
Privacy-Preserving Programming Using Sython
Michael Gaiman, Rahul Simha and Bhagirath Narahari

The George Washington University
Washington, DC 20052

{mgaiman, simha, narahari}@gwu.edu

Abstract— Programmers often have access to confidential data
that are not strictly needed for program development. Broad
priveleges from accounts given to programmers allow them to
view files, database table entries or even variables in team
members’ code that are not critical to their own code. The
risk inherent in such unchecked access to possibly private and
sensitive data is exacerbated in cases where software development
is part of a larger functioning system with data already in place,
and is especially severe in cases where development is contracted
out to third parties. This paper focuses on the problem of provid-
ing developers with a programming language that incorporates
privacy-preserving features. We present Sython, a preliminary
prototype based on the Python programming language that
incorporates such features, examining both implementation and
the appearance of the system as viewed by a programmer. The
main purpose of this paper is to explore the use of language
syntax and underlying support for secure variables so that data
owners can contract out programming tasks without worrying
about information leakage.
Keywords: Privacy, software security, programming lan-
guages, security, information-flow security.
Contact author: Rahul Simha, The George Washington Uni-
versity

I. INTRODUCTION

For the past 50 years, software development has been
characterized by a programming culture that prefers minimal
restrictions on access to either machine internals or data. Such
freedom to view or manipulate data is even celebrated in
programming languages like C and in most early operating
systems. Unfortunately, this “programmer knows best” culture
clashes directly with the increasingly strong line taken by
owners of data who want access to be tightly controlled
and audited. Several factors have recently contributed to a
heightened need to restrict access including: sensational stories
of data theft reported in the media [1], a growing legal
framework to deal with privacy issues (examples: HIPAA [2],
TBPA [5], the European Data Protection Directive [3], [4]),
and most recently, the large-scale outsourcing of software
development to third parties [46].

This paper presents Sython, a prototype enhancement of
the well-known Python programming language [37] to enable
programmers to develop software while restricting their access
to those data specified by the owners as private. The purpose
is to allow software development to be contracted out while
maintaining the privacy of data in-house. A key goal of the
project is to retain programming flexibility and the expressive-
ness of the programming language while safeguarding data. In
particular, programmers ought to be able to program as with a

standard language, and debug their programs as if they were
using the actual data, but without actually seeing the data.

Sython provides an approach to use sensitive data during
the development and testing cycles without actually exposing
the actual values of the data to any third parties (whether
trusted, semi-trusted, or untrusted). This is accomplished by
separating sensitive data from other non-sensitive data and
then storing sensitive data in a completely different process
and on a logically different machine. Data in secure variables
is randomized before a programmer can view the contents
for the purpose of debugging. The separation is likely to be
physical in practice and therefore provides a level of physical
security during development as opposed to traditional systems
in which data values are stored in the executing process even
if abstracted away as part of an abstract data-type) or behind
an Application Programmer Interface (API).

The rest of this paper is organized as follows. Section II
provides background by reviewing related work. Section III
discusses the overall architecture of Sython. Sections IV and
V describes the current prototype implementation of Sython.
Section VI contains a discussion and points out potential
applications. The last section is a summary of the paper along
with suggestions for future work.

II. RELATED WORK

This paper’s focus is at the intersection of security and
programming languages. Both sub-disciplines are established
enough not to require any review here. However, the inter-
section is relatively recent and itself features several different
threads of active research. Before describing these research
efforts, we note that, in general, programming languages
could be said to provide certain kinds of restrictions on data
usage. For example, the private declaration modifier in
Java [29] hides access to data from other programmers. In
this case, however, it is merely a mechanism geared towards
the software engineering goal of encapsulation rather than to
prevent programmers from viewing the data. Note that the data
itself lies within the same process and can be accessed directly
in memory; thus, a C program that is loaded along with the
Java Virtual Machine can freely examine any variable.

A variety of independent efforts over the years in the general
area of computer security [9] have sought to address problems
such as role-based access control [21], file access control
in operating systems [43], or API support for implementing
security [38]. These efforts are complementary to our work

and are neither aimed at programming language design nor,
in many cases, even software development.

