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Abstract. Embedded systems, such as those found in mobile phones or
satellites, have grown in popularity in the recent years. Code that exe-
cutes in these environments need to be verified as safe, so they do not
expose sensitive data or hidden APIs to the outside world. With enough
knowledge of the code and then environment in which it executes, ma-
licious entities can find and exploit vulnerabilities for their own gain.
Failure to protect and verify executing software can leak or corrupt sen-
sitive data, and in extreme cases cause loss of the device. This chapter
explores security through language, compiler and software techniques.
The techniques and discussion apply to general system security. How-
ever, they are equally applicable to the systems described above.

1 Introduction

Fig. 1. Software Development Cycle

Developing secure software is a daunting task. Many tools and techniques

have been created to alleviate the pressure of writing secure and efficient

code. Some techniques were initially developed in the 1960’s, while others



are more recent developments. In the following chapter, we will be dis-

cussing defenses for different attacks on code and software systems. The

defenses in this chapter will fall withing the framework seen in Figure 1.

We discuss Watermarking in Section 2, which defends against software

piracy, and can occur in the source or machine codes, or even during the

runtime system. Obfuscation in Section 3 defends against reverse engi-

neering, or act as a form of DRM. These techniques work at a similar

level to watermarking. In Section 4, we discuss Code Integrity techniques

to assure that trusted code is executed correctly. These generally oc-

cur during runtime, but elements can be setup during the compilation

phase. Proof-carrying code (PCC) in Section 5 covers a large portion

of the framework seen in Figure 1, in an attempt to add code to the

trusted computing base. Section 6 discusses Static Analysis Techniques

for software protection occurring prior to execution, classically in the

compilation phase. Information Flow Techniques in Section 7 discusses

how prevent invalid data access. Tools for these techniques can operate

statically on the source code, or dynamically during the runtime of the

program. Section 8, several tools for software verification are discussed,

operating on source code or at system runtime. Finally, Section 9 dis-

cusses Language Modifications to increase software security.

2 Compiler Techniques for Copyrights and

Watermarking

Software piracy is a drain on commerce that is increasing due to the

ubiquity of Internet use. Global piracy rates of 43% were reported in

2009, a 2% increase from 2008 [14]. All signs point toward piracy as

a growing trend, as the average knowledge of Internet users increases.

Many techniques have been tried to prevent piracy, such as the Con-

tent Scrambling System used for DVD’s [41], Apple’s FairPlay DRM for



Fig. 2. Watermark Example

downloadable music [21] and the SecurROM DRM scheme for computer

games [34]. These techniques have achieved varying degrees of success.

Watermarking is a technique that was developed in the 13th century

that has been adapted as a way to protect digital goods. Watermarks

on physical goods are often used to identify counterfeits, as they will

have an incorrect or missing watermark. Digital watermarks can work in

the same way; a content creator can embed information that cannot be

perceived unless the correct “filter” is used. Counterfeit content can be

identified if the correct “filter” does not recover the correct watermark.

Many digital goods can be protected using watermarks, such as digital

photos, documents, digital music, and computer software.

In the following section, we will focus on watermarks for executable soft-

ware. We will introduce static and dynamic watermarks, and the trade-

offs between them. We will discuss the types of attacks a watermark must

defend against, and how attacks disrupt the retrieval of a watermark. Fi-

nally, we will review what current research has been able to accomplish

in the area of software watermarking.



2.1 Watermark Basics

While there are many watermarking techniques of varying complexity,

they all follow the same rule: insert some information that does not

change the overall behavior of the program, but is recoverable so that

the program can be identified. This can be done in software anywhere

from the high-level source code down to the binary.

A software watermarking system is defined by three functions. First, an

embedding function, which takes a program P , a watermark w and a

key k and transforms P into Pw, which has the same semantics as P

with w embedded in it. Second is an extraction function, which takes

a program Pw and a key k. with this information it is able to extract

the watermark w from Pw. Finally there is a recognizer function, which

takes a program Pw, a key k and a watermark w. The recognizer function

returns a confidence level of whether w is contained in Pw (a percentage).

The watermarks can be used to accomplish several things. As with a

normal watermark, a piece of watermarked software can be used to au-

thenticate the original author. A program creator can embed a water-

mark to prove they are the original author. Anyone who would wish to

fool someone into thinking they wrote the software would need to re-

move the watermark first. A software watermark can also be used as a

way to track the original purchaser of a piece of software. The embed-

ded watermark can contain identifying information of the purchaser. If

someone else is found with a copy of the program with another persons

watermark, then it is not a legitimate copy. Again, the watermark would

have to be removed to fool the system.

There are two main classes of watermarks: static and dynamic. Static

watermarks are those that can be extracted directly from the program

without execution. The simplest form of a static watermark is a copy-

right string in the code’s comments, or an actual string variable in the

program. Of course, such a watermark is is easily identified and removed.



Thus, it is necessary to hide a watermark to achieve full protection. More

sophisticated static watermarks involve permuting code or using register

allocations to encode the watermark.

Dynamic watermarks usually require program execution in order to gen-

erate or extract the watermark. For example, a specific set of commands

could be used to generate the watermark in a different part of the pro-

gram (which then needs to be extracted). The benefit of dynamic wa-

termarks over their static counterparts is that typical transforms used

to break the static watermarks typically have no effect on the dynamic

watermarks. Similar to the static watermarks, the dynamic watermark

needs to be hidden. If the watermark generator is easily identified, then

an attacker can remove or replace the watermark.

