and
checksum-checking may suffice in providing a
wide range of execution performance. Indeed,
very little is known today about the relative in-
terplay betwween standard compiler optimiza-
tions and security-driven code transformations.

� Attacks on encrypted execution. Just because
executables are encrypted in main memory dur-
ing execution doesn’t mean attacks cannot be
effective. Several types of replay, data and
structural attacks are possible that a resource-
ful attacker can use to systematically uncover
particular behaviors. We term such attacks as
EED attacks – attacks on Encrypted Executa-
bles and Data. To help detect such attacks,
compilers will need to play a key role in extract-
ing structural information for use by supporting
hardware.

� Joint Compiler/OS approaches. A secure or
trusted operating system provides an infrastruc-
ture that may be more flexible than hardware
and have broader impact so that files and storage
may be included in security guarantees. Thus,

for example, compiler-generated keys can be
used in file read and write operations to secure
files.

� Secure tool-chains. As mentioned in the Intro-
duction, compilers have the potential of incor-
porating security in large numbers of systems
because of their unique role in the creation of
software. Similarly, one can conceive of incor-
porating security as a major design objective in
the entire tool chain for computing infrastruc-
tures. A deeper issue arises from asking the
question: how can a tool-chain itself provide
guarantees? Trusted tool-chains may form the
first line of defense prior to system operation.

� Hardware/Software co-design. Just as hard-
ware/software co-design is today becoming the
prevalent approach to designing systems, so
should this approach prove valuable in design-
ing trusted systems. The design of supporting
hardware will depend on the software applica-
tion, and likewise, compiler optimizations will
depend on supporting hardware.

5 Summary

This paper has surveyed several projects in the rich
and growing intersection between compilers and se-
curity. We have argued that compilers are especially
well-suited to addressing many problems in software
protection and that compiler research in this area can
extend in many promising new directions.

References

[1] M. Abadi and A. Gordon. A calculus for crypto-
graphic protocols: the Spi calculus. Proc. of the
Fourth ACM Conference on Computer and Commu-
nications Security, ACM Press, 36–47, 1997.

[2] A.W. Appel and E.W. Felten. Proof-Carrying Au-
thentication., 6th ACM Conference on Computer
and Communications Security, November 1999.

[3] W. Arbaugh. A Secure and Reliable Bootstrap Ar-
chitecture, Proc. IEEE Symposium on Security and
Privacy, Oakland, CA, May 1997, pp 65–71.

8



[4] D. Aucsmith. Tamper resistant software: An imple-
mentation. in Anderson,R., Ed., Information Hid-
ing, First International Workshop, Cambridge, UK,
1996, Springer-Verlag Lecture Notes in Computer
Science, Vol. 1174, pp. 317–333.

[5] D. Balfanz, D. Dean, M. Spreitzer. A Security In-
frastructure for Distributed Java Applications. Pro-
ceedings of 2000 IEEE Symposium on Security and
Privacy, May, 2000.

[6] B. Barak, O. Goldreich, R. Impagliazzo, S.
Rudich, A. Sahai, S. Vadhan, and K. Yang. On
the (im)possibility of obfuscating programs. Proc.
CRYPTO 2001, August 2001.

[7] L. Bauer, M. Schneider and E.W. Felten. A Proof-
Carrying Authorization System. Technical report
CS-TR-638-01, Department of Computer Science,
Princeton University, April 2001.

[8] H.Chang and M.J.Atallah. Protecting software code
by guards. ACM Workshop on Security and Privacy
in Digital Rights Management, Philadelphia, 2001.

[9] H. Chen and D. Wagner. MOPS: An infrastructure
for examining security properties of software. ACM
CCS, 2002.

[10] S.Cheng, P.Litva and A.Main. Trusting DRM soft-
ware. Workshop on Digital Rights Management for
the Web, January 2001, France.

[11] C.Collberg, C.Thomborson and D.Low. Breaking
abstractions and unstructuring data structures. Proc.
IEEE International Conference on Computer Lan-
guages, ICCL’98, Chicago, IL, May 1998.

[12] C. Collberg, C. Thomborson, and D. Low. A taxon-
omy of obfuscating transformations. Technical Re-
port 148, Department of Computer Science, Univer-
sity of Auckland, July 1997.

[13] C. Collberg, and C. Thomborson. Software water-
marking: Models and Dynamic Embeddings. Proc.
26th ACM SIGPLAN-SIGACT on principles of Pro-
gramming languages (POPL’99), 311–324, 1999.

[14] C. Collberg, and C. Thomborson. Watermarking,
Tamper-proofing, Obfuscation: Tools for Software
Protection. Technical report 2000-03, University of
Arizona, 2000.

[15] CoreDES data sheet v2.0. Actel Corporation, 2003.
www.actel.com

[16] C.Cowan. Software Security for Open-Source Sys-
tems. IEEE Security and Privacy, Jan/Feb 2003, pp.
38-43.