Closer to our efforts are those that fall in the domain of
programming languages and security, an area that has seen
a sharp growth in research this past decade. These efforts
tackle issues from enhancing safety in languages like C to
obfuscating compilers. We now briefly review some of this
work. Several papers contain reviews of this material, for
example [13], [17], [22], [44], [49].

Compilers are used for watermarking code and for code
obfuscation that is aimed at protecting intellectual property
in distributed executables; a survey and taxonomy of such
techniques is presented in [14], [15], [16]. Compiler analysis
of code is also used to insert additional snippets of code that
perform checksums to assess code integrity and reveal tamper-
ing [11], [28]. Similarly, compilers are used to instrument code
with hidden keys that can be checked in hardware [50]. This
type of work is aimed at transforming code to prevent code
understanding and tampering, and is not focused on addressing
privacy concerns.

A large body of work has emerged in the area of static
source analysis – see the survey in [17]. Among these are tools
[12], [23], [48] that examine code for potential security holes.
Similarly, there are also numerous runtime-system tools, such
as StackGuard [47], that are aimed at preventing certain kinds
of attacks. Proof-carrying code (PCC) [7], [36] is another tool
that can be incorporated into the compilation process to help
identify and guarantee safety properties of code.

Another type of research in this general area, one that is
somewhat closer to ours, includes efforts aimed at language
design and runtime support for security. These include mod-
ifications to the C programming language [30], [35], typed
assembly language [25], [32] and runtime support for ensuring
safety [20]. All of the above efforts are focused on protecting
software from tampering, protecting developers from inadver-
tently creating attack opportunities, and protecting the system
from malicious software.

Among the papers that explicitly consider proper access
to data are those that commonly fall under the banner of
information flow security [31], [34], [33], [39], [41]. This
term has been used to refer to the spread of information
among the various components of a large software system
(including files, operating system, user memory and applica-
tions). These papers focus on the larger issue of data access
in software systems and their solution approach is to perform
static analysis on code. Myers [34], for example, describes
their implementation of JFlow a Java-based information-flow
security implementation. In contrast, our approach is to let the
programmer write code in any which way, but to dynamically
enforce privacy preservation through physical separation. Our
focus is also somewhat more narrow – we are interested in new
programming language features that enable restricted access to
variables by the programmer for the explicit purpose of data
privacy. Our model has only two players: the data owner who
contracts out programming work, and the programmer. We will
use the term privacy-preserving programming to distinguish

our framework from the more general, and complementary,
information-flow security paradigms mentioned above.

Note that the concept of data privacy in software develop-
ment is hardly new. Database systems have provided views for
several decades [19]. However, such views typically hide the
data, do not permit programmer access, and don’t generally
allow the programmer to develop and debug applications that
manipulate the data. Furthermore, these systems are often
proprietary and define views in terms of database tables.
They are therefore more restrictive than simply declaring any
kind of variable in a program as private. Finally, in the area
of programming languages, abstract data types hide actual
variables and use methods to enforce proper use. However,
their purpose is not privacy because these values are set or
retrieved using methods; instead, abstract data types allow
for checking of values, and for hiding the implementation
from other programmers. Note that our work is also quite
different from the relatively recent area of privacy-preserving
data mining [6], [45] which is mainly concerned with pro-
viding accurate aggregate properties of data while preventing
inference of the actual data values.

III. SYTHON: OVERVIEW

Sython1 is an extension to the Python [37] programming
language. It extends Python’s syntax to denote a variable as
secure, which is then stored in a physically separate location
controlled by the data owner; in some circumstances, an
owner might allow separation to be enforced by operating
system processes. Sython also adds a number of new built-
in functions that support the creation of, and operations on,
secure variables. These are variables controlled by the data
owner, whose contents are not visible to the programmers that
manipulate such variables in the course of their programming
work. Operations on such variables are restricted so that
programmers may not infer their contents. This property is
sometimes called noninference or noninterference [24], [39].
In our current prototype implementation, secure variables are
limited to integer and string types.

