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Abstract

This work evaluated the use of thermographic cameras as a non-invasive method to automatically
model human thermal comfort in transient conditions, using data from 30 healthy subjects tested in
an office setup with ambient temperatures between 21.11°C and 27.78°C. Office temperature, relative
humidity, exposed skin temperature and clothing temperature were automatically measured over ap-
proximately 27 minutes per subject, using remote sensors and avoiding any contact with the subjects.
Thermal comfort levels were evaluated using subjects’ feedback, recorded every minute for the entire ex-
periment. Clothing insulation and metabolic rate were kept relatively constant for this experiment (0.54
clo and 1.1 met). Average skin temperature was extracted from five different locations, with average
temperatures of 33.5°C , 34.5°C, and 35.6°C corresponding to cold discomfort, comfort and warm dis-
comfort respectively. Average clothing temperature was also extracted from three different location, with
32.3°C, 33.8°C and 35.0°C corresponding to the same three comfort levels. Relative humidity levels were
similar for all subjects, with average values between 38% and 33%. Results showed significant correla-
tion between observed skin temperature, clothing temperature and thermal comfort level. Also, collected
data showed that the temperature difference between different body locations was highly correlated with
thermal comfort, and the variance of skin temperature over a small area was significantly correlated with
thermal comfort. The results suggest that non-invasive thermographic cameras that combine visual and
thermal modes are sufficiently accurate in real-world settings to drive control of HVAC systems.

Keywords: thermal comfort, thermoregulation system, thermographic camera, skin temperature, build-
ing automation

1 Introduction

The increased demand for energy efficient buildings to reduce greenhouse gas emissions has pushed engineers
to identify and address the issues with the main source of energy consumption within office and residential
buildings. Based on the most recent CBECS [I] and RECS [2] reports, energy usage for residential and
commercial buildings in the US represents 40% of the total energy used throughout the country. The same
reports revealed that almost 50% of total energy used in homes and 33% of total energy used in commercial



buildings came from heating, ventilation and air conditioning (HVAC) systems. That is a significant amount
of energy consumed on a daily basis simply to provide physical comfort, and for which any possible reduction
can have a significant impact on the total amount of energy used.

Traditionally, HVAC systems work on a setpoint temperature computed using attributes of the environ-
ment where they act (such as air temperature and air humidity) and other constants determined based on
large scale experiments (such as clothing insulation and metabolic rate). This approach was developed by
Fanger in the 1970s [3] and later it was refined in the ASHREA-55 standards. These models sought to en-
sure that a building equipped with HVAC systems is able to keep at least 80% of its occupants comfortable.
However, a study of 215 office buildings in US, Canada, and Finland [4] showed that only 11% of the studied
buildings had at least 80% of the occupants comfortable. Improper calculation of the setpoint temperature
typically resulted in energy waste. Similar results were found by other studies [5 [6] [7].

Also, it was shown that attributes which were considered constant by the traditional model can change
over time and can affect individual thermal comfort (such as clothing insulation, metabolic rate or age).
For this reason, recent work in the literature has focused on developing HVAC control systems that add the
occupants of the space into the control loop. This has been done in three ways: using occupants’ feedback
to adjust the set point temperature, using personal comfort systems for individualized comfort, or modeling
individual thermal comfort. Setpoint adjustments based on user feedback were investigated in [8] [, [10] by
allowing the user to control the temperature through a local thermostat or by offering them an online system
to provide feedback in real time. Advantages and possible issues with this approach were analyzed in [I1].
Their results showed that there was a significant gap between users expectations from the local temperature
controller and the system designers perspective on the users needs.

The second approach for individual thermal comfort employed personal comfort systems (PCS), designed
to keep occupants comfortable within their personal space. This approach proposed an energy efficient
system by moving the focus from keeping the space within a set point temperature, to keeping smaller space
enclosures within the set point temperatures. A few ideas were based on retrofitting office furniture, such
as chairs [I2] or desks [13], to integrate cooling and heating elements. Others focused on directing the air
towards the occupant’s location [T4].

However, these first two approaches have a few limitations: they depend on user feedback, the user is
required to physically interact with the system to achieve their desired results (such as turning a switch),
and the user feedback is connected to a precise location, which is inapplicable if the user moves within
the building (for example, to a conference room). For these reasons, a third approach was explored, which
uses a mathematical modeling of thermal comfort based on physiological information extracted directly
from individual occupants of the building. An in depth literature reviewed on thermal comfort modeling
presented by Rupp et al. [I5] showed significant growth of papers in this area. A large number of these
studies (such as [16] and [I7]) have focused on using existing datasets and machine learning algorithms to
propose a better thermal comfort model than Fanger’s PMV model using the same data as input. Some
researchers, such as Liu at al. [I8], focused on modeling thermal comfort using heart rate variability. Their
results indicated that sympathetic activity was highly correlated with thermal discomfort, and the ratio
between low and high frequency (LF/HF) components of heart rate variability (HRV) may be used as an
indicator of thermal comfort. Other researchers have focused on extracting skin temperature, using sensors
attached to the subject’s body, to model thermal comfort based on human body thermoregulation [19] [7]
20, 2I]. Moreover, Chaudhuri et al. [22] showed that using normalized hand skin temperature based on
inter-individual differences (such as clothing insulation and body surface area), the thermal sensation can be
more accurately predicted. Similar results were found by Choi et al. in [23], which showed that body mass
index(BMI) affects the temperature dynamics and that wrist temperature was the most significant body
segment for assessing thermal sensation. Finally, Ghahramani et al. [24] collected skin temperature using
eyeglasses outfitted with point IR sensors to monitor individual’s thermoregulation. All these works showed
that thermal comfort or sensation was correlated with thermoregulation, and that skin temperature can be
used to model thermal comfort. Multiple body parts were identified as target points for thermal comfort
modeling, but a few of them were highly sensitive to thermal comfort, such as wrist, head and chest.

A few more recent works focused on using thermographic cameras as a means to model thermal comfort.
These cameras have the advantage of not requiring physical contact with the subjects while measuring their
skin temperature. Preliminary studies focused on manual measurements of face temperature using hand-held
thermographic cameras. Burzo et al. [25] used average facial temperature and other physiological signals to



predict subject’s level of discomfort without any explicit input from the user. Pavlin et al. [26] evaluated
multiple forehead key-points as a measure of thermal comfort. Finally, Ranjan et al. [27] included head
and hand temperatures manually extracted from a thermographic camera to model the thermal needs of
the space occupants. All these works showed that average face temperature computed using thermographic
cameras was highly correlated to thermal comfort, and that it can be used to predict the thermal needs of
the building occupants.

Based on the results of these preliminary studies and the recent development of low-cost consumer grade
thermographic cameras, we believe that these sensors are a promising technology to help solve the thermal
modeling problem in an non-invasive way. While the above studies are based on hand-held cameras with
explicit manual pointing for optimal measurement, we study the potential of a wall-mounted camera in a
real office setting where the subject moves around and body parts are obscured or come in and out of the
field of view, and where identification of thermal comfort is performed in real-time. The proposed sens-
ing platform combines an inexpensive thermographic camera with a color-distance sensor to automatically
localize measurements. Furthermore, we examine whether clothing temperature and identification of tem-
perature differences amongst body parts can lead to more accurate assessment of thermal comfort. Finally,
a comprehensive study with 30 healthy subjects was conducted to examine whether thermal comfort has a
different signature from warm and cold discomfort in transient conditions.