[17] C. Cowan. FormatGuard: Automatic protection
from printf format string vulnerabilities. Proc.
USENIX Security Symposium, Washington, DC, Au-
gust 2001.

[18] J. Daemen and V. Rijmen, The Block Cipher Ri-
jndael, Smart Card Research and Applications,
LNCS 1820, J.-J. Quisquater and B. Schneier, Eds.,
Springer-Verlag, 2000, pp. 288-296.

[19] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim.
An adaptive cryptograhpic engine for IPSec Ar-
chitectures. In Proc. of the IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM), April 2000.

[20] Design security with Actel FPGAs. Actel Corpora-
tion, 2003. www.actel.com

[21] J. Dyer, M. Lindemann, R. Perez, R. Sailer, S.W.
Smith, L. van Doorn, S. Weingart. Building the IBM
4758 Secure Coprocessor. IEEE Computer. 34: 57-
66. October 2001.

[22] J. Dyer, R. Perez, S.W. Smith, M. Lindemann.
“Application Support Architecture for a High-
Performance, Programmable Secure Coprocessor.”
22nd National Information Systems Security Confer-
ence. October 1999.

[23] U. Erlingson and F.B. Schneider. IRM enforcement
of java stack inspection. IEEE Symposium on Secu-
rity and Privacy, Oakland, California, May 2000.

[24] U. Erlingson and F.B. Schneider. SASI enforcement
of security policies: A retrospective. Proceedings
of the New Security Paradigms Workshop, Ontario,
Canada, Sept 1999.

[25] M. Fisher. Protecting binary executables. Embed-
ded Systems Programming, Vol. 13, No. 2, February
2000.

[26] J. S. Foster, M. Fahndrich, and A. Aiken. A the-
ory of type qualifiers. ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation (PLDI), Atlanta, Georgia, 1999.

[27] A. Gordon and D. Smye. Typing a multilanguage in-
termediate code. Conference Record of POPL 2001:
28th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, 248–260, 2001.

[28] D. Grossman and G. Morrisett. Scalable certifica-
tion for typed assembly language. 2000 ACM SIG-
PLAN Workshop on Types in Compilation, Montreal,
Canada, 2000.

9



[29] B. Horne, L. R. Matheson, C. Sheehan, and R. E.
Tarjan. Dynamic self-checking techniques for im-
proved tamper resistance. ACM Workshop on Se-
curity and Privacy in Digital Rights Management,
November 2001.

[30] http://www.research.ibm.com/secure systems.

[31] T.Jim, G.Morrisett, D.Grossman, M.Micks,
J.Cheney and Y.Wang. Cyclone: a safe dialect of C.
Usenix, June 2002, Monterrey, CA, pp.275-288.

[32] A. Jones, D. Bagchi, S. Pal, X. Tang, A. Choud-
hary, and P. Banerjee. PACT HDL: a C compiler
with power and performance optimizations. In Proc.
of the Int’l Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES), Oc-
tober 2002.

[33] J. Kaps and C. Paar. Fast DES implementations for
FPGAs and its application to a universal key-search
machine. Selected Areas in Cryptography, 1998.

[34] D.Kozen. Language-based security. Proc. Conf.
Math. Foundations of Computer Science, September
1999, pp. 284-298.

[35] D. Lie, C. Thekkath, M. Mitchell, and M. Horowitz.
Architectural support for copy and tamper resistant
software. In Proc. of the

�����
Int’l Conference Archi-

tectural Support for Programming Languages and
Operating Systems (ASPLOX-IX), November 2000.

[36] P.A.Loscocco and S.D.Smalley. Meeting critical
security objectives with security-enhanced Linux.
Proc. Linux Symposium, Ottawa, 2001.

[37] G.Morrisett, D.Walker, K.Crary and N.Glew. From
system F to typed assembly language. ACM Trans.
Prog. Lang., Vol. 21, No. 3, pp.528-569, May 1999.

[38] G. Necula and P. Lee. Safe Kernel Extensions With-
out Run-Time Checking, OSDI’96.

[39] G.Necula, S.McPeak and W.Weimer. CCured: type-
safe retrofitting of legacy code. Principles of Pro-
gramming Languages, 2002, pp. 128-139.

[40] G. Necula. Proof-Carrying Code, Proceedings of
POPL’97.

[41] G. Necula. http://
www.cs.berkeley.edu/ nekula

[42] P.Ott, A.Choudhary, B.Narahari, R.Simha and
J.Zambreno. Compiler/Hardware Solutions to At-
tacks on Encrypted Executables. In preparation.

[43] E.R. Palmer. An Introduction to Citadel—A Secure
Crypto Coprocessor for Workstations. Research Re-
port RC 18373, IBM T.J. Watson Research Center,
1992.

[44] V. K. Prasanna and A. Dandalis. FPGA-based cryp-
tography for internet security. Online Symposium for
Electronic Engineers, November 2000.

