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Abstract

This work introduces a new technique that provides real-time feedback to a Heating, Ventilation, and

Air Conditioning (HVAC) system controller with respect to the occupants’ thermal preferences to avoid

space overheating. We propose a non-invasive approach for automatic prediction of personal thermal

comfort and mean time to warm discomfort using machine learning. The prediction framework described

uses temperature information extracted from multiple local body parts to model an individual’s thermal

preference, with sensing measurements that capture local body part variance as well as differences between

body parts. We compared the efficacy of using machine learning with classical measurements such as skin

temperature along with our approach of using multi-part measurements and derived data. An analysis of

the performance of machine learning shows that our method improved the accuracy of personal thermal

comfort prediction by an average of 60%, and the accuracy of mean time to warm discomfort prediction

by an average of 40%.

The proposed thermal models were tested on subjects’ data extracted from an office setup with

room temperature varying from low (21.11◦C) to high (27.78◦C). When all proposed features were used,

personal thermal comfort was predicted with an accuracy higher than 80% and mean time to warm

discomfort with more than 85% accuracy. Further analysis of the machine learning efficacy showed

that temperature differences had the highest impact on performance of individual thermal preference

prediction, while the proposed approach was found not sensitive to the actual machine learning algorithm.

Keywords: thermal comfort prediction, feedback technology, thermographic camera, HVAC control,
building automation

1 Introduction

Buildings are made for people to work and live in with comfort and satisfaction, and that is why they
are at the center of the design process. New constructions are designed to better serve the occupants
and to give them a pleasant experience. Human beings are complex, and since a majority of the average
person’s day is spent indoors (87% of the time [1]), our emotions, well-being, and comfort depend on these
environments. For this reason, one important aspect of building design is the indoor environment quality
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(IEQ). The National Institute for Occupational Safety and Health (NIOSH) defines the IEQ as “the quality
of a building’s environment in relation to the health and well-being of those who occupy space within it.”
The IEQ is determined by the sum of the following individual qualities: vibrations, odors, lighting, sounds,
air, and thermal comfort. An improved IEQ can not only enhance the lives of a building’s occupants, but
will also increase the resale value of the building, and it can, in the case of work environments, affect the
productivity of employees.

If the indoor environment is not aligned with the occupants’ expectations, occupants will seek new ways
to compensate for these inconveniences. For instance, in an office space with insufficient lighting, occupants
will seek visual comfort by adding extra table or floor lamps. Similarly, when the office temperature is too
low, occupants will seek thermal comfort by employing personal space heaters. However, these corrective
actions could cost occupants or put them in conflict with employer policy, can create potential fire and
mobility hazards, and almost always will lead to an inefficient use of energy. Therefore, proper space design
for occupants’ comfort and well-being can also contribute to better energy efficiency and workplace safety.

The Leesman Index from 2017 [2], which assessed how office spaces are supporting employees, specifies
that the top ten most important physical features of the working space are dominated by the IEQ, with five
out of ten features. After naming “desk” and “chair” as the most important workplace physical features for
employees (for 88% and 86% of them), equally important for 80% of them were “small meeting rooms” and
“temperature control”, followed by “natural light” (75%), “noise levels” (74%), “personal storage” (73%),
“large meeting rooms” (70%), “air quality” (70%), and “office lighting” (65%). Also, when employees were
asked how satisfied they were with these physical features, only 29% of employees were satisfied with their
workplace’s “temperature control”, 31% with the “noise level”, 40% with the “air quality”, and 58% with the
“office lightning”. This study shows that the indoor thermal quality (ITQ), a component of the IEQ, is one
of the most important physical features of an office building, but the current average employee satisfaction
with respect to this is actually quite low.

Other studies have explored additional implications of ITQ in relation to its impact in the workplace.
Sandage et al. [3] focused on the influences of ITQ on vocal comfort and function, van Hoof et al. [4] focused
on the special thermal needs for people with disabilities, and Heerwagen [5] reviewed ITQ’s impact on the
productivity of green buildings’ employees. All these studies support the relevance of ITQ, both in office
and residential buildings, as well as in health care institutions.

ITQ is driven by the building’s heating, ventilation, and air conditioning system (HVAC). Existing HVAC
systems can be classified in two groups: environment-based and occupant-centered. Traditional HVAC
systems are environment-based, working on a setpoint temperature computed using real-time attributes of
the environment where they act (such as air temperature and air humidity) and fixed occupants’ attributes
(such as clothing insulation and metabolic rate). This approach was developed by Fanger in the 1970s [6]
and later was refined in the ASHRAE-55 standards [7]. It is assumed that any building that adopts this
standard will be able to keep at least 80% of its occupants comfortable. However, as the Leesman Index
and other works [8, 9, 10, 11] revealed, occupants’ satisfaction with ITQ was much lower than expected. For
example, the 215 office buildings study in [8] showed that only 11% of the studied buildings had at least
80% of the occupants comfortable.

The low occupants’ satisfaction with respect to ITQ reflects the limited capabilities of the traditional
HVAC system to accommodate the individual thermal needs of the occupants. To overcome this issue, an
HVAC control system needs to integrate the occupants’ individual thermal preferences in real-time. This
approach was recently explored and has come to represent occupant-centered HVAC systems [12, 13, 14, 15,
16].