Figure 1 shows a data owner on the right, separated from
a contract programmer on the left. The programmer runs the
Sython interpreter that, except for handling secure data, is a

1A contraction of “Secure” and “Python”

Programmer Data Owner

Sython Sython
Daemon

File system

Database

TCP connection

Programmer’s
Machine

Data ownder’s
machine

Fig. 1. Programmer vs. Data Owner

superset of the Python interpreter. In our prototype, the owner
has three kinds of data: private data that resides in files, private
data that resides in a database, and standard (regular) data
that is accessible to the programmer. Sython accomplishes
the storage of, and operations on, secure data by creating a
new support program – the owner’s system runs sythond,
the Sython daemon that handles all requests from the Sython
interpreter that runs on the programmer’s machine. The two
components, client and server, are connected using a standard
TCP connection.

The Sython daemon that executes on the owner’s machine
is a background application that waits for commands from
the interpreter that runs on the programmer’s machine. These
commands are for creating and manipulating secure variables.
Non-secure or regular variables, on the other hand, live inside
the interpreter on programmer’s machine. When a request
arrives at the server, Sythond then performs the requested
operation (or reports it as invalid) and any results are returned
to the Sython interpreter. Note that Brumley and Song [10]
take a similar approach in their privilege separation design
where privileged operations are performed in one process
while non-privileged operations are performed in a separate
process. Our focus instead is to provide this type of access
within a programming language.

In addition to creating secure variables as directed by the
programmer, sythond provides mechanisms for input and
output of secure variables using the actual private values on
the owner’s machine. At this time, our prototype supports data
that is input from files as well as data extracted from the
SQLite [27] relational database. Results of queries run against
the database can be stored in secure variables. Sythond can
also receive input from a file and write output to a file. These
files reside on the data owner’s machine that runs sythond
and are therefore private. Several new built-in Python (Sython)
functions have been defined for use with secure variable input
and output faculties. These new built-in functions are discussed
in the next section.

Each instance of the Sython Interpreter has a private names-
pace within sythond. This allows multiple instances of
the Sython Interpreter to share one instance of sythond
concurrently and therefore, can be thought of as a client-server
architecture, where the clients are Sython interpreter instances
and sythond acts as the server.

IV. SYTHON MODIFICATIONS TO PYTHON

Sython makes a small number of significant changes to the
Python programming language and its libraries. Sython defines
new syntax to visually separate secure from regular variables.
In Sython all secure variables are denoted by a dollar-sign
preceding the variable handle like so:

$secV ar = secV al (1)

The dollar-sign is only needed when initially declaring vari-
ables as secure, but we consider it good programming prac-
tice to use the dollar-sign whenever making an assignment.

1. $x=syalloc(‘i’)
2. x+=1
3. y=2
4. x+=y
5. y+=1

Fig. 2. Example Sython source code. Allocates a new secure integer x and
adds one to it. y is a regular variable with the value 2, which is added to
x. Then y is incremented by one. Lines 1,2 and 4 are executed using secure
variables stored in sythond.

...
$user = syinput()
$responses = syquery(’select id from Users \

where username=%s’,$user)
$id = $responses[0][0]
$responses = syquery(’select times_accessed \

from Access where id=%i’, $id)
$times_accessed = $responses[0][0] + 1
syquery(’update Access set times_accessed=%i \
where id=%i’, $times_accessed, $id)

count+=1
...

Fig. 3. Example Sython source code with database access.

Figure 2 shows a simple (if useless) Sython program that
illustrates the allocation of secure variables.