2.2 Attacks on Watermarks

As discussed above, there are attacks that target watermark systems.

There are more attacks possible than those described below, but a good

watermarking system should strive to be resilient to some of these at-

tacks:

– Additive Attack In an additive attack, the attacker inserts a cus-

tom watermark into the program. In doing so, the attacker casts

doubt on the validity of the original watermark.

– Subtractive Attack In a subtractive attack, the attacker removes

most (if not all) of the original watermark, such that recovery is

incomplete or impossible.

– Distortive Attack In a distortive attack, transformations are ap-

plied to the program to prevent the recovery of the watermark by

scrambling the locations where the watermark is expected.

In the additive attack, the only change is a parameter to the recognition

function. For both recognitions, the function is the same, and so is the

key. However, both watermarks are recognized successfully. This leads to



confusion over which is the correct watermark, as both watermarks are

viewed as correct. For the subtractive attack, the attacker needs to iden-

tify what pieces of code are part of the watermark, and must remove the

watermark without altering the behavior of the program. If the attacker

is unable to preserve program behavior, then being able to eliminate the

watermark is useless, as the program will no longer function correctly.

Distortive attacks can eliminate the issues experienced in subtractive at-

tacks when applying semantics-preserving transformations. However, as

we will see in section 3, transformations will likely increase the size of

the program, and potentially the runtime of the program.

2.3 Current Research

The software distribution model is generally more complex than the pro-

ducer/consumer dictates. A watermark applied by an author to a pro-

gram is only recoverable by using information provided by the author. In

more complex, yet common, distribution models, the author allows one

or more distributors access to the program. Each distributor then sells

the program to the user. While the watermark applied by the author can

protect against plagiarism, it may not be sufficient as a DRM technique.

Christian Collberg et. al. have been working on a solution for water-

marking in Java applications[44]. The resulting watermarking technique

is referred to as a semi-dynamic watermark. It is semi-dynamic because

the extraction of the watermark does not need to execute the entire pro-

gram, but the extractor does have to run a reconstructed program that

is assembled from pieces of the original program.

Embedding the watermarks in this scheme rely on the identification of

articulation points in the Control Flow Graph (CFG). Articulation points

in the CFG are nodes which if removed disconnects the graph. A new

basic block is created to encode each watermark. An articulation point



is chosen, and split. The new basic block is inserted into the control flow

graph at the articulation point. This is done in such a way that the new

basic block does not become an articulation point (by connecting the

new basic block to both of the split articulation points). This ensures

there will never be a collision between the series of watermarks. This

allows for multiple watermarks to be embedded without corrupting their

recovery.

Extracting the watermark requires the extractor to determine whether or

not a watermark is embedded in the basic block. The basic block needs to

have at least one articulation point incident to it, and it needs to contain

certain instructions, which indicate that it stores some watermark data.

These basic blocks are used to construct new methods that are combined

into a new program. This new program is executed by the extractor

program to recover the watermark.

Experiments with the semi-dynamic multiple watermarking algorithm

show that it can embed and recover several watermarks, which is difficult

in other watermarking techniques. The performance of the technique is

comparable to the graph-theoretic watermarking algorithm [40], though

there are situations in which the performance is worse. Unfortunately,

the current state of the algorithm is not resistant to manual subtractive,

and several additive and distortive techniques.

3 Compiler Techniques for Code Obfuscation

[8]

Obfuscation started not as a means for securing software, but as a

thought experiment as to how unintelligible a fairly simple piece of code

could become. To that end, in 1984, the first International Obfuscated C

Code Contest (IOCCC) [30] was held in an attempt to find such code.



This annual contest is held to find the best obfuscated C code each year,

and with every year the entries become more complex.

The following section deals not with the entertainment factor of obfus-

cated code, but rather the implications of such code. As we will see in the

following sections, code obfuscation can be both a help and a hindrance.

The techniques developed for code obfuscation can often be used to hide

malicious code in otherwise innocuous programs.

3.1 What is Obfuscation

Obfuscation is a technique by which code is transformed into a form

that is semantically the same as the original program, but is difficult to

extract meaning from. What “difficult” means in the previous definition

is left up for interpretation. Under the above definition, many typical

techniques qualify as being an obfuscation. For example, compilation is

a form of obfuscation, as it converts source code into another form (e.g.,

machine code, byte code). There do exist programs that will “decompile”

the compiled code back to source code, but in most cases it will only be

vaguely similar to the original source.

There are four main classes of transforms used to obfuscate a piece of

code:

1. Abstraction Transformations alter the structure of a program

by removing program information from the functions, objects, and

other source-level abstractions,

2. Data Transformations replace data structures with other data

structures that reveal less information about the stored data.

3. Control Transformations alter the control flow structure of the

program to hide the execution path.

4. Dynamic Transformations insert code into the program that

causes the program to be transformed during execution.



There is a significant trade-off when determining how much obfuscation

to use. Some of the above transformations can greatly increase code size,

which in turn can lead to increases in execution time. If not enough ob-

fuscation is used, then it may be straightforward to undo the obfuscation.