[45] F.B.Schneider, G.Morrisett and R.Harper. A
language-based approach to security. In Informat-
ics: 10 Years Back, 10 Years Ahead, Lecture Notes
in Computer Science, Vol. 2000, Springer-Verlag,
pp. 86-101.

[46] U.Shankar, K. Talwar, J.S. Foster, and D. Wag-
ner. Detecting format string vulnerabilities with type
qualifiers. 10th Usenix Security Symposium, 2001.

[47] S. Smith and V. Austel. Trusting Trusted Hardware:
Towards a Formal Model of Programmable Secure
Coprocessors, Proc. 3rd Usenix Workshop on Elec-
tronic Commerce, August 1998.

[48] S. Smith, R. Perez, W. Weingart and V. Austel, Val-
idating a High Performance, Programmable Secure
Coprocessor, IBM Research Report, RC 21416, 15
February 1999.

[49] S. Smith and S. Weingart, Building a High-
Performache Programmable Secure Coprocessor,
Computer Networks, Vol. 31, pp 831–860, 1999.

[50] S. Smith. Secure coprocessing applications and re-
search issues. Los Alamos Unclassified Release LA-
UR-96-2805, 1996.

[51] D. Stinon. Cryptography: Theory and Practice.
Chapman and Hall, 2002.

[52] R. Taylor and S. Goldstein. A high-performance
flexible architecture for cryptography. In Proc. of the
Workshop on Cryptographic Hardware and Embed-
ded Systems (CHES), August 1999.

[53] J.D. Tygar and B.S. Yee. Dyad: A System for Us-
ing Physically Secure Coprocessors. Harvard-MIT
Workshop on Protection of Intellectual Property.
April 1993.

[54] Tygar, J.D., Yee, B., Dyad: A System for Us-
ing Physically Secure Copropcessors, CMU-CS-91-
140R, Carnegie Mellon University, Pittsburgh, PA.
1991.

[55] P. Wagle, C. Cowan. Stackguard: Simple stack
smash protection for GCC. Proc. of the GCC De-
velopers Summit, 243–256, 2003.

[56] D. Wagner, J. Foster, E.A. Brewer, A. Aiken. A first
step towards autoamted detection of buffer overrun
vulnerabilities. Proc. Network and Distributed Sys-
tems Security,NDSS 2000.

10



[57] C. Wang, J. Hill, J. Knight, and J. Davidson. Soft-
ware tamper resistance: Obstructing the static anal-
ysis of programs. Technical Report, Dept of Com-
puter Science, CS-2000-12, University of Virginia,
2000.

[58] C. Wang, J. Davidson, J. Hill, and J. Knight. Pro-
tection of software-based survivability mechanisms.
Proc. of 2001 IEEE/IFIP International conference
on dependable systems and Networks (DSN’01),
Sweden, 2001.

[59] Weingart, S., Physical Security for the mABYSS
System, Proc. IEEE Symposium on Security and
Privacy, Oakland, CA, 1987, pp 52-58.

[60] S.H. Weingart, S.R. White, W.C. Arnold, G.P. Dou-
ble. An Evaluation System for the Physical Security
of Computing Systems. 6th Computer Security Ap-
plications Conference. 1990.

[61] White, S., Comfortd, L, Abyss: A Trusted Architec-
ture for Software Protection, Proc. IEEE Symposium
on Security and Privacy, Oakland, CA, 1987, pp 38-
51.

[62] J. Wyant. Establishing security requirements for
more effective and scalable DRM solutions. Work-
shop on Digital Rights Management for the Web,
January 2001.

[63] Yee, B., and Tygar, J.D., Secure Coprocessors
in Electronic Commerce Applications, Proc. First
USENIX Workshop on Electronic Commerce, July
1995, 155-170.

[64] B.S. Yee. Using Secure Coprocessors. Ph.D. Thesis,
Computer Science Technical Report, CMU-CS-94-
149. Carnegie Mellon University,1994.

[65] J.Zambreno, A.Choudhary, R.Simha, B.Narahari
and N.Memon. SAFE-OPS: A Com-
piler/Architecture Approach to Embedded Software
Security. ACM Trans. Embedded Computing,
accepted.

[66] J.Zambreno, A.Choudhary, B.Narahari and
R.Simha. Flexible Software Protection Using
Hardware/Software Codesign Techniques. In Pro-
ceedings of Design, Automation and Test in Europe
(DATE), 2004

[67] X.Zhuang, T.Zhang, H-H.Lee and S.Pande. Hard-
ware Assisted Control Flow Obfuscation for Embed-
ded Processors. CASES 2004, Washington DC, Sept.
2004

[68] X.Zhuang, T.Zhang and S.Pande. HIDE: An Infras-
tructure for Efficiently Protecting Information Leak-
age on the Address Bus. ASPLOS 2004, Boston,
MA., Oct 2004.

[69] Trusted Computing Platform Alliance.
http://www.trustedcomputing.org.

[70] Cyberinfrastructure Report, National Science Foun-
dation, 2003.

11