Notice that in Figure 2 the results of the function
syalloc() are initially assigned to the secure vari-
able. syalloc() is one of five new built-in functions.
syalloc() requests that space be allocated in the cur-
rent interpreter’s namespace within sythond. In addition,
syalloc() also sets an initial value which is randomly
assigned from the set of possible values in the variable’s
domain of values. In the current implementation, Sython
supports even, odd, positive, and negative as integer sets and
uppercase, lowercase, punctuation, whitespace, and numerical
digits as string sets. Sython also allows a specific range of
values within the set from which the initial variable value is
chosen. For example, an integer could be specified to be odd
and in the range of 1 to 50. A possible initial value for that
variable would be forty-five. Ranges are checked to make sure
that they are not too narrow to enable unwanted inference of
the probable actual value. For example, a range with fewer
than ten elements could be considered too narrow in some
applications.

Figure 3 shows sample code that accesses private data in
databases tables. In this example, the user names are accessed
privately from a file through a new function, syinput());
these names are run against the table Users through the func-
tion syquery() and used to update a value from a second
table (Access). The only value that the programmer sees is
the non-secure count variable. This example illustrates how
secure variables are populated and how queries are run against
private data.

The functions syinput() and syoutput() provide
file input and output for secure variables. The function
syinput() is one mechanism by which data owners ini-

tialize the secure variables that are later manipulated by the
programmer. Similarly, programmers can write out contents
of secure variables to a file using syoutput(). In some
sense, the programmer’s contract is to compute on the input
and produce the desired output without being able to view the
actual contents of secure variables. The system allows for any
manipulation of non-secure variables as is customary in any
programming language.

To enable input and output of secure Sython data with
a database, syquery() is a built-in function that interacts
with the SQLite database that is optionally part of sythond.
syquery() stores secure variables to tables within the
database as well as reads query results into secure variables.
The query language is currently a stripped down version of
SQL, and does not support numerical and some other types of
queries.

Another new built-in function is syval(). syval()
returns a string representation of a secure variable that is
useful for debugging purposes. Because this representation
is randomly created, it does not reveal the actual value to
the programmer, but is useful for debugging. The string
representation for a given secure variable will not change
unless the value of the secure variable has changed. Moreover,
two secure variables that have the same actual value may or
may not have the same syval() value.

V. IMPLEMENTATION DETAILS

This section details the implementation of our Sython
prototype and might be of interest to readers familiar with
Python internals. Sython is based on Python version 2.3.4.
The modifications we made to Python were written in a
combination of C and Python. Sython modifies the language’s
grammar to make use of the dollar-sign to denote secure
variables. Because the dollar-sign is not used in Python, and
because it is used in Perl, we felt it was a reasonable choice to
include in Sython. Internally, a secure variable is implemented
as a new built-in object type, similar to how other built-in
types are implemented in Python. The secure variable type
(known internally as syobj) supports many operations such
as addition, subtraction, string concatenation and division. The
implementations of these operations makes use of a Python
package that handles communications with sythond.

The communications protocol between the Sython inter-
preter and sythond is implemented using standard TCP
sockets. It is a custom, stateless protocol that was created
for ease of development. Messages are sent from Sython to
sythond using Python’s object serialization facility. Each
request is a Python Dictionary object containing some pre-
defined command symbols. These symbols are V, CC, cmd,
and data. V represents version and is currently an integer
with the value 1. CC is short for client code; it uniquely
maps the client to a specific namespace within sythond.
cmd is the current command to be executed and is a string
value. data carries any payload the command specifies. It is
either empty (mapping to None) or is another dictionary which

1. $myInt=syalloc(‘i’,(0,100),(‘ODD’,))
⇒ {CC: None, V: 1, CMD:

‘NEW SESSION’, data: {}}
⇐ 59747
⇒ {CC: 59747,V: 1, CMD: ‘NEW VAR’,

data: {vset: (‘ODD’,), vtype: ‘i’,
vrange: (0, 100)}}

⇐ ‘sy0’
2. x=123
3. $myInt=myInt+x
⇒ {CC: 59747, V:1, CMD: ‘OPmL’,

data: {arg2: 123, var1: ‘sy0’,
op: ‘+’}}

⇐ ‘sy1’
⇒ {CC: 59747, V:1, CMD: ‘FREE REF’,

data: {var: ‘sy0’}}
⇐ None

Fig. 4. Communications requests produced by Sython commands. The first
command allocates a new secure integer which can be in the range of 0 to
100 and must be an odd value. This command produces a NEW SESSION
request (Sython only communicates with sythond when needed, as such
a new session is started when the first secure variable is allocated) which
returns a client code (59747 in this session), followed by a NEW VAR
request. sythond returns sy0 as the handle for this secure variable. The
second command allocates a nonsecure integer, so no sythond requests
are generated. The third command adds the nonsecure variable to the secure
variable and stores it in the secure variable. This command produces two
sythond requests. The first, the OPmL request, asks sythond to perform
the addition operation on sy0 and 123. sythond returns a new handle for
the result sy1. Next, because the result is stored in myInt, the original value
of myInt is deallocated by the FREE REF command, which returns None.

contains command specified key-value pairs. Figure 4 shows
the messages sent for a specific set of Sython commands.

Within sythond, dictionary objects are used to map client
codes to namespaces. Namespaces are also implemented as
dictionary objects. Namespaces in sythond store needed
information about the current state of secure variables. Each
secure variable has a key that is unique within the namespace,
of the form syN where N is an integer starting at 0 and
increasing by one for each new variable. Namespaces also
contain supporting information about each secure variable such
as the syval() representation of a secure variable and type
(currently integer or string).

Both the interpreter and sythond are themselves written
in Python, which offers some advantages when performing
operations on secure variables – all operations are carried
out using the eval() function that Python provides. This
function takes a string, evaluates it as a Python expression
and returns any results as Python objects. Using a combination
of Python’s object serialization facility (known as pickle)
and eval(), all operations involving secure variables, even
those also involving regular Python objects are carried out by
sythond on the server.

VI. DISCUSSION AND APPLICATIONS

What makes Sython unique is what programmers are able
to do when these tools are provided at the language level.

The access restrictions in Sython will allow for new types of
distributed software development where organizations can hire
the right developer for the task without worrying about data
confidentiality. The onus upon the manager or overseer is to
create the private data in files or in the database, and simply
mark them as private.

What types of applications might Sython be best suited for?
Many database application programmers are either inadver-
tently given access priveleges or are given a painstakingly
transformed database with “junk” values for the purpose of
testing. With Sython, the data owner would simply specify
some variables as secure and describe how the initial values
are populated from the database. Thus, the preparation on the
part of the data owner is less burdensome. Even so, one might
argue that database systems are already the best-equipped
development system to handle privacy. Thus, we posit other
types of applications where Sython might be most effective,
for example:

• Medical applications. In medical applications that involve
manipulation of measurement data such as electrocar-
diogram data or microarray data, such data are usually
in files. Even if the patient name is hidden, the data
itself may need privacy protection because it is part
of a novel treatment or part of a study with very few
patients. Also, the data itself has value in corporate
espionage. Using Sython, programmers who build, say,
a filtering application, can then manipulate such data
without actually viewing the values.

• Voting. Voting, tallying and audits are examples of ap-
plications where data must be manipulated anonymously.
Again, simply hiding human-identifying information may
not be sufficient, and itself places a burden on the
data owner. Using Sython, a programmer can be asked
to develop applications that extract key statistics or to
develop a well-formatted summary report.

• Financial applications. Similar to medical applications,
the area of finance is rich with examples that can bene-
fit from privacy-preserving programming. These include
applications for data sets too small to provide statistical
anonymity.

Note that any manipulation of secure or private data can
also be achieved by constructing an elaborate library of remote
objects, using for example Java’s RMI package [26]. Thus, one
might ask whether Sython provides any advantage over such
an approach. We believe that there are several advantages:

• Programmer convenience. Instead of working with the
particular conventions of an API, Sython programmers
would simply declare and use variables. This lets the
programmer avoid writing long expressions with the
full pathlength containing the remote object name and
method.

• Simplification. The burden of creating a remote object to
safeguard access would fall upon each data owner for
each application. This is both unnecessary and, further-
more, increases the risk that a mistake in implementing

the remote object could inadvertently reveal data. Instead,
in Sython, the language itself centralizes the checks and
enforces review of operations.