The correct amount of obfuscation depends on how much performance

you are willing to sacrifice, and how much protection is necessary to

achieve with the obfuscations.

3.2 Applications of Obfuscation [8]

One of the major uses of obfuscation is in reverse engineering prevention.

Using the control and abstraction transformations, the control flow and

structure of the program can be hidden. This will make it difficult for

a user to determine what classes are being called, to the point that the

actual code being executed is hidden. Adding in the dynamic transforms

can greatly increase the uncertainty in the executed code.

Unfortunately, obfuscation is a double-edged sword. Software developers

can use this to protect their code from being reverse engineered, but

so can malware developers. As a matter of fact, several virus attacks of

the past decade have used obfuscation techniques to hide their attacks.

These techniques, especially the dynamic transforms, make it difficult

for anti-virus software techniques to catch such attacks.

Obfuscation can be used for DRM as well. The techniques described

above can be used to generate a unique executable for each purchased

piece of software. This unique executable can be used to trace a pirated

piece of software back to the original owner, who can then be held ac-

countable. The diversity in the code generated in this way can have an

additional benefit: bugs and vulnerabilities in the code that depend on

certain control flow sequences can be mitigated. Given a vulnerability in

one instance of the program, it is non-trivial to exploit the same vulner-

ability in a different instance of the same program.



Listing 1.1. Account Example

1 public class Account{

2 private static int account_number_seed = 0;

3 private String first_name , last_name;

4 private long account_number;

5 private double balance;

7 public Account(String f_name , String l_name ){

8 first_name = f_name;

9 last_name = l_name;

10 balance = 0;

11 account_number = account_number_seed ++;

12 }

14 public double getBalance (){

15 return balance;

16 }

18 public void deposit(double amount ){

19 balance += amount;

20 }

22 public void withdraw(double amount ){

23 if(amount > balance ){

24 System.out.println("ERROR: balance is too low "

25 +"to process transaction");

26 }else{

27 balance -= amount;

28 }

29 }

31 public String toString (){

32 return "First Name: " + first_name +

33 "\tLast Name: " + last_name +

34 "\nAccount Number: " + account_number +

35 "\nBalance: " + balance + "\n";

36 }

37 }

Listing 1.2. Ofuscated Example

1 public class A1{

2 private static int a = 0;

3 private String f, l;

4 private long n;

5 private double b;

7 public A1(String f, String l){

8 this.f = f;

9 this.l = l;

10 b = 0;

11 n = a++;

12 }

14 public double b(){

15 return b;

16 }

18 public void d(double a){

19 b += a;

20 }

22 public void w(double a){

23 if(a > b){

24 System.out.println(U.d("REEBE: onynapr vf gbb ybj ")

25 + U.d("gb cebprff genafnpgvba"));

26 }else{

27 b -= a;

28 }

29 }

31 public String toString (){

32 return U.d("Svefg Anzr: ") + f +

33 U.d("\tYnfg Anzr: ") + l +

34 U.d("\nNppbhag Ahzore: ") + n +

35 U.d("\nOnynapr: ") + b + "\n";

36 }

37 }

3.3 Transforms

Abstraction Transformations Consider the Java class in Listing

1.1. The programmer who wrote this code created this class for a specific

purpose: to represent a bank account in the overall program. The class

name, method names, and variables leak information and intent. The

fact that this data was broken into its own class leaks some information

as well. The goal of an abstraction transformation is to remove some

information that source abstractions leak.

Listing 1.2 shows a simple abstraction transform (performed manually for

this example). All of the identifiers from the original program have been

replaced with unrelated (and significantly smaller) identifiers. Similarly,

all of the String literals in the program have been encrypted in order to

prevent information leakage about the original source code. It is more

difficult to extract meaning from the code in Listing 1.2, as compared to

the original code.



Data Transformations Even after applying the above transforms

to the code, an attacker may still reason about where to look for data,

should they already know what the class does. This is because they know

the type of data they are looking for, should it be an integer, string, or

some known data structure. Data transformations combine data struc-

tures and create new data structures that contain superfluous data fields,

in order to obscure the true meaning behind the data structure.

Control Transformations Control transforms alter the control flow

of the program to further hide the sequence of commands that are ex-

ecuted in the program. A simple version of this kind of transform can

be achieved in the code in Listing 1.2 by condensing all of the code into

one method. The code blocks are separated by some conditional control

flow structure such as a switch (see Listing 1.3). Now there are only two

methods in the class, where there used to be four. As a result, any calls

to the hidden three methods now go through one method header, with a

control switch to determine which piece of the method to execute. This

is a fairly weak obfuscation, as it can be fairly easily reversed, but more

powerful control transforms exist.

Listing 1.3. Control Example

1 public double o(double a, int c){

2 double r = -1;

3 switch(c){

4 case 0:

5 r = b;

6 break;

7 case 1:

8 b += a;

9 break;

10 case 2:

11 if(a > b){

12 System.out.println(U.d("REEBE: onynapr vf gbb ybj ")

13 + U.d("gb cebprff genafnpgvba"));

14 }else{

15 b -= a;

16 }

17 break;

18 default:

19 }

20 }



Dynamic Transforms With the above static transforms, it is still

possible to work around the obfuscations to get to the actual code being

executed. Every time the program is run, the same commands are exe-

cuted, so determining what pieces of code correspond to certain aspects

of the program is a straightforward (but often time consuming) process

of executing the program over and over with different inputs. The data

and control flow can then be traced to figure out the true behavior of

the program.