Occupants’ individual thermal preference could come directly from them using a manually operated
online feedback system or a thermostat; or it could be automatically estimated using data from continuously
operating sensors. Direct feedback from the occupants based on a web interface or zonal thermostats was
used in [12, 13, 14] to adjust the setpoint temperature for a decentralized HVAC operation, which resulted in
improvements of occupants’ satisfaction and energy use. However, results from [17] showed that there was a
significant gap between users’ expectations from the local temperature controller and the system designers’
perspective on the users’ needs.

A second approach that used manual feedback from the occupants assumed the existence of a personal
comfort system that the occupant could control for their individual thermal comfort. This approach was
slightly different than all the previous ones, since it did not try to adjust a centralized HVAC system:
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instead, it used smaller units to compensate for discrepancies between personal preferences and overall space
temperature. To achieve this, the approach in [15, 16] proposed retrofitted office furniture with integrated
cooling and heating elements. However, there were a few issues with occupants’ manual feedback: occupants
had to continuously interact with the system, and the feedback was connected to a fixed location, which
became inapplicable if the user moved within the building (for example, to a conference room). For these
reasons, a more direct approach of automated sensing of individual thermal comfort is advantageous.

Mathematical modeling of individual thermal preference focuses on the quantifiable response of the human
body with respect to the environmental thermal conditions, also known as human body thermoregulation.
An in depth literature review on thermal comfort modeling presented by Rupp et al. [18] showed an increasing
body of work which can be divided in two groups: invasive and non-invasive methods.

With respect to the invasive methods, researchers have focused on extracting skin temperature using
sensors attached to the subjects’ body. This information was used to model human body thermoregula-
tion [19, 11, 20, 21, 22, 23] as a means to predict comfort. These works concluded that the mean skin
temperature collected from multiple body locations (such as arms, torso and head) could model an occu-
pant’s thermoregulation, which correlated with the occupant’s thermal comfort. Dai et al. [21] used skin
temperature differences between the selected body parts to improve thermal comfort prediction, while Choi
et al. [23] relied on skin temperature gradient, and Chaudhuri et al. [22] showed that using normalized hand
skin temperature based on inter-individual differences (such as clothing insulation and body surface area)
could improve prediction of occupants’ thermal sensation. However, these methods are harder to use in
practice, because temperature sensors used require physical contact with the occupants’ skin.

A non-invasive method, but which still requires physical contact with the occupant, was proposed by
Ghahramani et al. [24] using retrofitted eyeglasses with point infrared sensors for skin temperature mea-
surement. Using four sensors, the proposed method extracted skin temperature from nose, forehead, right
cheek, and left ear to predict thermal comfort. Also, temperature differences between these locations were
considered for improved prediction performance.

With respect to the non-invasive contact-less methods, researchers have focused on utilizing thermo-
graphic cameras to collect skin temperature and model thermoregulation. Burzo et al. [25] explored using
hand-held thermographic cameras and manual measurements of facial temperature and other physiological
signals to predict subjects’ thermal comfort level. Similarly, Ranjan et al. [26] used a hand-held camera to
extract skin temperature from the hands and head to predict cooling or heating demand. Two more recent
works have used programmable thermographic cameras to automatically extract skin temperature. Pavlin et
al. [27] automatically extracted skin temperature from forehead key-points as a measure of thermal comfort,
while Cosma et al. [28] automatically extracted skin and clothing temperature from arms, torso, and head
and demonstrated a significant correlation between their temperatures and the subject’s thermal comfort.

Based on these preliminary studies [25, 26, 27, 28], we believe that non-invasive technologies based on
thermographic cameras can be used to provide real-time feedback of occupants’ individual thermal preference
to an HVAC system controller to minimize thermal discomfort and inefficient use of energy. In the following
sections, we propose a machine learning method for detecting space overheating scenarios based on occupants’
individual thermal preferences. The individual thermal preference consists of: (1) personal thermal comfort
(PTC), and (2) mean time to warm discomfort (MTWD) measured in transient conditions. While most
of the above studies focused mainly on skin temperature, this method, similar to [28], explored both skin
and clothing temperature, as well as temperature variance in a small area. Moreover, derived measurements
such as temperature differences [21, 24] and temperature gradient [22, 23] were investigated. We ranked all
measurements based on their likelihood of improving the classifier’s performance, such as accuracy, precision
and recall. Finally, we introduced a new thermal model to predict occupant’s thermal preference in real-time.
We trained and tested the proposed thermal models using the office-based dataset with transient conditions
(going from low to high temperatures) introduced in [28].

2 Methods

The proposed method for an occupant-centered HVAC control system automatically predicts individual
thermal comfort of the space occupants, as well as the mean time to warm discomfort given the individual’s
thermal response to the ambient conditions. We believe that an ideal HVAC system non-invasively perceives
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the building occupancy and the individual thermal preferences of the occupants in real-time, such that the
room temperature is continuously adjusted to reflect the real thermal needs of the occupants. For this
reason, each change in temperature has to be evaluated on how it will impact each individual. In situations
with multiple individuals in a room, the mean time to discomfort can be used to decide between conflicting
goals amongst particular individuals, by preferring the controls needed for individuals with a shorter time
to discomfort. If such an approach has reasonably high prediction accuracy, future HVAC systems can
dynamically adjust heating customized to individuals before a state of discomfort is reached. While the
focus of this paper is on warm discomfort, the general principles of non-invasive sensing combined with
machine learning are applicable to cold discomfort once a model is developed based on cold discomfort data.