• Optimization. By locating access control in the language,
performance optimization efforts can be concentrated
in the interpreter and server. For example, caching of
input/output files on the server can help improve per-
formance by avoiding unnecessary disk operations. Once
such optimizations are incorporated into the server, they
will impact all applications that use the system.

• Standardization. A refined and bug-free future version
of Sython could gain acceptance and help set a minimal
standard. Data owners would know what they are getting
with Sython applications.

Sython is not a one-size-fits-all solution to data protec-
tion during development. Not all desired computations can
be easily expressed using the operations Sython provides
for use with secure data. Sython disallows operations that
could be used to violate the noninterference properties of
the system. In fact, during development several operations
that were originally allowed had to be disabled because they
could have been used to systematically discover the values
of secure data. For example, one exploit involved the string
multiplication operation where multiplying a string s (with
length l) and a secure integer i would result in a string that
is l*i long, and reveal the value of i. Because Sython allows
developers to know the length of secure strings, allowing
string multiplication between a string and a secure integer
variable then taking the new string length and dividing out the
original length produces the value of the secure integer. This
was addressed by removing support for string multiplication
involving secure integers from the prototype system. Support
for the length operation on strings could have been removed
instead, but would probably be too restrictive.

Another information flow leak that we discovered occurred
as the result of an exception. When two secure variables
were divided, a divide-by-zero exception was thrown if the
divisor was zero. This result could be taken advantage of
by the simple code snippet shown in Figure 5. Because of
Sython’s noninterference enforcement, some operations are not
permitted or the results are randomized and therefore, some
application programs may not be suited for use with Sython.

Also, Sython does not wholly eliminate the need for
trusted developers. During the development phase, at least
one trusted developer must act as manager to their non-
trusted counterparts by creating the input/output specifications,
developing program correctness tests, reviewing source code
and administering the server on which sythond resides.

While Sython is Python specific, the Sython development
model for privacy-preserving programming is not. Many other
languages could well be modified for use with such a model.
Python was chosen as the testbed language for the same
reasons that Python is used generally: it allowed for rapid
prototyping and ease of development. Other languages such
as Java, Perl and C++ could be coupled with this sort of
noninterference system.

$x=syalloc(‘i’,None,(‘POSITIVE’,))
$y=x \#save the initial value of x
count=0
try:

while 1:
y-=1
count+=1
$z=1/y

except sython.comm.Error:
print ‘the value of \$x is:’,count

Fig. 5. A script to take advantage of a ZeroDivisionError exception to
find the value of any (positive) secure integer. This problem was discovered
and addressed during development, as discussed in Section VI. This script
repeatedly subtracts one from a copy of the target secure variable and then
uses it as the divisor in a division operation. A thrown exception points to the
ZeroDivisionError and then the variable count, which had been incremented
at the same rate that the target secure integer was decrementing, contains the
initial value of the secure integer. In Sython, this script will now just loop
infinitely as division by zero is mapped to 0.

VII. SUMMARY AND FUTURE WORK

This paper described Sython, an extension to the Python
programming language aimed at enabling software devel-
opment in the presence of strict data privacy requirements
during development. Our framework, which we call privacy-
preserving programming, is suited to a commonly-occuring
mode of software development today in which a data owner
contracts out specific programming tasks.

Sython is currently an open-source, exploratory reseach
prototype; additional work needs to be done before it can
be used for actual software development. At this time, we
identify a few of these needed additions. Sython currently
only supports integer and string types as secure variables,
and therefore support for additional types is needed. In the
current prototype, declaring function arguments to require
secure variables is not yet supported. Secure variables can
be passed as arguments and then tested at runtime by the
developer, but the more preferable deffoo($bar, $baz) : syn-
tax is not supported. Improvements could also be made to
the way Sython and sythond communicate. As described
in Section V the current protocol is stateless and does not
support any strong authentication of requests via cryptographic
primitives such as encryption and certificates.