Since dynamic transforms are performed at runtime, they do not neces-

sarily have the same problem. A dynamic transformation can cause the

control flow of the program (and indirectly the data flow) to evolve over

time. In some cases even successive execution on different inputs can re-

sult in different paths through the program. The major drawback of a

dynamic transform is additional runtime required to perform the trans-

forms. This is the main reason why most dynamic transformations are

not simply the static transformations coded to be performed at runtime,

as they are not the quickest of algorithms.

3.4 Current Research

For every new transformation or technique, an argument needs to be

made as to how well it achieves the obfuscation goals. One thing that

has been missing from the field is a way to quantitatively evaluate trans-

formations on how well they hide the original program’s intent. Such a

framework would work not only as a way to test new obfuscation tech-

niques, but could also be used to compare current obfuscation techniques

against one another.

Koen De Bosschere et. al. started building such a framework [1]. They

describe a framework that operates using benchmarking ideas from other

areas such as hardware design. Other metrics for evaluating obfuscation

existed, but none had been widely accepted by the obfuscation commu-



nity. This work utilizes the Software Complexity Metrics developed in

the 1970s and 1980s. These metrics, originally intended to describe the

complexity of a computer program in a software engineering sense, are

used to determine the change in complexity of an obfuscated program.

Koen De Bosschere has also worked on building tools to aid in the un-

derstanding of obfuscated code. De Bosschere et. al. have developed the

Loco toolkit [24], a graphical framework that can interactively obfuscate

and deobfuscate programs. Loco is built upon the DIABLO framework,

also developed in part by De Bosschere, and is the obfuscation under-

pinning of the Loco toolkit.

The main goal of the Loco toolkit is to provide an environment for pro-

grammers to experiment with and evaluate obfuscation techniques. Ob-

fuscations can be applied automatically or manually. The results of these

obfuscations can be observed via the control flow graphs displayed by the

toolkit. The tool also gives the user the ability to obfuscate on a finer-

grained level than is provided by typical obfuscation software, which

usually operates on the code as a whole. In the Loco toolkit, the user

can specify which parts of the code to obfuscate, leaving unselected code

unaltered.

One of the major uses of the Loco toolkit, as proposed by De Bosschere et.

al. [25], is to provide a way to train users to understand obfuscated code.

The crux here is that Loco can automatically perform some obfuscation-

s/deobfuscations, teaching an analyst how to develop new obfuscations

or how to extract meaning from obfuscated code. Once an analyst learns

these techniques, they can extend the framework to meet their needs, to

the benefit of others using the Loco toolkit.

Another of the issues faced with code obfuscation is the need to avoid

detection. Often it can be helpful to hide that the program was obfus-

cated. Malicious software tries to achieve this, and thus it is important

to understand the techniques that malware providers use to achieve this



goal. For many obfuscation techniques, statistical and semantic analysis

techniques are able to extract the meaning from the obfuscated code.

A team of researchers at the College of William and Mary, led by Dr.

Haining Wang, have developed a novel technique for solving this prob-

lem [42]. Their technique utilizes the steganographic technique of mimic

functions. Mimic functions were developed in 1992 by Peter Wayner, and

are designed to convert data into an output that mimics the statistical

properties of some other data set. The main idea behind mimic functions

is to develop Huffman trees that can be used in reverse. The Huffman

tree decode phase is used as the encode phase of the mimic function.

Then, when the file is ready to be interpreted, the encode phase of the

Huffman tree is used to retrieve the original file.

The Mimimorphic engine takes, as input, a set of target programs to

mimic, and a program to transform. The programs to mimic should be

a trusted program, such as a word processor or web browser. The tar-

get programs are converted into a form of Huffman tree (forest), which

can then be used to create a new program that resembles the trusted

program set. The generated program can be executed, but has no se-

mantic meaning. In order to be executed correctly, the program must

be decoded, which requires the mimicry data computed for the encoding

phase. This data is currently embedded in the executable, which greatly

increases the program size.

Extracting a fingerprint for the decoder is usually the weakness of poly-

morphically obfuscated malware (malware obfuscated using dynamic trans-

forms), because the decoder is the only portion of the malware that is

executable. However, since the mimimorphic scheme is executable, it can

better hide the decoder, increasing the likelihood that the decoder will

not be found. Current research is working towards blending the control

flow of the obfuscated binary with that of the decoder, further hiding the

decoder in the payload. Results from the current prototype are promis-



ing, with binaries translated using the mimimorphic engine generate sev-

eral fingerprints that also match “trusted” programs.

4 Compiler Techniques for Code Integrity

Fig. 3. Overview of a generic buffer overflow attack

In August of 2003, the Blaster worm began its attack on Windows-based

computing systems. Blaster is similar to the Code Red worm in 2001.

Both worms attempted to perform a distributed denial of service (DDOS)

attack on various websites. These attacks exploit a well understood vul-

nerability known as a buffer overflow.