2 Method

To test our proposed system capabilities to model thermal comfort levels, we designed an experiment based
on an office setup with transient conditions, where we varied the office temperature and queried the thermal
comfort of the occupants. Our proposed sensing platform was used to collect the thermal profiles of the
following body parts: hand, elbow, shoulder, chest and head, including left or right. These body parts were
identified as highly relevant for thermal comfort modeling by [21], 23, 22]. A feedback form was used to collect
thermal comfort information from subjects. We describe in detail the proposed experiment in Section [2.1}

Our proposed non-invasive technology to automatically model thermal comfort combines three sensors,
a thermographic camera, a depth sensor and a color camera, to create an augmented representation of the
world, which we called RGB-DT (RedGreenBlue-DepthTemperature). This new world representation was
used by our algorithms to detect and track humans within the environment, and to identify different human
body parts for which the thermal profile was computed. This system is described in detail in Section [2.2

Finally, all data collected by the sensing platform and subjects’ feedback forms were used to analyze
the interaction between genders, Thermal Comfort Vote (TCV) levels and body parts temperatures. The
purpose of this analysis was two fold: verify if there is a difference in skin and clothing temperature response
between males and females at different TCV levels, and validate the use of skin and clothing temperature as
a mean of thermal comfort modeling. Complete data analysis can be found in Section

2.1 Experimental Design

2.1.1 Subjects

30 healthy volunteers participated in this study (15 females and 15 males), primarily undergraduate and
graduate students at The George Washington University. Their age ranged between 20 and 42 years old.
Every subject was asked to wear a similar outfit (such as pants, t-shirt and regular shoes) and was instructed
on how to self-report their clothing insulation using the garment insulation table from [28]. Data from the
30 subjects showed that the average clothing insulation was 0.44 clo with SD = 0.07 clo. After we considered
the added insulation when sitting on a chair (+0.1 clo for standard office chair), the final average clothing
insulation was 0.54 clo. Metabolic rate was constant during the experiment, around 1-1.1 met, equivalent to
sedentary office activity. All demographic measurements were recorded in a questionnaire at the beginning
of the experiment and are presented in Table



Table 1: Demographic information.

Variable Mean SD Min Max
Age 26 5.8 20 42
Height(cm) || 1722 9.9 155 196
Weight(kg) || 73.1 174 48 120

2.1.2 Office setup

The experiment took place in an office room at The George Washington University. The room was located
in the middle of the School of Engineering and Applied Science building, and it had no windows or exterior
walls. The office was disconnected from the central HVAC unit, such that the heating and cooling was
controlled locally through portable space heaters and an air conditioner. For this experiment, two radiant
heaters were used together with an 14,000 BTU portable air conditioner. The office furniture consisted of a
desk and a chair, placed on a side of the room. The sensing platform, the heaters and air conditioner were
placed on the other side of the room. The room layout can be seen in Figure
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Figure 1: Office layout.

Indoor conditions were monitored by measuring the air temperature and relative humidity in the im-
mediate vicinity of the subject. These measurements were not used directly by the proposed algorithms,
but they were measured to ensure that the indoor conditions were consistent across all subjects’ recordings.
Finally, the air flow was less than 0.2 m/s, as recommended by ASHRAE-55 [2§].

2.1.3 Experimental procedures

The experiment took around 40 minutes for each subject. This duration included subject acclimatization
(standby time), answering a short survey, and data acquisition. Most thermal comfort experiments include
an acclimatization period, such that subjects achieve a target metabolic rate and thermal condition, usually
affected by previous activities and environments. Some works in this area used a different environment for
acclimatization [I9] 25| [26], while others used the experimental environment for acclimatization and data
collection [7) I8, 27]. We followed the later one, since we wanted to eliminate subjects’ reaction to the
initial state of the environment and to start the experiment from a stable thermal condition with respect



to the experimental environment. Subjects were asked not to exercise one hour before the data collection
appointment, for a rapid skin temperature stabilization. The recommended acclimatization time in the
literature is around 30 minutes. Since we did not test extreme conditions (really high or low temperatures),
and the temperature jump for all subjects was lower than 3°C, an acclimatization period between 10 and 20
minutes was selected to ensure that the skin temperature reached a stable condition.

During the acclimatization, each subject had to answer a short survey regarding demographic information,
after which he/she was instructed on how to answer the feedback form questions during the experiment. The
feedback questions were with respect to the TCV and thermal sensation vote (TSV), and they had to be
answered every minute during the experiment. A timer was set to audibly alert the subjects when they had
to answer the feedback questions.

An office building indoor environmental quality study from 2008 [29] determined that the typical minimum
and maximum temperatures for an office building were 19.4°C to 27.8°C. Also, these temperatures were
labeled by subjects as “cool” and “warm” in a chamber study [19]. Based on these observations, we selected
the temperature range for our experiment to be 21.11°C to 27.78°C. For each subject, the room temperature
was set to 21.11°C before the acclimatization, and kept constant till the beginning of the recording. During
the experiment, the room was heated at approximately 0.24°C per minute for 27 minutes, from 21.11°C to
27.78°C. Although the temperature changes are not exactly controlled in a fine-grained manner, we observed
that similar conditions were tested in day 4 of the experiment used in [24]. These conditions were faster
then normal transient conditions, and the main purpose was to amplify the thermoregulation response in
a shorter amount of time. The accelerated schedule of temperature change allowed for efficient evaluation,
but it fairly raises the question of how a model based on accelerated transient conditions can be applied to
other, perhaps more gradual, transient conditions. The same methodology would apply, and the apparatus
would likely be the same, in which case further testing under multiple transients could lead to an adjusted
model that includes measures of transient rates.

2.1.4 Measurements
Two types of measurements were collected during the experiment:

e environmental conditions: room temperature and relative humidity were collected every minute, using
a measurement device placed in the vicinity of the subject (see Figure |1));

e subject’s thermal profile: skin and clothing temperature were recorded continuously for the entire
experiment at 9 frames per second, using the proposed sensing platform. This was placed such that it
faced the subject (see Figure [1));

In contrast with existing methods, clothing temperature was also considered in modeling thermal comfort.
The clothing temperature is driven by two main factors: clothing insulation level and heat transfer between
the environment and skin surface. Similar to the skin temperature literature where the heat transfer is
analyzed to model thermal comfort, constant clothing insulation level was assumed to model the heat transfer
through clothing. We focused on the chest and shoulders because these were identified as important locations
to model comfort, and they are typically covered by clothing.