Other possible areas of work include support for more
databases and exploring the ability to graphically interact
with trusted users while still ensuring noninterference for
non-trusted users, this would allow trusted users to input
information into secure variables via a user interface and
display the contents of secure variables to the display. Another
interesting future area of research is exploring whether fea-
tures like an operating system or virtual machine layer could
allow secure variables to be stored locally, without a daemon
application running on a separate machine, while still ensur-
ing noninterference. Our approach invites the use of formal
models and theoretical rigor. For example, one might model
a variety of security interventions and underlying mechanisms

to allow for automated reasoning about a program’s privacy
guarantees. Similarly, by developing a formal semantics for
operations involving secure variables, privacy properties might
be rigorously established.

ACKNOWLEDGEMENTS

This work is partially supported by grant ITR-0325207 from
the U.S. National Science Foundation.

REFERENCES

[1] 40 million credit cards hacked. CNN news story, July 27, 2005.
http://money.cnn.com/2005/06/17/news/master card/

[2] The Health Insurance Portability and Accountability Act of 1996
(HIPAA). See www.hipaa.org.

[3] The EU Data Protection Directive. EURIM Briefing No. 12, July
1996.

[4] D.Beyleveld, D.Townend, S.Rouille-Mirza and J.Wright. The Data
Protection Directive and Medical Research Across Europe. Ashgate
Pub., 2004.

[5] Taxpayer Browsing Protection Act. To prevent IRS employees from
gratuitous snooping of confidential data.

[6] R.Agrawal and R.Srikant. Privacy-preserving data mining. Proc. of
ACM Sigmod, May 2000.

[7] A.W.Appel and E.W.Felten. Proof-Carrying Authentication., 6th
ACM Conference on Computer and Communications Security,
November 1999.

[8] B.Barak, O.Goldreich, R.Impagliazzo, S.Rudich, A.Sahai,
S.Vadhan, and K.Yang. On the (im)possibility of obfuscating
programs. Proc. CRYPTO 2001, August 2001.

[9] M.Bishop, Introduction to computer security. Addison-Wesley, 2004.
[10] D.Brumley and D.Song. Privtrans: automatic privilege separation.

USENIX Security Symposium, 2004.
[11] H.Chang and M.J.Atallah. Protecting software code by guards. ACM

Workshop on Security and Privacy in Digital Rights Management,
Philadelphia, 2001.

[12] H.Chen and D.Wagner. MOPS: An infrastructure for examining
security properties of software. ACM CCS, 2002.

[13] S.Cheng, P.Litva and A.Main. Trusting DRM software. Workshop
on Digital Rights Management for the Web, January 2001, France.

[14] C.Collberg, C.Thomborson, and D.Low. A taxonomy of obfuscating
transformations. Technical Report 148, Department of Computer
Science, University of Auckland, July 1997.

[15] C.Collberg, C.Thomborson and D.Low. Breaking abstractions and
unstructuring data structures. Proc. IEEE International Conference
on Computer Languages, ICCL’98, Chicago, IL, May 1998.

[16] C. Collberg, and C. Thomborson. Watermarking, Tamper-proofing,
Obfuscation: Tools for Software Protection. Technical report 2000-
03, University of Arizona, 2000.

[17] C.Cowan. Software Security for Open-Source Systems. IEEE Secu-
rity and Privacy, Jan/Feb 2003, pp. 38-43.

[18] C.Evans, http://vsftpd.beasts.org/
[19] C.J.Date. An Introduction to Database Systems, Addison-Wesley,

1999.
[20] U.Erlingson and F.B.Schneider. IRM enforcement of java stack

inspection. IEEE Symposium on Security and Privacy, Oakland,
California, May 2000.

[21] D.F.Ferraiolo, D.R.Kuhn and R.Chandramouli. Role-based access
control, Artech House, 2003.

[22] M. Fisher. Protecting binary executables. Embedded Systems Pro-
gramming, Vol. 13, No. 2, February 2000.

[23] J.S.Foster, M.Fahndrich and A.Aiken. A theory of type qualifiers.
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Atlanta, Georgia, 1999.