A buffer overflow occurs when data is written outside of the bounds

of its allocated memory buffer. Stack memory, which holds automatic

variables and function return addresses, is a common target for buffer

overflow attacks. Overflowing a stack-allocated buffer enables an attacker



to overwrite the return address. If the return address is overwritten, the

return from that function no longer preserves the application’s original

control flow, instead branching to an arbitrary location determined by

the attacker. If the attacker supplies the address of a buffer containing

malicious code, then the CPU will execute the injected malicious code

with the same privilege level as the original application.

Buffer overflow attacks can be categorized based on where overflow data

is written and how the attack vector affects the system. These categories

are stack smashing, arc injection, pointer subterfuge, and heap smashing

[32]. The canonical buffer overflow attack is a stack smashing attack that

was written by a hacker named “Aleph One [31].” The attack is illus-

trated in Figure 3. In this example, a statically declared buffer (“buff”)

on the stack is the target of the attack. This buffer has a fixed size of

100 bytes. However, several C library functions do not check the size of

the buffer that they write to. For example, the strcpy function will copy

the entire source buffer into the destination. An intelligent hacker can

create a string that will overflow the buffer, forcing a function like strcpy

to write beyond the 100 bytes and overwrite the return address of the

current stack entry. When the function returns, the hacker’s new return

address is used, allowing the malicious code to execute.

A simple defense mechanism is to prevent execution of data located in

the stack memory region, thus preventing the injected code from execut-

ing. This is easily accomplished with non-executable memory regions,

for example by using memory pages with no-execute (NX) permission

bit or a Harvard architecture, in which data and instruction memory are

explicitly separated. In response to such defense techniques, attackers

have devised more complex attacks known as “return-to-libc”, “return-

oriented programming” [35, 5] or architecture-specific attacks [17]. In the

return-to-libc attack, attackers overwrite the return address with the lo-

cation of a C library function, such as exec(), or system(). These func-



tions accept parameters such as “/bin/sh”, which will spawn a shell with

the same privilege as the exploited application. A successful attack can

potentially give the attacker the ability to run any commands on the

vulnerable system with root privilege. Return-oriented programming in-

volves creating a forged stack with a series of fake callers by injecting

return addresses along with parameters to the stack. Thus, the attacker

creates a sequence of operations that are executed by existing code based

on the contents of the forged stack. Preventing the more complex vari-

ants of the stack smashing attack requires preventing the return address

from being successfully overwritten, since the attack code is no longer

injected onto the stack.

The buffer overflow attack does not need to occur on the stack, however.

Recent work shows that the heap is as vulnerable to overflow vulnera-

bilities as the stack [22]. Using techniques similar to those used in the

stack-based buffer overflow attack, a hacker can overwrite heap meta-

data, corrupting or recovering user data. Function pointers can be over-

written to allow arbitrary code to be executed on the system, potentially

giving full control to the malicious entity.

In this section, we will discuss ways to combat these and other attacks.

Both hardware and software mechanisms to protect against buffer over-

flow exist, but we will focus solely on the language/software side. See

Chapter 4.1 for a review of hardware protection mechanisms. Although

much of this section will focus on C/C + +, other languages are vulner-

able to these attacks.

4.1 Current Research

The reason that stack-based buffer overflow attacks succeed is because

the return address of some function is undetectably altered to point

to malicious code. One way to combat this issue is by inserting some

markers around the return pointers that can be used as validation points



to detect changes to the return address. This is the main contribution of

the StackGuard team [10].

StackGuard is designed as a patch for gcc. It alters the function prologue

and function epilogue functions in gcc. The function prologue func-

tion is responsible for pushing the protection marker (called “canary”)

onto the stack. This canary is a randomized value inserted between

the return address and the rest of the local function variables. The

function epilogue checks to make sure the canary word is unaltered

before the program returns to the callee. A typical buffer overflow attack

now needs to alter the return address while leaving the canary intact in

order to avoid detection. Ensuring that the canary word is sufficiently

hard to determine helps, but being able to protect the stack without

relying on canaries is desired.

StackGuard can use the MemGuard tool to detect overflows without

canaries. MemGuard is intended to help code debugging [9], but the tool

has the side effect of being able to detect changes to certain regions of

memory. Again, this version of StackGuard is a patch for gcc, altering

the same functions as the canary word version. This version does require

the MemGuard tool to be running, as MemGuard becomes the only way

to write to certain memory regions that have been designated read-only.

StackGuard is not the only software technique that can prevent buffer

overflow attacks. Another approach uses what is known as a shadow stack

to protect the return addresses. The Transparent Runtime Shadow Stack

[38] is a runtime system built on a dynamic binary rewriting framework,

and modifies how return addresses are handled. It operates on the same

idea behind the compiler oriented StackShield [39]. The idea is that re-

turn addresses are stored separately from the stack frame. The return

address is still part of the stack frame, but a copy is stored in a dif-

ferent stack. On a function return, the entries on the real stack and the



shadow stack are compared. If the two values do not match, an exception

is thrown, preventing the buffer overflow attack from succeeding.

In the heap-based attack mentioned earlier in this section, one of the

main causes of the vulnerability is the fact that program data and heap

metadata are stored contiguously. However, separating the metadata

from the program data is not sufficient, as an attacker with knowledge

of the standard heap allocation techniques can predict where certain ob-

jects will get allocated. This knowledge allows the attacker to overwrite

specific locations in the heap, which is sufficient to undertake a heap-

based attack.