2.1.5 Subject Feedback

For thermal comfort assessment, each subject had to provide the thermal comfort vote (TCV) every minute
for the entire experiment. The vote was recorded based on a modified Bedford scale [30]. Originally, the
Bedford scale consists of seven levels: much too warm (+3), too warm (+2), comfortably warm (+1),
comfortable (0), comfortably cool (-1), too cool (-2), and much too cool (-3). However, since we were
interested in distinguishing comfort from discomfort (warm or cold), we combined scales 4+1, 0 and -1 in only
one as comfort. Thus, our modified TCV scale has 5 levels: high warm discomfort (+2), warm discomfort
(4+1), comfortable (0), cold discomfort (-1), and high cold discomfort (-2).

Thermal sensation vote (TSV) was also collected every minute during the experiment. The TSV scale
was based on 7 levels ASHRAE Standard-55 [28]: cold (-3), cool (-2), slightly cool (-1), neutral (0), slightly
warm (+1), warm (+2), and hot (+3).



2.2 Sensing Platform

The sensing platform design was governed by the following principles: low cost sensors, small form-factor
device and real time capabilities. The data acquisition and processing pipeline of the system are described in
Section [2.2.1] and respectively, with an overview of the entire system architecture shown in Figure
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Figure 2: Sensing platform architecture.

«°
o

2.2.1 Data Acquisition

Our proposed sensor fusion was designed using off-the-shelf sensors. The total system cost was around $300.
The hardware components are (see Figure |3| for a picture of the system):

e a depth sensor and color camera combination (Kinect 2), to identify and track office space occupants;

e a thermographic camera (Flir Lepton) with thermal sensitivity of 0.05 °C, to capture the temperature
information of the occupants;

e a point IR sensor (MLX90614) with thermal sensitivity of 0.02 °C, to calibrate the thermographic
camera;

Figure 3: Sensing platform hardware.

All data was acquired in real time and sent to the software modules for processing. Since different sensors
have different frame rates, the slowest sensor set the sensing platform speed. In our case, the sensing platform
speed was around 9 frames per second, which was the maximum speed of the thermographic camera. We also
needed to account for the different image resolutions of each sensor: for example, the thermographic camera
uses an 80x60 resolution, while the depth camera uses 640x480, and the color camera uses 1920x1080. In this
case, we decided that the best resolution was the depth camera resolution, because the image registration
process used the depth camera image plane as the reference plane.



2.2.2 Data Processing

The end goal of our sensing platform was to describe the thermal profile of the identified human body parts,
whose differences have the potential for improving thermal comfort prediction. Based on recent work in the
field, such as [7, (19, 20, 2], and considering the constraints of our remote sensing platform that can see
mainly upper body (considering the office setup), we identified the following body parts to be of interest
for our experiment: hands, elbows, shoulders, chest and head. We considered using neck information too,
but initial experiments showed that this was occluded by the head most of the time, due to the camera
placement (higher than the occupant’s head).

To accurately identify, track and compute thermal profile of these body parts, we proposed a new aug-
mented world representation, which we call RGB-DT. This new representation combines three types of
information: color (Red-Green-Blue), spatial (Depth) and thermal (Temperature). Our software aligned
these information channels, such that each object in the filed of view of the camera can be described by its
color, 3D location and surface temperature. The proposed model can be seen in Figure

Figure 4: RGB-DT model, from left to right: color information with overlapped detected body parts, thermal

information and depth information with overlapped detected joints.

We used depth and color information from a Kinect 2 sensor to first detect the occupant. Then, the
occupant’s joints were identified through an algorithm provided along with the Kinect 2 sensor. Using the
identified joints, we computed the 3D location of each body part, by using the fact that all of them either
overlapped with a joint (such as wrists), or could be derived from their position in relation to a known joint
(such as the chest, situated between and below the shoulder joints). We observed that temperature readings
coming from a single point were significantly affected by noise in data and processing errors, such as noise
from thermal image upscaling, inaccuracy in body part location or occlusions. To eliminate the temperature
noise issues, we computed a local area around each body part location, which we called a patch, and we
extracted the average temperature information over this area, instead of a single point measurement. The
computed patch ensured that all points within the patch came from the same surface and were points of the
same body part. Finally, we used thermal information from the RGB-DT values and computed patches to
extract the thermal profile of each body part. Each thermal profile consisted of the average temperature of
the patch around the detected part and the variance of the patch temperature (see Figure [4)).

3 Data analysis

For the experiment, the data collection phase took 4 weeks and resulted in 15 hours of video and 5TB of
RGB-DT data. User feedback was automatically logged using digital survey tools. The two streams of data
were automatically synchronized using associated timestamps and analyzed using R (for statistical analysis).

Before subjects entered the room, the temperature was set and kept at 21.11°C. During the experiment,
the room was heated up to 27.78°C. The average room temperature measurements for all subjects and
the associated standard errors are displayed in Figure Relative humidity for the office space was also
measured for the entire experiment. On average, the relative humidity was 36% (with SE = 6%). However,



as Figure shows, there was a common variation of humidity across all subjects. The room heater dried
the air 6% on average.
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Figure 5: Average room temperature and relative humidity during the experiment.

Initial review of the data revealed that all 30 subjects experienced comfort, but only 13 experienced cold
discomfort and 22 warm discomfort. Furthermore, six subjects were identified as not appropriate for data
analysis. The main reasons for excluding these subjects are: incomplete data (due to sensors malfunctions)
or zero comfort variance (subject felt comfortable for the entire temperature range). We chose to discard the
data for the subjects who experienced no variance in comfort because we could assume that the generated
thermal comfort model from the other subjects with more restrictive comfort profiles would also apply to
subjects with a wider range of temperature comfort. The remaining 24 subjects experienced at least two
different TCV levels: five of them experienced cold discomfort and comfort, eleven of them experienced
comfort and warm discomfort, and eight of them experienced all three TCV levels.

Although both the TSV and TCV responses from subjects were collected, similar to [24], 27], we focused
on TCV responses to directly model thermal preferences. Other researchers, such as [16}, 21, 23] 22| [19], have
focused on the TSV values to model preferences, and they also showed that in many situations the TCV and
TSV are highly correlated. This can be also observed in our Table[2] Results showed that the neutral state
(TSV=0) corresponds to thermal comfort, while slightly cold/warm sensation overlaps mostly with thermal
comfort state and up to 35% with cold/warm discomfort. Finally, the cool and warm state identify with cold
and respectively warm discomfort. However, there are situations where subjects are comfortable, although
their sensation is outside comfort range based on the TSV value. For these reasons, we investigated the
relationship between the recorded skin and clothing temperatures and the TCV.

3.1 Gender differences in thermal comfort

A summary of the average patch temperature for different thermal comfort levels is presented in Table [3]
grouped by gender. It can be seen that the average temperature for all considered body parts increases with
the TCV value, and most of these match between males and females. Also, body parts covered by clothes,
such as torso and shoulder, have a lower patch temperature. Finally, for a TCV of -1 (cold discomfort) the
skin temperature was significantly higher than the temperature of clothing patches, whereas for a TCV of 1
(warm discomfort), the gap is much smaller.