[24] J.A.Goguen and J.Meseguer. Security policies and security models.
IEEE Symp. on Security and Privacy, 1982, pp.11-20.

[25] A.Gordon and D.Smye. Typing a multilanguage intermediate code.
Conference Record of POPL 2001: 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 248–260,
2001.

[26] W.Grosso. Java RMI. O’Reilly Pub., 2002.
[27] R.Hipp, http://www.sqlite.org

[28] B.Horne, L.R.Matheson, C.Sheehan, and R.E.Tarjan. Dynamic self-
checking techniques for improved tamper resistance. ACM Work-
shop on Security and Privacy in Digital Rights Management,
November 2001.

[29] The Java programming language. http://java.sun.com.
[30] T.Jim, G.Morrisett, D.Grossman, M.Micks, J.Cheney and Y.Wang.

Cyclone: a safe dialect of C. Usenix, June 2002, Monterrey, CA,
pp.275-288.

[31] D.Kozen. Language-based security. Proc. Conf. Math. Foundations
of Computer Science, September 1999, pp. 284-298.

[32] G.Morrisett, D.Walker, K.Crary and N.Glew. From system F to
typed assembly language. ACM Trans. Prog. Lang., Vol. 21, No.
3, pp.528-569, May 1999.

[33] A.Myers and B.Liskov. A decentralized model for information flow
control. Proc. Oper. Sys. Principles, Oct 1997.

[34] A.Myers, Jflow: Practical mostly-static information flow control.
Proc. Symposium on Principles of Programming Languages, 1999.

[35] G.Necula, S.McPeak and W.Weimer. CCured: typesafe retrofitting
of legacy code. Principles of Programming Languages, 2002, pp.
128-139.

[36] G.Necula. Proof-Carrying Code, Proceedings of POPL’97.
[37] G.Van Rossum. www.python.org.
[38] S.Oaks. Java security, O’Reilly, 1998.
[39] A.Sabelfeld and A.Myers, “Language-Based Information-Flow Se-

curity”, IEEE Journal on Selected Areas In Communications, Vol.
21, No. 1, January 2003

[40] J.Saltzer, Protection and the control of information. Communications
of the ACM, Vol. 17, No. 7, July 1974.

[41] F.B.Schneider, G.Morrisett and R.Harper. A language-based ap-
proach to security. In Informatics: 10 Years Back, 10 Years Ahead,
Lecture Notes in Computer Science, Vol. 2000, Springer-Verlag, pp.
86-101.

[42] U.Shankar, K. Talwar, J.S.Foster and D.Wagner. Detecting format
string vulnerabilities with type qualifiers. 10th Usenix Security
Symposium, 2001.

[43] G.O’Shea. Security in operating systems, Blackwell, 1992.
[44] R.Simha, A.Choudhary, B.Narahari and J.Zambreno. An overview

of security-driven compilation. Workshop on New Horizons in
Compilers, Bangalore, India, December 2004.

[45] V.S.Verykios, E.Bertino, I.N.Fovino, L.P.Provenza, Y.Saygin and
Y.Theodoridis. State-of-the-art in privacy preserving data mining.
SIGMOD Record, 2004.

[46] J.Vijayan, Offshore outsourcing poses privacy perils. Computer-
World, Feb 20, 2004.

[47] P.Wagle and C.Cowan. Stackguard: Simple stack smash protection
for GCC. Proc. of the GCC Developers Summit, 243–256, 2003.

[48] D.Wagner, J.Foster, E.A.Brewer and A.Aiken. A first step towards
autoamted detection of buffer overrun vulnerabilities. Proc. Network
and Distributed Systems Security,NDSS 2000.

[49] J.Wyant. Establishing security requirements for more effective and
scalable DRM solutions. Workshop on Digital Rights Management
for the Web, January 2001.

[50] J.Zambreno, A.Choudhary, R.Simha, B.Narahari and N.Memon.
SAFE-OPS: A Compiler/Architecture Approach to Embedded Soft-
ware Security. ACM Trans. Embedded Computing, accepted.