Heap Server[22] is a project designed to protect the heap from such at-

tacks. Heap Server is a software process that manages the heap for other

processes. The only modification necessary for the host language/pro-

cess is in the allocation/deallocation routines. Heap Server manages the

heap metadata separately from the program data, but uses clever storage

mechanisms so that the lookup overhead for heap data is minimized. One

of the interesting caveats of using Heap Server is that all of the heap data

is stored in a completely separated protection domain. This means that

any access or modification to the heap has to undergo inter-process com-

munication (IPC). Luckily, the overhead of IPC can be hidden through

clever optimizations.

Another protection mechanism provided by Heap Server is obfuscation.

In order to prevent attackers from being able to predict where important

elements of the heap are located, Heap Server randomizes dynamic allo-

cations. This is achieved with two mechanisms. First is the insertion of

random amounts of padding between heap elements, and second is selec-

tion of a random element from the free heap blocks to allocate for data.

This allows for a program that is executed multiple times to have dif-

ferent heap layouts, minimizing the chance for an attacker to determine

where critical heap data is stored.



5 Proof-Carrying Code and Authentication

Fig. 4. Overview of Proof Carrying Code

As described in section 3, it can be difficult to ascertain at compile time

what a program will do. So how can we increase our confidence in the

software we are using beyond the simple “trust the vendor”? One such

technique is to use run-time contracts, such as the ones employed by the

Android OS with third party applications. When installing new applica-

tions, the installer notifies the end user on what the application will do

and what information the application will access. These permissions are

statically defined in the application. This solution is fine for the Android

OS, as all programs are sandboxed and a runtime monitor validates the

contracts. For general computing platforms, such a mechanism is more

difficult to implement.

One solution for verifying a program’s behavior is known as Proof-

Carrying Code (PCC)[27]. In PCC, during the compilation phase, a proof

is constructed detailing what the program will do and access. This proof

is stored as part of the program’s binary. When an end user executes

this binary, the provided proof must be verified before the system begins

execution (see figure 4). Instead of using a complex analyzer on the ex-

ecutable, a simple verifier can ascertain if the executable code and the

compiler-generated proof are consistent.



PCC has several complications. For example, how does one generate the

proof? Proofs can be generated by a compiler, or they can be constructed

by the developer. There has to be some agreed upon definition of what

operations the program is permitted to perform, and what operations

are considered “bad”. This policy must be constructed by some trusted

party, be it the compiler writer or some other person. The policy may

specify a set of data invariants, or it may specify system calls that are not

allowed to be executed. The generation of a good policy is the linchpin

in the whole system. If the policy is too strict, then too many programs

would be considered unsafe. If the policy is too lenient, then malicious

programs will be allowed to execute.

Other researchers have extended PCC to other domains, such as au-

thentication. In Proof-Carrying Authentication (PCA), a subject whom

wishes to access some object (be it a server or some piece of data) must

provide a proof that allows such access. While the purpose is different,

the similarities between the PCC and PCA are straightforward to un-

derstand: In both instances, the burden of providing the proof is placed

on the entity that is requiring access, instead of upon the verifier. In the

case of proof-carrying code, the entity is the program trying to access

the execution environment.

A problem with PCC is that even if the code is verified to be bug free,

it still must be converted to a machine-readable form to be executed.

Most programmers take for granted that the compiler does not intro-

duce bugs. However, any optimizations performed can cause problems if

not done carefully. Avoiding optimizations can alleviate the problem, but

the runtime improvements may be necessary. There are many proposals

on how to fix this issue. One approach is to certify that the compiler does

exactly what it claims, which can be a complicated process. A set of com-

pilers could be used to compile the same code and the compiled output

could be compared, an approach proposed by Eide and Regehr [15] for



detecting compiler bugs in general, but finding independent implemen-

tations of compilers for PCC may be prohibitive. Another approach is to

prove the correctness of the algorithms used in the compiler, but there

could still be bugs in the implementations. Additionally, any proof of

the implementation must be redone any time there is a change to the

compiler.

5.1 Current Research

In 1998, Necula and Lee expanded the idea of PCC, showing that it

could be used to achieve the certification as described above [28] . Using

a type-safe subset of C (and adding some Java style enhancements for

exceptions and heap allocation), the compiler produces annotations along

with the machine code for the program. The certifier, used to verify the

result of the compilation, is the same structure as the verifier from the

original PCC paper. The machine code generated by the compiler is

highly optimized, but the type annotations provide enough information

for the verifier to deduce whether or not the machine code results in type

safe code.

Necula and Lee are not the only researchers who have researched cer-

tifying code. Denney and Fischer at NASA Ames Research Center also

looked at this problem [11]. Denney and Fischer claim that their research

can be seen as PCC for code generators. Instead of focusing on object

code generation, they focus on source code generation. Their system

takes a problem specification, and produces source code and a certifi-

cate which proves that the generated code complies to a specified safety

policy.

On the PCA front, Avik Chaudhuri and Deepak Garg have developed

PCAL, language support for PCA systems [6]. PCAL is an extension of

the Bash scripting language, where the PCA annotations are converted

to regular Bash scripts. These scripts can then be used in an existing



PCA system. Contribution of this work is the language annotations, and

their compiler. The annotations allow the programmer to specify what

proofs they think hold at certain points of the program. The compiler

then uses a theorem prover to produce the proofs statically, so they can

be passed to the PCA system.