In the first test, we evaluated the impact of gender, TCV levels and their relationship to average patch
temperature. The scope of this test was to check weather males and females responded differently at given
TCV levels, when they were compared using individual patch temperatures. This relationship was analyzed
using repeated measures Factorial ANOVA test, where the repeated measures were the three TCV levels.
However, since not all subjects experienced all three TCV levels during the experiment, we repeated the
analysis for two different groups: subjects that felt cold discomfort and comfort, and subjects that felt
comfort and warm discomfort. Because data was collected continuously, there are multiple responses for



Table 2: TSV values and the associated percent of TCV votes.

TCV
-2 -1 0 +1 +2
-3 0 0 0 0 0
-2 0 609 39.1 0 0
-1 0 20.0 80.0 0 0
TSV | 0 0 0 98.8 1.2 0
+11 0 0 65.1 34.9 0
+2 1] 0 0 26.3 664 7.3
+3 1 0 0 1.1 56.3 42.6

Table 3: Average patch temperature measurements (°C) grouped by TCV and gender.

TCV | Gender | LH LE LS RH RE RS Head Torso
Male 329 343 326 325 338 325 349 314

! Female || 32.2 33.1 329 325 340 329 353 315
Male 34.0 350 34.0 34.0 350 340 364 334

’ Female || 334 339 33.6 331 342 33.8 360 332
Male 35.2 356 349 350 358 349 370 348

! Female || 35.4 35.1 35.0 350 352 353 371 348

Note: LH=Left Hand, LE= Left Elbow, LS=Left Shoulder, and (RH,RE,RS) are the equivalent for the right arm.

each TCV levels for each subject. So, for each subject, the average response was computed for all available
TCV levels. The F-ratio and p-value resulting from ANOVA test are reported in Table [ and

Results showed that the interaction between gender and TCV level was not significant (p-value > .05) for
all body parts, so, we analyzed the main effects individually. When males and females were compared, results
showed that if we ignore the TCV level, the gender of the subject did not influence the patch temperature
(p-value > .05). This result was consistent for all considered body parts. For the second main effect, when
comfort and discomfort (cold or warm) were compared, results showed that if we ignore the subject gender,
the TCV level influenced the patch temperature (p-value < .05). There were a few patch temperatures (RH,
RE) that did not have a significant F-value when comfort was compared with cold discomfort. However,
these patches were identified as highly exposed to noise, and we reviewed in detail the source of this noise in
Section [3.4l To conclude, males and females did not respond significantly differently for same TCV levels,
given all selected body parts. Thus, for the remainder of this paper, both genders are treated as a single
subject group. However, subjects responded significantly differently for the three TCV levels, given their
skin and clothing temperature.

3.2 Principal component analysis

A principal component analysis test was run on the thermal profiles data to investigate the interaction
between different body parts, to identify the main components and to eliminate possible redundant data.
First, all detected body parts were used and the correlation matrix was computed. Table [f]shows the content



Table 4: Repeated measures Factorial ANOVA test for TCV (-1 and 0) and Gender interaction.

Body Part Gender TCV Gender:TCV Assumptions
F(1,10) p-value | F(1,10) p-value | F(1,10) p-value | Normality® HOVP
LH 0.203 0.668 6.137 0.048 0.072 0.798 v v
LE 3.552 0.108 10.520  0.017 0.143 0.718 v v
LS 0.155 0.707 15.929  0.007 2.181 0.190 v v
RH 0.074 0.795 4.323 0.082 0.647 0.451 v v
RE 0.163 0.700 2.356 0.176 1.363 0.287 v v
RS 0.003 0.957 12.355 0.012 1.149 0.324 v v
Head 0.004 0.949 5.835 0.052 0.740 0.422 v v
Torso 0.056 0.820 13.387 0.010 0.265 0.624 v v

Normality tested using Shapiro- Wilk Test
YHomogeneity of variance(HOV) tested using Levene’s Test

of the correlation matrix, while Figure [6] is a visual representation of the same data.

W%@WWWWW
WM@WWWW

Figure 6: Correlation graphic for all body parts.

The correlation matrix shows that all body parts were significantly correlated (correlation > .5), but
some of them were highly correlated (correlation > .9). Highly correlated variables were an indicator of
multicollinearity in data. These results were also supported by the determinant of the correlation matrix
that had a value close to 0 (4.71563e-05), and by the correlation matrix which was different from the identity
matrix, based on the Bartlett Test (p < 0.001). We identified two groups of highly correlated values:
equivalent body parts between left and right arm (e.g. LH and RH), and body parts covered by clothing
items (LS, RS and Torso). These groups were also supported by the correlation graphic, and they were
identified as plots that closely follow a diagonal line distribution.

The left and right arm correlation can be explained by the human body thermoregulation which is
symmetric in response, as long as the temperature within the environment is uniform. In those conditions,
both arms responded similarly to the changes in the environment. This symmetry was highly important for
our proposed sensing platform, since it allowed the automatic system to detect at least one arm, without
losing significant thermal comfort information. If both arms were detected, the temperature from both was
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Table 5: Repeated measures Factorial ANOVA test for TCV (0 and +1) and gender interaction.

Body Part Gender TCV Gender:TCV Assumptions
F(1,16) p-value | F(1,16)  p-value | F(1,16) p-value | Normality® HOVP
LH 0.124 0.730 39.709  3.94e-05 | 3.787 0.075 v v
LE 2.758 0.123 53.199  9.56e-06 | 3.981 0.069 v v
LS 0.017 0.899 79.617 1.21e-06 | 0.626 0.444 v v
RH 0.360 0.560 45.339  2.09e-05 | 5.769 0.033 X¢ v
RE 4.649 0.052 50.095 1.29e-05 | 0.932 0.353 v v
RS 0.344 0.569 150.210 3.82e-08 2.611 0.132 v v
Head 0.143 0.712 23.641  0.00039 1.047 0.326 v v
Torso 0.003 0.960 92.173 5.55e-07 | 0.014 0.907 v v

“Normality tested using Shapiro- Wilk Test
®Homogeneity of variance(HOV) tested using Levene’s Test

¢The distribution isolating males failed the normality test.

used to improve the thermal profile of the arm.

With respect to the body parts covered by clothing, their correlation can be explained by the fact that
these measurements came from neighboring areas from the upper body, and they represent measurements
of the same surface (clothing). However, the temperature range for LS/RS was significantly different than
the torso, because of the skin temperature behind that clothing patch. For this reason, it was important to
consider torso thermal profile separately from LS/RS.

Based on the above observations, the main important body parts to track, without losing significant
information, were hand (any), elbow (any), shoulder (any), torso and head. Using these body parts, we re-
ran the principal component analysis test. The correlation matrix remains the same, without the rows and the
columns associated with the discarded body parts (for this experiment, the right arm was randomly selected
to be discarded from the data). The new matrix passed the multicollinearity test, with the determinant value
(0.0072) significantly higher than the accepted threshold (0.00001). The Kaiser-Meyer-Olkin measure verified
the sampling adequacy for the analysis, with the overall KMO=0.83, and all KMO values for individual
body parts were > 0.79, which is well above the acceptable limit of 0.5. Bartlett’s test of sphericity,
22(10) = 1014.86,p < 0.001, indicated that correlations between body parts were sufficiently large for PCA.