The individual thermal preference model proposed here consists of the predicted personal thermal comfort
and mean time to warm discomfort. The prediction framework incorporates skin and clothing temperatures
extracted in real-time from different local body parts, such as arms, torso and head, using a non-invasive
technology based on thermographic cameras. The main steps of the proposed method are shown in Figure 1
and are described in detail in the following sections.

Figure 1: Proposed method for individual thermal preference prediction for an occupant-centered HVAC

control system.

2.1 Sensing Platform

The sensing platform used to extract thermal information was introduced by Cosma et al. [28]. This system
fuses information from three sensors: a color camera, a depth sensor, and a thermographic camera. The data
from all sensors combine to create an augmented representation of the world, called RGB-DT (Red-Green-
Blue, Depth, and Temperature). The augmented model was used to detect space occupants and their body
parts, from which skin and clothing temperatures were extracted. The benefits of this system are: real-time
processing capabilities, non-invasive surface temperature measurement, and low cost hardware.

2.2 Occupants detection and body parts identification

Occupant detection and tracking was performed in the RGB-DT space using the Kinect 2 software. A unique
identification number and a precise location was assigned to each detected occupant. Based on the occupant’s
location, multiple body parts were identified using the neural network framework OpenPose proposed in [29]
and freely available on GitHub. Because only upper body parts are likely to be visible and unoccluded by
furniture in a typical office settings, the following body parts were selected from which to extract skin and
clothing temperature: hand, elbow, shoulder, chest, and head, each of which has been identified to be highly
influential for thermal comfort modeling [19, 11, 20, 21, 22, 23, 28]. For each identified body part, its location
and type were automatically computed.
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2.3 Thermal profile extraction

As defined in previous works [21, 22, 23], the thermal profile of a subject consists of multiple single point
skin temperature measurements at different body locations, which are typically recorded with skin-attached
temperature sensors. However, some of these body regions, such as the head, were shown to vary significantly
in temperature within small areas requiring a higher density of measuring points for proper modeling of the
temperature dynamics. In contrast with these approaches, the thermal profile proposed in this paper uses
thousands of measuring points on the skin or clothing surface, limited only by the thermographic camera
resolution. Since not all skin points are relevant for individual thermal preference prediction, patches were
defined around the selected points of interest.

The identified local body parts and the RGB-DT model were used to generate the thermal profile of each
subject. The thermal profile consisted of the following two base measurements:

• mean surface temperature (MST ): given the location of the local body part, a patch around this
location was computed such that all points within the patch were part of the same surface; then, the
average temperature was extracted for the patch surface. In contrast with single point temperature
measurements, the patch mean temperature is a better representation of the local body temperature,
and it is less prone to noise and errors in detection of the local body part location;

• temperature variance (V arT ): given the face patch area, the temperature variance within the patch
was also extracted. As shown in [28], temperature dynamics at the face level changed with the subject’s
comfort level. If the temperature variance was higher at lower ambient temperatures corresponding to
cold discomfort, the patch temperatures homogenized with the increase in the ambient temperature
corresponding to warm discomfort. We selected for evaluation the face temperature variance because
the analysis on the selected dataset [28] showed that only the face patch temperature variance was
significantly (p < .05) correlated with thermal comfort.

Also, two derived measurements were identified as relevant for thermal comfort modeling [21, 24, 23, 22,
28] and integrated in the extended thermal profile:

• mean surface temperature gradient (∇MST ): the gradient in the patch temperature was computed
because, (1) a high gradient denotes an increased thermal stress that may result in thermal discomfort;
and (2) the gradient captures the temporal component of the patch temperature, which together with
the absolute value of the mean skin temperature are a function of the mean time to discomfort.

∇MSTt(i, r) = MSTt(i)−MSTt−δ(i) (1)

where i denotes the local body part, t denotes the sampling time, and δ denotes the time interval
for gradient calculation. In the proposed experiment, the sampling time is 0.1 seconds and the time
interval is 60 seconds.

• mean surface temperature differences (∆MST ): as mentioned in [28], the dynamics between different
local body parts was relevant for thermal comfort modeling. It was shown that when thermal comfort
changes, temperature differences between two local body parts also change. To model these changes,
the mean surface temperature difference between a reference local body part and all other parts was
extracted:

∆MSTt(i) = MSTt(i)−MSTt(r), i 6= r (2)

where i denotes any local body part different than r (the reference local body part), and t denotes the
sampling time.

Given the above measurements, the extended thermal profile at a given time is defined as:

Pt =


MSTt(0), ... MSTt(N)
V arTt(f),
∇MSTt(0), ... ∇MSTt(N)
∆MSTt(0, r), ... ∆MSTt(N − 1, r)

 (3)
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where N denotes the total number of body parts, f denotes the face patch area, and r denotes the reference
local body part used to compute temperature differences. Based on the selected five local body parts the
extend thermal profile consists of 15 features.

Finally, there are two types of surfaces that can be detected at different local body part locations:

• skin surface: used to compute mean skin temperature, as proposed in previous works [21, 22, 23].

• clothing surface: in the context of non-invasive technologies, such as thermographic cameras, the skin
is not always visible; however underneath each clothing layer is a skin layer that will affect the clothing
temperature which has no temperature of itself. So, considering a thin layer of clothing (clothing
insulation ≤ 1 clo), the heat exchange between the air temperature and skin temperature through the
clothing layer is modeled as an indicator of thermal comfort. As discussed in [28], clothing layers tend
to reflect the room temperature when human body heat transfer is low (equivalent of cold discomfort),
while they reflect human body temperature when human body heat transfer is high (equivalent of
warm discomfort).