6 Static Analysis Techniques and Tools

Fig. 5. Simple view of a static analysis tool

Static checking techniques can have their roots traced back to statically

typed languages such as Fortran, C, and Java. For these programming

languages, the compiler would check to make sure there were not any

type violations before generating the executable. In general, that is ex-

actly what a static analysis tool does. A static analysis tools looks for

violations of some pre-defined rule, designed to cut down on the amount

of debugging necessary for a programmer. Many such tools exist and

they can catch errors that do not propagate at runtime [12], such as

intermittent errors that only affect a small number of executions.

In this section, we will describe and compare static type checking and ex-

tended static checking. We will then discuss the state-of-the-art research

in this area.



6.1 Static Type Checking

A type checker’s main goal is to assure that all data types are correct

given their context in the program. For example, the Java compiler will

throw an error if a program uses the division operator on two String

operands. The rules that a type checker follows stem directly from the

specification of the language. The type checker for C is different from that

of Java, as the syntax and semantics of the language are different. For

example, programmers can “add” (use the ‘+’ operator on) two Strings

in Java, but not in C.

A typing rule that is derived from the language specification is known

as type expression. The collection of such rules are known as a type sys-

tem. An implementation of a type system is a type checker. Type check-

ers can be either static or dynamic. In theory, any type system can be

checked statically or dynamically. In practice, however, there exist type

expressions that must be checked by a dynamic type checker, such as

array bounds checking. There are benefits and drawbacks to either type

of checker. For example, dynamic checkers can affect the run time of

a program, but also can prevent error prone code from executing (like

array bounds errors which lead to buffer overflow ). A full discussion of

static versus dynamic checkers is beyond the scope of this chapter. More

information about dynamic type checkers can be found in section 8.

Java, C, C++ and many other languages are statically typed. This means

that most of the type safety checks are performed at compile time. How-

ever, there are differences between the type checkers that stem from more

than their languages’ syntaxes. These differences can be described by how

strongly the type system is enforced by the type checker. For example,

Java may be considered more strongly typed than C and C++, as it

does not allow for explicit pointer arithmetic. However, other languages

can be considered more strongly typed than Java, since Java will per-



form some implicit type conversions in order to cut down on programmer

effort.

Defining what constitutes a strongly typed language versus a weakly

typed language is a complex task. The definitions are highly debated,

but presented here are some general definitions. A language is considered

strongly typed if all type unsafe operations are detected or prevented

from occurring. Given this definition, C and C++ cannot be considered

a strongly typed language, as there are some scenarios in which type

unsafe operations can occur. Other definitions of strongly typed lead to

C and C++ being considered strongly typed. A weakly typed language

is any language that is not strongly typed. Languages such as Perl and

Javascript are generally considered to be weakly typed languages.

A programming language is considered dynamically typed if the major-

ity of the type safety checks are performed at run-time. Examples of

dynamically typed languages are Python, Perl, and Lua. Dynamic typ-

ing does not preclude strong typing, as Python is considered a strongly

typed language. Dynamic type checking opens a new door into the kinds

of type checks that can be performed. These new checks can allow for

code that statically typed languages would reject as being illegal to be

incorporated into a program.

As previously mentioned, there are a few drawbacks to dynamic checks.

Since the dynamic checks happen at run time, there is going to be a

runtime penalty. Not only that, but these penalties are incurred every

time the program is executed. Also, the same errors that a static type

checker would quickly catch are not discovered until run time. Errors

such as variable typos would result in run time exceptions. Debugging

might even become more of a hassle, as errors that do get reported could

have their root cause elsewhere. Of course, this problem can also exist in

some static type checking techniques.



6.2 Extended Static Checking

Consider for a moment the problem with array bounds checking briefly

mentioned in section 6.1. It was stated that bounds checking requires a

dynamic type checker, because a static type checker could not determine

(with the provided rules) all of the possible values an array index variable

could take and whether or not it violated the array’s typing rule. That

does not mean that it could not be checked statically, only that the typing

system rules cannot encapsulate enough information for the check.

Array bounds checking is one example of a type of problem that Extended

Static Checking (ESC) can solve. There are multitudes of problems that

extended static checking can solve. Extended checkers use ideas from

other areas of computer science such as program verification. The main

goal of these checkers are to catch program errors that normally could not

be caught until run time. Sometimes, ESC can catch problems that could

not even be caught at run-time, such as race conditions and deadlocks

[12] [16].

Many consider ESC to have been established by Dick Sites’ disserta-

tion in 1974. The first realistic implementation of an extended checker

is considered to be at COMPAQ labs in 1992, with their extended static

checker for the Modula-3 language [12]. In 1997, they continued their

work in ESC, developing one for the Java language [16]. In the follow-

ing section, we will discuss the contributions of these, and other, static

checkers.

6.3 Current Research

As discussed in section 6.1, there are two kinds of type checkers: static

and dynamic. Each have their pros and cons. Cormac Flanagan and

Kenneth Knowles have developed a novel approach to overcome these

slight problems [23]. Their approach uses both static type checking and



dynamic checking in order to enjoy the benefits of both. The hybrid type

checker described by Flanagan and Knowles should be applicable to many

languages, as it was developed using an extension of the λ-calculus.