An initial analysis was run with the maximum number of components, five components in our case, to
obtain the eigenvalues for each component. From the five components, only one had the eigenvalue higher
then Kaiser’s criterion of 1 and it explained 79% of the variance. This result was validated by the inflexion
point on the screen plot. So, one component was retained for the final analysis. Table [7] shows the factor
loadings (PC1), commonalities (h?), and the unexplained variance (u?).

Based on these results, we can conclude that the selected body parts were members of the same compo-
nent, and this component represents the thermal response of a subject to the environmental conditions.

3.3 Derived measurements

As shown in Section the skin patches had higher temperature than the clothing ones. However, it was
observed that the temperature difference between skin and clothing patches decreases with an increase in
TCV level. This phenomenon can also be observed in Figure[7a] On the left side of the graphic, corresponding
to the cold discomfort, temperatures are spread between 31.5°C and 35°C, with torso temperature in the
lower part of the range and head temperature towards the upper end of the range. The left and right elbow
are grouped together just above the middle of the interval (33.9°C), while the remaining patches are grouped
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Table 6: Correlation matrix for all body parts.

LH LE LS RH RE RS Head Torso
LH 1.00 068 0.64 0.92 065 063 068 0.63
LE 0.68 1.00 0.78 0.66 0.71 0.74 0.67 0.68
LS 0.64 0.78 1.00 064 058 0.93 085 0.90
RH | 0.92 066 064 1.00 059 062 061 0.63
RE 0.65 0.71 058 059 1.00 0.59 0.57 0.54
RS 0.63 0.74 0.93 062 059 1.00 0.80 0.90

Head || 0.68 0.67 0.85 0.61 0.57 080 1.00 0.87

Torso || 0.63 0.68 0.90 0.63 054 0.90 0.87 1.00

Table 7: PCA output for 1 component.

Body Part || PC1 A2 u?
LS 0.94 0.89 0.11
Torso 092 0.85 0.15
Head 0.92 0.84 0.16
LE 0.85 0.73 0.27
LH 0.81 0.65 0.35

around 32.8°C. On the other side of the graphic, corresponding to warm discomfort, it can be observed that
most temperatures are in a much narrower range between 34.9°C and 35.5°C, with head temperature the
only one outside this range, at around 37.0°C.

Based on this observation, a new set of derived measurements was proposed. Using torso temperature as
the clothing reference measurement, because it had the most stable response, we computed the temperature
differences between this reference and all other patch temperatures. Also, as concluded in the previous
section and as shown in Figure[7a] corresponding body parts from left and right arm tend to group together,
and thus, we only need to use one of them (we used the left arm). The resulting differences are plotted in
Figure [7D]

The figures show that temperature differences decrease with the increase in TCV level. A possible
explanation of the observed behavior is related to human body thermoregulation and heat transfer. When
heat transfer between skin and environment (or clothes) was at minimum (cold discomfort) the clothing
temperature tended to reflect the environment temperature. In contrast, when heat transfer was at maximum
(warm discomfort), the clothing temperature tended to reflect the skin temperature. Thus, a low heat transfer
corresponds to a big temperature difference between patches, while a high heat transfer corresponds to a
small temperature difference. As in the case of base features, we analyzed the impact of gender, TCV level
and their interaction on the temperature differences using Repeated Measure Factorial ANOVA Test. Results
are presented in Table

Table [8] shows that the interaction between gender and TCV level was not significant for all derived
measures. Also, ignoring TCV level, the gender of the subject did not influence the temperature differences
(p-value > .05). However, ignoring gender, the TCV level was significant for most temperature differences
(except Shoulder-Torso and Hand-Torso). This result is useful because it suggests the use in thermal comfort
modeling of the derived measures enabled by our combined sensors.

Finally, we examined a second derived set of measurements inspired by multiple thermal comfort studies
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Figure 7: Average patch temperature (a) and temperature differences (b) for selected TCV levels.

Table 8: Repeated measures Factorial ANOVA test for temperature differences.

Gender TCV Gender:TCV Assumptions
TCV Levels Feature
F(1,10/16) p-value | F(1,10/16) p-value | F(1,10/16) p-value | Normality® HOV®
Hand-Torso 0.145 0.716 13.760 0.009 2.233 0.185 v v
L and 0 Elbow-Torso 2.414 0.171 9.719 0.020 0.245 0.638 v v
-1 an

Shoulder-Torso 0.000 0.992 4.191 0.086 0.462 0.522 X v
Head-Torso 0.140 0.721 15.678 0.007 1.439 0.275 v v
Hand-Torso 0.000 0.997 0.380 0.551 3.049 0.111 v X
Elbow-Torso 1.950 0.193 23.918 0.0006 2.106 0.069 v v

0 and +1
Shoulder-Torso 0.123 0.733 21.483 0.0009 1.031 0.333 v v
Head-Torso 0.000 0.995 14.364 0.003 0.905 0.363 v v

& Normality tested using Shapiro- Wilk Test
> Homogeneity of variance(HOV) tested using Levene’s Test

[24], 26], 27], based on which temperature varies significantly in body areas with high density of blood vessels
(such as face and hands), and multiple key points were defined in those body areas to analyze the thermal
comfort. This variance in temperature is of high interest for us, since our patch definition matches the areas
of interest for these studies. Furthermore, our system offer access to dense temperature points measurements,
in contrast with the sparse points used in the previous studies. These results are presented in Figure

As the results show, the patch associated with the face area returns consistent results with TCV levels.
When subjects felt cold discomfort, there was a high variance in patch temperatures (variance=1.1°C), while
when they felt warm discomfort, the variance in temperature was lower (variance=0.55°C). Similar results
were observed at the elbow, shoulder and torso level. However, both hands did not return a consistent
variance trend with the TCV levels. We finished the variance analysis with a Repeated Measurements
Factorial ANOVA test, as we did for all other measurements (derived or base). The results are shown in
Table [0l

Based on these results, we can confirm that the temperature variance for head and torso was significantly
different for the three TCV levels. But, all other body parts failed at least one assumption test, the normality
test or the homogeneity of variance test, making the ANOVA test inapplicable for those. The main reason for
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Figure 8: Average patch temperature variance for selected TCV levels.

failing the normality or homogeneity of variance test was the presence of significant noise in the measurements.
We discuss this in more detail in Section 3.4l

3.4 Challenges in data collection

While our proposed non-invasive technology is a contact-less way of automatically measuring the occupant’s
thermal comfort, there were multiple challenges with this approach. First, the sensors used to build the
sensing platform have their own limitations. Second, the automatic procedure to extract thermal profiles of
different body parts acts in a complex and continuously changing environment, where the subject is often
moving (see Figure [J for example images).

(e)

Figure 9: Sources of noise in data collection: (a)-(b) with-without sunglasses, (c)-(d) with-without hand

watch, (e)-(f) inside-outside elbow and hand patch, (g)-(h) shoulder-torso occlusion.
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Table 9: Repeated measures Factorial ANOVA test for patch variance measure.