2.4 Thermal model and prediction framework

Our thermal model was learned using the thermal profile of all identified local body parts (Pt). The proposed
thermal model was trained to predict occupants’ individual thermal preference, such as personal thermal
comfort and mean time to warm discomfort. Individual classifiers were trained for the two tasks. The
training process is explained in detail in the following sections.

2.4.1 Personal thermal comfort prediction

To predict the personal thermal comfort of the occupant, a multi-class classifier was trained based on the
extended thermal profile. The subjects’ feedback with respect to the thermal comfort vote (TCV) was used
as label for the extracted thermal profiles used in the supervised learning framework. Although subjects
rated their thermal comfort based on a five-point scale TCV (see Section 3), a three class classifier was
trained based on comfort, cold discomfort, and warm discomfort levels. High cold and warm discomfort
levels were discarded for this experiment because these situations should never occur in heated, ventilated,
and air conditioned buildings [30]. This is also supported by the used dataset where there were no subjects
filling high cold discomfort and only six felt high warm discomfort for less than three minutes, while the
room temperature varied between 21.11◦C and 27.78◦C. Classifying comfort and cold/warm discomfort is
a more difficult task because the boundary between classes is much narrower. Moreover, the comfort and
cold/warm discomfort classification is an important step in optimizing HVAC functionality to better assess
the occupants’ individual thermal preference. However, if high cold and warm discomfort are important in
certain scenarios, the proposed framework can be extended to accommodate the two extra classes by training
a new classifier with five classes.

Finally, given that the subject feedback was collected once per minute and data frames were collected
at nine frames per second, multiple frames around each individual feedback were used to generate a single
thermal profile. To achieve this, a one minute window was centered at the feedback’s collection time (30
seconds before and after the feedback), and all thermal profiles within this window were used to compute a
polynomial function that estimates the best thermal response.

2.4.2 Mean time to warm discomfort prediction

Similar to the personal thermal comfort prediction, a multi-class classifier was trained to predict mean time
to warm discomfort. The following classes were considered: 0 (warm discomfort), (between 1 and 10 minute
to warm discomfort), 10+ (more than 10 minutes to warm discomfort). The reasons for using these class
labels are as follow: label 0 is for subjects that are already feeling warm discomfort and suggests immediate
action rather than prediction of time to discomfort; label 10 is for subjects approaching warm discomfort
that can be kept comfortable if immediate action is taken; and label 10+ is for subjects far from warm
discomfort where no actions are needed.
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Class labels were automatically generated based on the subjects’ feedback, such that if the subject was
comfortable (TCV=0) with the space temperature and the closest warm discomfort feedback (TCV>0) was
less than M minutes away, then the assigned class label is M , where M ∈ {10,∞}. The following equation
was used to define the label for each data sample:

Labelt =

 0, if TCVt > 0
10, if TCVt = 0 and ∃δ with 0 < δ ≤ 10 and TCVt+δ > 0
10+, otherwise

(4)

where TCVt denotes the subject’s feedback (thermal comfort vote) at time t and δ denotes the time difference
in minutes between two responses.

2.4.3 Feature sets

To train the thermal model classifiers, we used a set of features slightly different from previous works [11, 19,
20, 21] customized for the non-invasive technology. This set of features was based on the extended thermal
profile proposed in Section 2.3. To analyze the benefits of different components of the proposed thermal
profile, multiple feature sets were defined:

• classical feature set (SkinOnly): consisted of mean skin temperature of head, elbow, and hand. This
feature set represents the information used by the previous work.

• base feature set (Base): consisted of mean skin temperatures, where skin is visible, and mean clothing
temperatures for clothing covered local body parts;

• temperature variance feature set (BaseVar): consisted of the base feature set plus the temperature
variance inside face patch area;

• temperature difference feature set (BaseDiff): consisted of the base feature set plus the temperature
difference between reference and all other local body parts;

• temperature gradient feature set (BaseGrad): consisted of the base feature set plus temperature gra-
dient inside each patch area;

• full thermal profile (All): consisted of all proposed features;

For each of these feature sets, a different thermal model was learned and tested using the same sample
data. A detailed comparison is presented in Section 4.

2.4.4 Classifiers

Classifier training and testing was performed in Python using the Scikit-learn library. Four classifiers were
used to asses the utility of the selected features to predict personal thermal comfort and mean time to warm
discomfort: support vector machine (SVM), Gaussian process classifier (GPC), k-neighbors classifier (KNC)
and random forest classifier (RFC). Optimal parameters for each model were computed using a grid search
technique and kept constant for all tests.

3 Dataset

To train and test the proposed prediction framework, the dataset introduced in [28] was used. This was
based on a real scenario, such as an office setup, where temperatures were manipulated and the thermal
comfort vote of the occupants was recorded. The office room was located in the middle of the building and
had no windows or exterior walls, and was disconnected from the main HVAC unit such that the heating
and cooling was controlled locally.

The dataset consisted of 24 healthy subjects, 13 females and 11 males, individually recorded for 27
minutes. All subjects were exposed to identical transient conditions, with the room temperature changing
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from low (21.11◦C) at the beginning of the experiment, to high (27.78◦C) by the end of the experiment. The
air flow was less than 0.2 m/s, as recommended by ASHRAE-55 [7]. Indoor conditions were continuously
monitored by measuring the air temperature and relative humidity in the immediate vicinity of the subject.
Based on the logged measurements, the relative humidity was approximately 39% at the beginning of the
experiment, and slightly lower at approximately 33% by the end of the experiment. The decrease in relative
humidity was the result of using room heaters, which dried the air with approximately 6%. This average
trend was observed during data collection on all subjects. In this case we can define relative humidity
using a linear function of time and independent of the occupant’s thermal comfort. Because of this direct
predictability, the relative humidity will not have a significant impact on the prediction results since machine
learning algorithms easily account for linearity.