TCV Levels | Body Part Gender TCV Gender:TCV Assumptions
F(1,10/16) p-value | F(1,10/16) p-value | F(1,10/16) p-value | Normality* HOV®

Hand 0.448 0.528 1.456 0.273 0.286 0.612 v v

Elbow 0.618 0.462 0.568 0.479 0.080 0.787 X v

-1 and 0 Shoulder 3.719 0.102 12.463 0.012 2.427 0.170 X v
Torso 2.855 0.142 14.237 0.009 0.373 0.563 v v

Head 0.051 0.828 6.707 0.041 0.041 0.846 v v

Hand 3.976 0.081 6.095 0.038 1.114 0.322 X v

Elbow 0.045 0.838 0.653 0.442 0.753 0.411 v v

0 and +1 Shoulder 6.705 0.041 7.786 0.031 2.257 0.183 v X
Torso 8.664 0.018 8.161 0.021 1.422 0.267 v X

Head 3.846 0.078 36.574 0.0001 2.076 0.180 v v

& Normality tested using Shapiro- Wilk Test
> Homogeneity of variance(HOV) tested using Levene’s Test

With respect to the sensor limitations, the main problems were with the thermographic camera. This had
a significantly lower image resolution (80 by 60 pixels) than more expensive cameras and the temperature
value accuracy for individual pixels was within 1°C, which is slightly lower than other technologies used in
the literature to measure skin temperature. However, the advantage of this technology was that it allowed us
to easily measure in a single frame the temperature over an area, beyond just a single point, such that noisy
temperature measurements were discarded. So, the resulting average temperature measurement over an area
improved the overall temperature accuracy. Moreover, the thermal images were collected at nine frames per
second, while only one measurement for each minute was necessary for the thermal comfort analysis. Now,
given that skin temperature varies smoothly in time, this allowed us to use all 540 frames (60 * 9) to fit a
polynomial function to better approximate the instantaneous temperature at preferred time, associated with
subject’s feedback. Finally, the image low resolution impacted the level of detail on surface temperature (see
Figure , which limited the accuracy of the temperature variance of each patch. However, consumer
grade thermographic cameras are new to the market and higher resolution sensors will likely be available in
the future.

The second challenge mentioned above had to do with the automatic procedure for extracting meaningful
data for thermal comfort modeling. This procedure was affected by the human subjects variety in appearances
(see Figure Dalf9d)), their continuous motion (see Figure and occlusions (Figure [Ogl[ol)). The last two
had the most impact on the accuracy of detecting body parts, which is of importance for the average patch
temperature computation. Furthermore, the variety in appearances had a significant impact on both the
average and the variance of the patch temperature. For example, subjects’ accessories such as watches
(Figure , bracelets, or eye glasses (Figure @ overlapped with body parts of interest and they become
part of the detected patch, influencing the average temperature and its variance. These types of limitations
are to be expected in any non-invasive at-a-distance sensor measurement with low cost consumer-grade
Sensors.

To handle these challenges, a first corrective action was to impose a smoothness constraint on the patch
temperature, such that big temperature jumps were discarded as noisy outliers. This is a fair assumption
given that the temperature of each patch was computed at 10 frames per second. This measure helped to
reduce the noise from detection precision and temporary occlusions. A second corrective measure was to
extract the temperature information for each body part using an automatically computed patch, as defined
in Section This ensured a consistent body part detection at the patch level, and it helped to reduce
the noise due to accessories that overlapped with target areas.
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4 Conclusion

In this paper, we proposed a non-invasive and contact-less technique to model human thermal comfort in
transient conditions using a novel fused-sensor visual sensing system. This consisted of three cameras (color,
depth and thermal) to generate an augmented world representation, which we called RGB-DT. Using this
representation, the system automatically identifies, tracks and models thermal comfort of the occupants of
an office space in real time (9 fps). The combined sensor was used to extract skin and clothing temperature
from different body locations that would typically be visible on a subject within a standard office setting
(e.g. arms, head, and chest).

Thermal profiles for each body part were extracted from the RGB-DT model. This was defined as the
average skin or clothing temperature of an area (patch) around the center point of the body part. The patch
based approach, as opposed to the single point, helped reduce noise and improve stability of the generated
thermal profiles. However, in situations where the subject wore accessories (such as eye glasses or watch),
it was more difficult to eliminate the noise introduced, especially if the central point of the body part was
located on the accessory surface.

The proposed system and algorithms were validated in a real office setting, using 30 human subjects.
Although all subjects were exposed to the same temperatures, their reported comfort was significantly
different. For example, only 8 subjects experienced 3 comfort levels, while 16 of them experienced just 2
of them (-1 and 0, or 0 and +1), and 6 subjects experienced only one. These findings support the recent
research in the literature that argues against the feasibility of currently used thermal model to keep everyone
comfortable while using only environment related measurement and ignoring the occupants’ real thermal
needs.

Our data analysis of skin and clothing temperature showed that these two measurements, taken at
different body locations, were of high importance for the thermal comfort level. To the best of our knowledge,
this was the first work that used skin and clothing temperature to model thermal comfort. We acknowledge
that the clothing insulation was constant during our experiment and different clothing insulation will affect
the clothing temperature readings. For this reason, it would be useful to conduct multiple experiments in
the future to understand if a single thermal model based on skin and clothing temperatures can be used for
mixed clothing insulation levels. In this case, the approach proposed here could be used to build multiple
parallel models for different groups of insulation. However, automated discovery of such clothing groups and
such a multiple-model study is beyond the scope of this paper. Also, an investigation of the BMI impact
on the thermal comfort was not considered, while it was showed in [23] that BMI has an important role in
thermal sensation assessment. We plan to address these topics in a later experiment.

We also proposed a new set of derived measurements to be used together with the base skin and clothing
temperature to model thermal comfort. These were inspired from thermoregulation effects on skin temper-
ature and evidence extracted from collected data. We found that the temperature differences between body
parts were relevant for the three thermal comfort levels. There was a high temperature difference between
body parts, when subjects were feeling cold discomfort, while these differences were much smaller for warm
discomfort. Also, the temperature variance of each patch was an indicator of thermal comfort, with a high
variance when feeling cold discomfort, and a low variance for warm discomfort.

Finally, results showed that thermal comfort can be derived from observing only one arm, because there
was a high correlation between the thermal profiles of the left and right arms of all subjects throughout the
tests. This was an important observation, since in an office setup, a fixed-location sensor will only see some
parts of an occupant.

This work is a first step towards a new generation of intelligent heating and cooling systems that avoid
any contact with occupants. These systems will continuously monitor the environment and act in response
to a real thermal need of the occupants. Further research is required to evaluate the feasibility of such a
system across different types of environments (residential, commercial and industrial) and different occupants’
activities (sports, driving and sleeping).

16



References

[1]

2]

[10]

[13]

Commercial buildings energy consumption survey (CBECS), https://www.eia.gov/consumption/
commercial/data/2012/, Last Accessed: 30-May-2018 (2012).

Residential energy consumption survey (RECS), https://www.eia.gov/consumption/residential/
data/2015/) Last Accessed: 30-May-2018 (2015).

P. O. Fanger, Thermal comfort: Analysis and applications in environmental engineering, Danish Tech-
nical Press, 1970.
URL https://books.google.com/books?id=SOFSAAAAMAAJ

C. Huizenga, S. Abbaszadeh, L. Zagreus, E. A. Arens, Air quality and thermal comfort in office buildings:
results of a large indoor environmental quality survey, Proceedings of Healthy Buildings IIT (2006) 393—
397.

J. V. Hoof, Forty years of fanger’s model of thermal comfort: comfort for all?, Indoor Air 18 (3) (2007)
182-201. |arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-0668.2007.00516.
x,/doi:10.1111/35.1600-0668.2007.00516.x.

URL https://onlinelibrary.wiley.com/doi/abs/10.1111/3.1600-0668.2007.00516.x

M. Fountain, G. Brager, R. de Dear, [Expectations of indoor climate control, Energy and Buildings
24 (3) (1996) 179 — 182. doi:https://doi.org/10.1016/S0378-7788(96)00988-7.
URL http://www.sciencedirect.com/science/article/pii/S0378778896009887

W. Liu, Z. Lian, Q. Deng, Y. Liu, |[Evaluation of calculation methods of mean skin temperature for use
in thermal comfort studyl, Building and Environment 46 (2) (2011) 478 — 488. doi:https://doi.org/
10.1016/j.buildenv.2010.08.011,

URL http://www.sciencedirect.com/science/article/pii/S0360132310002647

F. Jazizadeh, F. M. Marin, B. Becerik-Gerber, |A thermal preference scale for personalized comfort
profile identification via participatory sensing, Building and Environment 68 (2013) 140 — 149. |doi:
https://doi.org/10.1016/j.buildenv.2013.06.011,

URL http://www.sciencedirect.com/science/article/pii/S0360132313001893

F. Jazizadeh, A. Ghahramani, B. Becerik-Gerber, T. Kichkaylo, M. Orosz, User-led decentralized ther-
mal comfort driven hvac operations for improved efficiency in office buildings, Energy and Buildings 70
(2014) 398 — 410. [doi:https://doi.org/10.1016/j.enbuild.2013.11.066!

URL http://www.sciencedirect.com/science/article/pii/S0378778813007731

B. Balaji, H. Teraoka, R. Gupta, Y. Agarwal, Zonepac: Zonal power estimation and control via hvac
metering and occupant feedbackl in: Proceedings of the 5th ACM Workshop on Embedded Systems
For Energy-Efficient Buildings, BuildSys’13, ACM, New York, NY, USA, 2013, pp. 18:1-18:8. doi:
10.1145/2528282.2528304.

URL http://doi.acm.org/10.1145/2528282.2528304

S. Karjalainen, O. Koistinen, |User problems with individual temperature control in offices, Building and
Environment 42 (8) (2007) 2880 — 2887. doi:https://doi.org/10.1016/j.buildenv.2006.10.031.
URL http://www.sciencedirect.com/science/article/pii/S0360132306003349

W. Pasut, H. Zhang, E. Arens, Y. Zhai, Energy-efficient comfort with a heated/cooled chair: Results
from human subject tests, Building and Environment 84 (2015) 10 — 21. doi:https://doi.org/10.
1016/j.buildenv.2014.10.026.

URL http://www.sciencedirect.com/science/article/pii/S0360132314003473

H. Zhang, E. Arens, M. Taub, D. Dickerhoff, F. Bauman, M. Fountain, W. Pasut, D. Fannon, Y. Zhai,
M. Pigman, Using footwarmers in offices for thermal comfort and energy savings, Energy and Buildings
104 (2015) 233 — 243. |doi:https://doi.org/10.1016/j.enbuild.2015.06.086.

URL http://www.sciencedirect.com/science/article/pii/S0378778815301067

17


https://www.eia.gov/consumption/commercial/data/2012/
https://www.eia.gov/consumption/commercial/data/2012/
https://www.eia.gov/consumption/residential/data/2015/
https://www.eia.gov/consumption/residential/data/2015/
https://books.google.com/books?id=S0FSAAAAMAAJ
https://books.google.com/books?id=S0FSAAAAMAAJ
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0668.2007.00516.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-0668.2007.00516.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-0668.2007.00516.x
http://dx.doi.org/10.1111/j.1600-0668.2007.00516.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0668.2007.00516.x
http://www.sciencedirect.com/science/article/pii/S0378778896009887
http://dx.doi.org/https://doi.org/10.1016/S0378-7788(96)00988-7
http://www.sciencedirect.com/science/article/pii/S0378778896009887
http://www.sciencedirect.com/science/article/pii/S0360132310002647
http://www.sciencedirect.com/science/article/pii/S0360132310002647
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2010.08.011
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2010.08.011
http://www.sciencedirect.com/science/article/pii/S0360132310002647
http://www.sciencedirect.com/science/article/pii/S0360132313001893
http://www.sciencedirect.com/science/article/pii/S0360132313001893
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2013.06.011
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2013.06.011
http://www.sciencedirect.com/science/article/pii/S0360132313001893
http://www.sciencedirect.com/science/article/pii/S0378778813007731
http://www.sciencedirect.com/science/article/pii/S0378778813007731
http://dx.doi.org/https://doi.org/10.1016/j.enbuild.2013.11.066
http://www.sciencedirect.com/science/article/pii/S0378778813007731
http://doi.acm.org/10.1145/2528282.2528304
http://doi.acm.org/10.1145/2528282.2528304
http://dx.doi.org/10.1145/2528282.2528304
http://dx.doi.org/10.1145/2528282.2528304
http://doi.acm.org/10.1145/2528282.2528304
http://www.sciencedirect.com/science/article/pii/S0360132306003349
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2006.10.031
http://www.sciencedirect.com/science/article/pii/S0360132306003349
http://www.sciencedirect.com/science/article/pii/S0360132314003473
http://www.sciencedirect.com/science/article/pii/S0360132314003473
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2014.10.026
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2014.10.026
http://www.sciencedirect.com/science/article/pii/S0360132314003473
http://www.sciencedirect.com/science/article/pii/S0378778815301067
http://dx.doi.org/https://doi.org/10.1016/j.enbuild.2015.06.086
http://www.sciencedirect.com/science/article/pii/S0378778815301067

[14]

[21]

[23]

[24]

S. Liu, L. Yin, W. K. Ho, K. V. Ling, S. Schiavon, A tracking cooling fan using geofence and camera-
based indoor localization, Building and Environment 114 (2017) 36 — 44. doi:https://doi.org/10.
1016/j.buildenv.2016.11.047.

URL http://www.sciencedirect.com/science/article/pii/S0360132316304784

R. F. Rupp, N. G. Vasquez, R. Lamberts, A review of human thermal comfort in the built environment,
Energy and Buildings 105 (2015) 178 — 205. |doi:https://doi.org/10.1016/j.enbuild.2015.07.047.
URL http://www.sciencedirect.com/science/article/pii/S0378778815301638

A. A. Farhan, K. Pattipati, B. Wang, P. B. Luh, Predicting individual thermal comfort using machine
learning algorithms, in: 2015 IEEE International Conference on Automation Science and Engineering
(CASE), 2015, pp. 708-713. [doi:10.1109/CoASE. 2015 .7294164!