During the experiment, the following parameters were kept constant:

• clothing insulation: all subject were asked to wear a similar outfit (average clothing index was 0.44 clo
with SD = 0.07 clo)

• metabolic rate: sedentary office activity (1-1.1 met)

The dataset had more than 350 000 RGB-DT frames recorded at nine frames per second. All frames were
processed and thermal profiles were generated at one minute intervals, corresponding to subjects’ feedback
frequency, such that for each feedback provided (TCV) there was an associated thermal profile. As mentioned
in the original dataset’s manuscript [28], there were 24 subjects with valid data and each subject provided
in total 27 feedbacks with respect to their personal thermal comfort, resulting in 648 data samples (thermal
profile plus TCV). Because skin and clothing temperatures were extracted continuously from the RGB-DT
frames and feedback was provided only every other minute, we used a sliding window approach to compute
the thermal profile. Within the defined time window, we fitted a polynomial function to all the temperature
measurements of a body part. Using these polynomial functions, we extracted the instantaneous skin and
clothing temperatures corresponding to the given feedback. This approach ensured a reduced observational
error.

Subject feedback consisted of the thermal comfort vote on a five-point scale, as defined in [28]: (-2)
high cold discomfort, (-1) cold discomfort, (0) comfortable, (+1) warm discomfort, and (+2) high warm
discomfort. However, as mentioned in Section 2.4.2 only three classes were used in the prediction framework:
(-1) cold discomfort, (0) comfortable, and (+1) warm discomfort. These values were used in the supervised
learning framework as class labels to the associated thermal profiles.

We computed the subjects’ feedback distribution with respect to the three proposed classes. Results
showed that comfortable and warm discomfort classes were well represented, with 288 feedbacks and 276
respectively. However, cold discomfort class was less represented with 44 feedbacks. The dataset unbalance
has to be corrected during the training process by weighting more the data samples of the less represented
class (cold discomfort). It is worth mentioning that the other 40 feedbacks to the total of 648 was represented
by the high warm discomfort, and their were no high cold discomfort feedbacks.

4 Results

Out of the 24 subjects, 20 subjects were randomly selected for training the classifier, while the remaining 4
subjects were used for testing. Separate thermal models were trained based on the feature sets proposed.
Classifiers’ parameters were chosen at the beginning of the experiment using the “All” feature vector and a
grid search technique, and were kept constant for the entire experiment. Also, if not otherwise specified by
the test, the complete feature set “All” was used for all of the following tests.

The sections below analyze the trained thermal models from three main perspectives: data overfitting,
classifier performance based on multiple classification frameworks, and classifier performance based on differ-
ent feature sets. Thermal models were also individually analyzed for the two main tasks: predicting personal
thermal comfort and mean time to warm discomfort.
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4.1 Personal thermal comfort prediction

4.1.1 Overfitting test

To demonstrate the generalization power of the proposed learning framework, a model validation was con-
ducted using a non-exhaustive k-fold cross-validation with 5-folds. Only training samples were used for this
test and a compensation for the unbalanced nature of the generated data was applied. All four proposed
classifiers were tested and the results are shown in Figure 2. It can be seen that all classifiers performed
consistently well across the 5-folds, with both precision and recall approximately equal to 80%. Also, on
average all classifiers exceeded 80% precision and recall.

(a) (b)

(c) (d)

Figure 2: Personal thermal comfort prediction cross-validation with 5-folds: (a) classifiers’ precision for each

fold, (b) classifiers’ recall for each fold, (c) classifiers’ average precision over all folds, and (d) classifiers’

average recall over all folds.

4.1.2 Classifiers comparison

For the first comparison test, the classifiers’ performances were analyzed by comparing how they performed
with respect to each of the three proposed classes: comfort, cold discomfort, and warm discomfort. Individual
thermal models were learned for each classifier using the “All” feature vector and the samples training set.
Next, the confusion matrix was computed for each classifier using the samples testing set. The results are
shown in Figure 3.

Based on the confusion matrices, one of the hardest classes to classify was cold discomfort. In the
worst case scenario, 33% of the cold discomfort samples where misclassified as comfort, while in the best
case scenario all of them were correctly classified. These results could be explained by the fact that there
was a smaller number of cold discomfort samples, creating an d dataset that affected the learning process,
even though compensation was attempted by weighting the cold discomfort samples more. Also, the lowest
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(a) (b)

(c) (d)

Figure 3: Personal thermal comfort prediction confusion matrix for the three predicted classes, using: (a)

RFC, (b) SVM, (c) KNC, and (d) GPC classifiers.

temperature in the office room (21.11◦C) was close to the comfort boundary, a limitation of the experimental
set up, making the classification at the cold-comfort boundary imprecise. It is expected that if the start
room temperature would have been set lower (e.g. 19◦C), the new samples collected would be classified
correctly, improving the percentage of correctly classified samples.

Three out of four classifiers identified correctly all warm discomfort samples, while the fourth classifier
identified 81% of them. The high warm discomfort sensitivity (or recall) impacted the thermal comfortable
samples classification by consistently mislabeling 30% of them as warm discomfort. This can be explained
by our learning process using the unbalanced dataset with compensation weights for each class, which forced
the class separation boundaries to benefit the less represented classes. However, the RFC classifier identified
correctly 80% of thermal comfortable samples.

For the second comparison test, the average accuracy, precision, and recall for each classifier were com-
pared. The results are presented in Table 1. Results show that the average accuracy for all the proposed
classifiers was close in value at approximately 80% with SD=1.7%. This supports the previous results, which
concluded that the thermal model outcome is not purely random. However, this makes the classifier selection
less relevant. For this reason, precision and recall values were analyzed to better understand the classifiers’
performance.

Based on the classifiers’ precision, the KNC and GPC classifiers would misclassify only 14 occupants as
comfortable, from an office with 100 occupants, while the other two classifiers would misclassify around 18
occupants as comfortable, with all other occupants correctly classified. Based on the classifiers’ recall, three
out of four classifiers (KNC, GPC, and RFC) mislabel less than 20 occupants as comfortable from a room
with 100 comfortable occupants, while the SVM classifier mislabel less than 24.

To conclude, the classifier selection depends on the final application. If the main purpose is to save

10



Table 1: Classifiers’ average performances using test data for personal thermal comfort prediction.

Classifier Accuracy Precision Recall

SVM 76.0 82.0 76.0

KNC 80.0 86.0 80.0

GPC 80.0 85.0 80.0

RFC 80.0 80.0 80.0

energy, then a classifier with high recall is preferred, such as KNC, GPC or RFC. These ensure that all
comfortable occupants are identified. However, if the end application needs a strict control of the occupants’
thermal comfort, then a classier with high precision should be selected, such as KNC or GPC. Finally, for
applications with mixed requirements, the RFC classifier gives the best overall performances with a well
balanced confusion matrix.

4.1.3 Feature sets comparison

This test evaluated the benefits of the different feature sets proposed in Section 2.4.3 in contrast with a
reference approach which used only skin temperature. The same four classifiers were used to learn individual
thermal models for each of the proposed feature sets. Then, their average accuracy, precision, and recall
were computed using the testing samples. Results are shown in Figure 4.

(a) (b)

(c)

Figure 4: Proposed feature set performance evaluation for personal thermal comfort prediction: (a) accuracy,

(b) precision, and (c) recall.

The reference feature set (“SkinOnly”) consisted of skin only temperature readings at the selected local
body parts (such as hand, elbow, and head). When an extended feature set was used, the performance was
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significantly higher for all classifiers with an increase of at least 15% in accuracy, 10% in precision, and 20%
in recall. The highest performance jump was achieved when the “All” extended feature set was used. This
performance increase was expected, given that the statistical analysis in [28] showed a significant correlation
between thermal comfort and the temperature differences and face temperature variance. Although, to
better understand the performance increase from the extended features, the accuracy, precision, and recall
increase was quantified as a percentage of the reference feature set. These results are presented in Table 2
as an aggregate over all tested classifiers.

Table 2: Performance increase from the extended feature sets with respect to the “SkinOnly” feature set,

over all tested classifiers on personal thermal comfort prediction.

Feature Set
Accuracy Precision Recall

Average Min Max Average Min Max Average Min Max

Base 35.2 21.9 48.5 35.3 5.6 55.3 34.3 21.8 46.8

BaseDiff 56.9 36.6 71.4 55.2 18.3 76.6 56.1 36.4 70.2

BaseGrad 31.1 17.2 35.3 28.04 5.7 63.9 30.7 17.0 53.2

BaseVar 38.1 24.4 54.3 35.3 7.1 57.5 37.5 23.6 53.2

All 59.0 39.0 71.5 57.2 15.5 80.9 58.1 38.2 70.2

Based on the percentage of performance improvement, adding clothing temperatures to the reference
feature set helped the classifiers’ performances increase an average of 35.2% in accuracy, 35.5% in precision,
and 34.3% in recall. Since a non-invasive technology has limited access to skin temperatures, this result proves
that other observable information, such as clothing temperature, could be used to improve the prediction
of personal thermal comfort. Moreover, the highest impact on the accuracy comes from features resulting
from temperature differences, with an average increase of 56.9% that can go up to 71.4% for some classifiers.
Face temperature variance also significantly increased the accuracy with an average of 38.1%. Based on the
precision improvements, temperature differences produced the highest impact with an average increase of
55.2%, followed by face temperature variance with an increase of 35.3%. Furthermore, for some classifiers,
the precision increase can go up to 76.6%. Finally, the recall was also improved most by the temperature
differences, with an average increase of 56.1%, and a peak increase of 70.2% for some classifiers.

These results indicate that the temperature dynamics between different local body parts changes with
the thermal comfort vote. In other words, the temperature of the thin clothing layer is closer to the body
temperature when the body heat transfer is high, and is closer to the air temperature when the body heat
transfer is low. Also, the results show that face temperature variance is significant for thermal comfort
prediction, with high variances when the subjects are uncomfortable and low variances at thermal comfort.
Overall, the proposed extended thermal profile improved the classifier performance with up to 71.5% in
accuracy, 80.9% in precision, and 70.2% in recall.

The results also show that the temperature gradient had a positive impact for some classifiers, such as
SVM and RFC, and a quality degradation for others, such as KNC and GPC. It should be noted that the
mean skin temperature gradient would be more relevant in a less structured environment, where temperatures
inside the room vary randomly. Also, tasks that require a temporal integration, such as mean time to
discomfort, would benefit more from these features.