T. Chaudhuri, Y. C. S. andd Hua Li, L. Xie, Machine learning based prediction of thermal comfort in
buildings of equatorial singapore, in: 2017 IEEE International Conference on Smart Grid and Smart
CiﬁeS(ICS(}SCU,2017,pp.72*77.doi:lO.1109/ICSGSC.2017.8038552.

W. Liu, Z. Lian, Y. Liu, Heart rate variability at different thermal comfort levels, European Journal of
Applied Physiology 103 (3) (2008) 361-366. doi:10.1007/s00421-008-0718-6.
URL https://doi.org/10.1007/s00421-008-0718-6

J.-H. Choi, V. Loftness, Investigation of human body skin temperatures as a bio-signal to indicate
overall thermal sensations, Building and Environment 58 (2012) 258 — 269. doi:https://doi.org/10.
1016/j.buildenv.2012.07.003.

Q. Jin, X. Li, L. Duanmu, H. Shu, Y. Sun, Q. Ding, Predictive model of local and overall thermal
sensations for non-uniform environments, Building and Environment 51 (2012) 330 — 344. doi:https:
//doi.org/10.1016/j.buildenv.2011.12.005.

URL http://www.sciencedirect.com/science/article/pii/S0360132311004215

C. Dai, H. Zhang, E. Arens, Z. Lian, Machine learning approaches to predict thermal demands using
skin temperatures: Steady-state conditions, Building and Environment 114 (2017) 1 — 10. |doi:https:
//doi.org/10.1016/j.buildenv.2016.12.005|

URL http://www.sciencedirect.com/science/article/pii/S036013231630484X

T. Chaudhuri, D. Zhai, Y. C. Soh, H. Li, L. Xie, [Thermal comfort prediction using normalized skin
temperature in a uniform built environment, Energy and Buildings 159 (2018) 426 — 440. |doi:https:
//doi.org/10.1016/j.enbuild.2017.10.098.

URL http://www.sciencedirect.com/science/article/pii/S0378778817327354

J.-H. Choi, D. Yeom, Study of data-driven thermal sensation prediction model as a function of local
body skin temperatures in a built environment, Building and Environment 121 (2017) 130 — 147. doi:
https://doi.org/10.1016/j.buildenv.2017.05.004.

URL http://www.sciencedirect.com/science/article/pii/S0360132317301841

A. Ghahramani, G. Castro, B. Becerik-Gerber, X. Yu, Infrared thermography of human face for monitor-
ing thermoregulation performance and estimating personal thermal comfort, Building and Environment
109 (2016) 1 — 11. |doi:https://doi.org/10.1016/j.buildenv.2016.09.005.

URL http://www.sciencedirect.com/science/article/pii/S0360132316303456

M. Burzo, C. Wicaksono, M. Abouelenien, V. Perez-Rosas, R. Mihalcea, Y. Tao, Multimodal sensing of
thermal discomfort for adaptive energy saving in buildings, iiSBE NET ZERO BUILT ENVIRONMENT
(2014) 344.

B. Pavlin, G. Pernigotto, F. Cappelletti, P. Bison, R. Vidoni, A. Gasparella, Real-time monitoring
of occupants’ thermal comfort through infrared imaging: A preliminary study, Buildings 7 (1). |doi:
10.3390/buildings7010010

URL http://www.mdpi.com/2075-5309/7/1/10

18


http://www.sciencedirect.com/science/article/pii/S0360132316304784
http://www.sciencedirect.com/science/article/pii/S0360132316304784
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2016.11.047
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2016.11.047
http://www.sciencedirect.com/science/article/pii/S0360132316304784
http://www.sciencedirect.com/science/article/pii/S0378778815301638
http://dx.doi.org/https://doi.org/10.1016/j.enbuild.2015.07.047
http://www.sciencedirect.com/science/article/pii/S0378778815301638
http://dx.doi.org/10.1109/CoASE.2015.7294164
http://dx.doi.org/10.1109/ICSGSC.2017.8038552
https://doi.org/10.1007/s00421-008-0718-6
http://dx.doi.org/10.1007/s00421-008-0718-6
https://doi.org/10.1007/s00421-008-0718-6
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2012.07.003
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2012.07.003
http://www.sciencedirect.com/science/article/pii/S0360132311004215
http://www.sciencedirect.com/science/article/pii/S0360132311004215
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2011.12.005
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2011.12.005
http://www.sciencedirect.com/science/article/pii/S0360132311004215
http://www.sciencedirect.com/science/article/pii/S036013231630484X
http://www.sciencedirect.com/science/article/pii/S036013231630484X
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2016.12.005
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2016.12.005
http://www.sciencedirect.com/science/article/pii/S036013231630484X
http://www.sciencedirect.com/science/article/pii/S0378778817327354
http://www.sciencedirect.com/science/article/pii/S0378778817327354
http://dx.doi.org/https://doi.org/10.1016/j.enbuild.2017.10.098
http://dx.doi.org/https://doi.org/10.1016/j.enbuild.2017.10.098
http://www.sciencedirect.com/science/article/pii/S0378778817327354
http://www.sciencedirect.com/science/article/pii/S0360132317301841
http://www.sciencedirect.com/science/article/pii/S0360132317301841
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2017.05.004
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2017.05.004
http://www.sciencedirect.com/science/article/pii/S0360132317301841
http://www.sciencedirect.com/science/article/pii/S0360132316303456
http://www.sciencedirect.com/science/article/pii/S0360132316303456
http://dx.doi.org/https://doi.org/10.1016/j.buildenv.2016.09.005
http://www.sciencedirect.com/science/article/pii/S0360132316303456
http://www.mdpi.com/2075-5309/7/1/10
http://www.mdpi.com/2075-5309/7/1/10
http://dx.doi.org/10.3390/buildings7010010
http://dx.doi.org/10.3390/buildings7010010
http://www.mdpi.com/2075-5309/7/1/10

[27]

J. Ranjan, J. Scott, Thermalsense: Determining dynamic thermal comfort preferences using ther-
mographic imaging, in: Proceedings of the 2016 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing, UbiComp 16, ACM, New York, NY, USA, 2016, pp. 1212-1222.
doi:10.1145/2971648.2971659.

URL http://doi.acm.org/10.1145/2971648.2971659

ASHRAE, ANSI/ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy,
American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, Georgia, 2013.

Center for Building Performance and Diagnostics, GSA workplace 2020 project technical report to the
U.S. General Services Administration (2008).

T. Bedford, The warmth factor in comfort at work: a physiological study of heating and ventilation,
H.M. Stationery Off., London, Great Britain, 1936.

19


http://doi.acm.org/10.1145/2971648.2971659
http://doi.acm.org/10.1145/2971648.2971659
http://dx.doi.org/10.1145/2971648.2971659
http://doi.acm.org/10.1145/2971648.2971659

	Introduction
	Method
	Experimental Design
	Subjects
	Office setup
	Experimental procedures
	Measurements
	Subject Feedback

	Sensing Platform
	Data Acquisition
	Data Processing


	Data analysis
	Gender differences in thermal comfort
	Principal component analysis
	Derived measurements
	Challenges in data collection

	Conclusion