When all the proposed features (“All”) are used, the classifier performances improved the most with an
average of 59.0% in accuracy, 57.2% in precision, and 58.1% in recall. The improvement was similar with
the performance obtained by temperature differences. This result shows that there is an overlap between
the proposed features, but each of them explains a small amount of individual variance within the predicted
classes.

12



4.2 Mean time to warm discomfort prediction

4.2.1 Overfitting test

The non-exhaustive cross-validation experiment for testing thermal model generalization power was repeated
for the mean time to warm discomfort classifiers. The results are shown in Figure 5.

(a) (b)

(c) (d)

Figure 5: Mean time to warm discomfort prediction cross-validation with 5-folds: (a) classifier precision for

each fold, (b) classifier recall for each fold, (c) classifier average precision over all folds, and (d) classifier

average recall over all folds.

The classifiers’ performances were constant across the 5-folds, with precision and recall values between
80% and 85%. Also, it can be observed that the more difficult bins to classify, such as bin three, impacted
all classifier results, while the easier bins to classify, such as bin four, elevated all classifier results. This
classifier homogeneity reinforces the generalization power of the chosen model.

4.2.2 Classifier comparison

The same procedure as described in Section 4.1.2 was followed to compare classifier performances. First,
the confusion matrix for the four proposed classes was computed for each classifier. Results are shown in
Figure 6.

Based on the confusion matrices, the hardest class to predict was the “10” minutes to warm discomfort
class. The lowest performance classifier (GPC) misclassified 36% of the warm discomfort samples as “0”
minutes away from warm discomfort and 5% as “10+” minutes to warm discomfort. The best classifier
(SVM) misclassified only 27% of the samples as “0” minutes away from warm discomfort. The observed
consistent misclassification between “0” and “10” minutes to warm discomfort classes is associated with the
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(a) (b)

(c) (d)

Figure 6: Mean time to warm discomfort prediction confusion matrix for the four predicted classes, using:

(a) RFC, (b) SVM, (c) KNC, and (d) GPC classifiers.

subjective nature of the thermal comfort, which makes the transition between the two states a non-binary
decision. The “0” minutes to warm discomfort class was consistent correctly identified in 100% of the cases.
The “10+” minutes to warm discomfort class was correctly identified in at least 75% of the cases, with a
consistent overlap with class “10”. The overlap is explained by the fact that these classes represent two
subgroups of the thermal comfortable samples.

Given that the correctly classified samples are represented by the numbers on the principal diagonal of
the confusion matrix, and all other cells represent misclassified samples, it can be observed that values below
the principal diagonal are higher than the ones above the diagonal. This translates to an underestimation
of the time to warm discomfort, with subjects being actually farther away from warm discomfort than
predicted. This is the preferred scenario for situations where warm discomfort is not acceptable, ensuring
that subjects never reach a state of warm discomfort to begin with. However, in situations where is preferred
the overestimations of mean time to warm discomfort, the classifiers have to be retrained with a higher weight
for the last two classes (“10” and “10+”).

Next, the classifier average accuracy, precision, and recall on the testing samples were compared. The
results are shown in the Table 3. The highest performances were achieved by the RFC and SVM classifiers
with the highest value on all three average metrics (87.7% - 90.0% - 88.0%). These were closely followed by
the KNC classifier, but the former ones had a minimal performance advantage (on average 2% more). The
GPC classifier had marginally lower performances, with an average accuracy of 82.5%, precision of 84%, and
recall of 82%.

To conclude, predicting mean time to warm discomfort in uniform transient conditions can be done very
accurately (>87%) when the SVM classifier and the extended feature set are used. However, if the “10”
and “10+” minutes to warm discomfort classes are of higher importance, then RFC classifier provide a more
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Table 3: Classifier average performances using test data for mean time to warm discomfort prediction.

Classifier Accuracy Precision Recall

SVM 87.7 89.0 88.0

KNC 86.0 88.0 86.0

GPC 82.5 84.0 82.0

RFC 87.7 90.0 88.0

accurate classification of these two.

4.2.3 Feature set comparison

The proposed feature sets (see Section 2.4.3) and the reference feature set (“SkinOnly”) were compared to
better understand how they improve the task of predicting mean time to warm discomfort. The individually
trained thermal models were compared based on their accuracy, precision, and recall obtained on the testing
samples. Results are shown in Figure 7.

(a) (b)

(c)

Figure 7: Proposed feature set performance evaluation for mean time to warm discomfort prediction: (a)

accuracy, (b) precision, and (c) recall.

It can be observed that the reference feature set performs fairly well, with approximately 60% accuracy,
precision, and recall. However, if any of the proposed feature sets was used, all classifier performances were
improved significantly. The overall highest performance was achieved when the “All” feature set and the RFC
or SVM classifier were used. This was expected given that more relevant information was available to the
classifier to distinguish between classes. Furthermore, all proposed classifiers had comparable performances.
To better understand the performance increase generated by the extended feature sets, the average/min/max
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performance increase of all classifiers with respect to the reference feature set was studied. The results are
shown in Table 4.

Table 4: Performance increase from the extended feature sets with respect to the base feature set, over all

tested classifiers on mean time to warm discomfort prediction.

Feature Set
Accuracy Precision Recall

Average Min Max Average Min Max Average Min Max

Base 28.5 21.6 33.3 39.6 22.7 54.9 28.9 21.5 32.7

BaseDiff 36.3 30.6 42.9 47.8 31.3 64.7 36.6 30.2 44.3

BaseGrad 29.3 21.6 36.4 40.6 22.7 58.8 29.8 21.5 36.2

BaseVar 27.2 19.0 31.4 38.4 19.7 53.0 27.3 18.5 32.8

All 39.4 30.6 51.5 50.8 31.3 76.5 39.6 30.2 51.8

These results show that the proposed clothing temperatures helped improve mean time to warm dis-
comfort prediction with more than 28% accuracy, 39% precision and 28% recall. This supports again the
importance of using all observable information, when access to skin temperature data is limited. The tem-
perature differences had the highest impact on mean time to warm discomfort prediction. On average, the
“BaseDiff” feature set increased the accuracy by 36.3%, precision by 47.8%, and recall by 36.6%. Also, this
extended feature set had the highest performance increase in the worst (min) and best (max) case scenario.
Similar to personal thermal comfort prediction, the “All” feature set obtained the highest performance in-
crease. However, in the worst case scenario the “All” feature set performance is identical with the “BaseDiff”
feature set. This observation shows that for some classifiers when the temperature differences are used, the
temperature variance and gradient do not provide the classifier with extra information that could help the
classifier solve the failure scenarios.

The temporal integration of the temperature represented by the temperature gradient, increased the
overall classifier performances by more than 29% for all studied metrics. Moreover, it can be observed that
the temperature gradient impact was more significant in the case of mean time to warm discomfort, than it
was for thermal comfort prediction. This can be explained by the fact that a near constant gradient did not
affect the personal thermal comfort of the occupant, but gave important information about how soon skin
temperature will reach the warm discomfort state.

5 Conclusion

We proposed a real-time machine learning method for individual thermal preference prediction in transient
conditions to avoid space overheating. At the core of the system is an innovative, non-invasive, and contact-
less technique that is capable of accurately predicting personal thermal comfort of the space occupants,
as well as mean time to warm discomfort if the occupant is thermally comfortable. To the best of our
knowledge, this is the first work to investigate a machine learning method to predict the mean time to
thermal discomfort of an occupant. The prediction framework was based on a mathematical modeling of
human body thermoregulation observed in an office setup with uniform transient conditions.

Occupant thermal profiles were automatically extracted from the RGB-DT model proposed in [28]. Sim-
ilar to the classical approaches to model thermal comfort, the thermal profile definition consisted of skin
temperatures at different local body locations such as the arms and head. However, the proposed defini-
tion also included clothing temperature, temperature gradient, temperature variance inside the patch area,
and temperature differences between different body sampling locations. Furthermore, the proposed thermal
model could be extended in the future to integrate real-time measurements of the environment attributes,
such as relative humidity and radiant temperature. When compared with the skin only thermal profile, the
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proposed thermal profile improved the prediction accuracy of personal thermal comfort by more than 60%
on average and up to 71% in some scenarios, and mean time to warm discomfort by 40% on average and up
to 51% in some scenarios.

Multiple feature sets were proposed and tested based on the extended thermal profile. Features such as
temperature differences appeared to improve the most personal thermal comfort prediction, as well as mean
time to warm discomfort. Face temperature variance appeared to be more relevant for personal thermal
comfort classification, while temperature gradient was more significant for mean time to warm discomfort
prediction. These findings indicate that the signal needed for thermal comfort discrimination is spread across
multiple features since classification with the full set of features is superior to that when using subsets,
suggesting that the personal experience of discomfort results in a multitude of observable effects on various
parts of the skin. All these results support the statement that temperature dynamics change with thermal
comfort level. However, features such as clothing temperature and temperature differences depend on the
thickness of the clothing layer, which was kept constant in the dataset used. For this reason, it would be
useful to conduct multiple experiments in the future to understand how different clothing insulation affect
clothing temperature.

The proposed thermal models were trained and tested on the RGB-DT dataset proposed in [28]. While
this experiment reflects a real office scenario with transient conditions, a drawback was that the temperature
inside the office increased at a constant rate for all subjects. In different scenarios, room temperatures
can vary non-uniformly, which could affect the mean time to warm discomfort prediction. For this reason,
it would be useful to conduct multiple experiments in the future, where different transient conditions are
tested, to understand if a single thermal model could be used with mixed transient conditions.

We also introduced a complete processing pipeline for real-time prediction of individual thermal prefer-
ence. A key finding is that our approach was not sensitive to the actual machine learning algorithm, sug-
gesting that the proposed model is sufficient for a generic machine learning technique. Using this method,
personal thermal comfort was predicted with more than 80% accuracy, while mean time to warm discomfort
was predicted with more than 85% accuracy. Although, with respect to personal thermal comfort prediction,
cold discomfort was harder to classify due to a limited number of samples in this class. Also, with respect
to mean time to warm discomfort, “0” and “10” minutes to warm discomfort were harder to separate with
a binary decision due to a fuzzy transition between the thermal comfort and warm discomfort states.

Occupant-centered HVAC control systems are part of a new generation of intelligent heating and cooling
systems, with a focus on personal thermal comfort and energy efficiency. These systems will learn how to
respond to the occupants’ thermal needs and how to schedule the HVAC system on and off time such that
most occupants will remain thermally comfortable while improving energy efficiency. Further research is
required to develop HVAC control systems capable of using the thermal comfort feedback from a system like
this in real-time, and to produce an occupant-centered schedule of heating and air conditioning.
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