In hybrid type checking, the compilation phase can end in one of three

states. Two states refer to the statically decidable well-typed and ill-

typed phases. These programs can be decided 100% at runtime. How-

ever, some programs may not be statically determined to fall into one

of these two states. In this case, the compilation phase ends in an unde-

termined state, and dynamic checks are inserted into the code in order

to verify safety at runtime. These are referred to as subtle programs and

can fall into two states, those where the checks always pass, and those

where some checks fail. In this scheme, all well-typed programs are al-

lowed to execute, even if they cannot be checked statically. Programs

that are statically determined incur no additional runtime penalty that

they would otherwise suffer in a dynamic typed language. Those that

must be checked dynamically do so without additional runtime penalty

over a purely dynamic typed language.

Coverity[7] is a commercial product that has been used by companies

such as the Mozilla Project, Sun Microsystems and Sega. Coverity con-

sists of several different components, one of which is what they consider

a 3rd generation static analysis tool. They extend the ideas first used in

the Lint tool and the Stanford Checker (as well as other static analysis

tools from the early 2000s). The result is a powerful tool that guarantees

100% path and value coverage, with low false positive rates.

Coverity combines the path simulation aspects of other tools with SAT

(Boolean Satisfiability) solvers. In path simulation, the target project

is converted into a graph abstraction. This is done by considering the

control points in the program, which represent places in the code where

behavior is determined by the current system values. Each path in this

graph abstraction is tested for defects. This is a powerful technique, but



it can lead to high false positive rates because not all paths in the graph

abstraction can be followed at run time. Coverity uses SAT solvers to

eliminate false positives from being reported.

Due to the way the graphs are generated for the path simulation algo-

rithms, a boolean expression can be generated for any defect found in

a program. This expression is related to the control points that need to

be followed, and the values that define those control points. Given the

boolean expression, the SAT solver attempts to satisfy the expression

using values for variables that are possible at run time (this may require

adding more clauses to the boolean expression). If the expression can be

satisfied, then the defect is a true defect, otherwise it is a false positive,

and not reported. Even with these complex algorithms, Coverity is still

able to scale to projects with millions of lines of code. This is achieved

by caching results of the SAT expressions (a known SAT technique).

7 Information Flow Techniques

Fig. 6. Sample Information Flow



During the normal lifetime of an executing process, data will be read in

and written out to various locations that the process has access to. For

programs that do not have to worry about security, this is a non-issue.

However, it is sometimes necessary to have control over what pieces of

the program have access to certain pieces of data. For example, it is

usually a good idea to not let data encryption keys be sent through print

functions (or at least limit the cases when this is permissible). Being able

to keep track of where data is being used in a program is a useful tool

for these situations.

Information flow tracking has been studied since the 1970s. The idea is

that the program is analyzed to determine whether or not illegal data

flows occur. Of course, the notion of an illegal data flow is similar to the

“bad” program operations described in section 5. Someone has to define

what is an illegal data flow for a particular program. These policies are

defined in a specification language, which are often based off of access

control techniques.

In this section, we will briefly discuss general information flow policies.

Then, we will describe the differences between static and dynamic infor-

mation flow techniques. Finally, we will discuss current research in the

area, which includes language specific tools or language modifications

designed to support information flow techniques.

7.1 Introduction to Information Flow

There are two types of information flow: explicit and implicit. Explicit

information flow occurs when there is direct transfer of information be-

tween two entities. For example, in the assignment statement x = y,

information explicitly flows from y to x. Explicit flows generally occur at

assignment statement. Implicit flows occur when the value of one variable

(say x) can be inferred by examining the value of another (y). Consider

the statement if(x < 1) then y = 7. If after passing that control se-



quence, the value of y is 7, then we know a restriction on the value of

x. There are also direct and indirect information flows. The above ex-

plicit example is also an example of a direct information flow, since the

information is directly gained via the assignment. If there is a layer of

indirection [e.g. z = x; y = z], then it is considered an indirect infor-

mation flow (since information of x is found in y only through z).

7.2 Static vs. Dynamic Information Flow Techniques

By definition, static information flow techniques are performed with-

out executing the program, while dynamic information flow techniques

are performed while the program is executing. As one would imagine,

the pro’s and con’s of static versus dynamic are similar throughout this

chapter. Static does not affect the program’s execution time, but is not

as precise as dynamic. Static information flow can prove that there are

not insecure information flow, but may reject some programs that do

not have invalid information flow during execution. Dynamic is able to

be more precise (since it catches errors right before they propagate), but

gains that ability at the cost of execution time. Dynamic information

flows can look for attack signatures to catch related information flow

attacks and resist evasion attempts.

7.3 Current Research

A.C. Myers et al. have extended the Java language to include information

flow annotations. In JFlow [26], data values are annotated with labels.

These labels are a set of security policies, which may come from different

principals (an abstraction of a user or set of users). One of the major

contributions of this work is the decentralized label model, which allows

for the owners to be mutually distrusting, and the policies to still be

held. The policies in the labels can be checked statically, and show that



information is not leaked in the program. It can also perform run-time

checks if the static checking proves to be too restrictive.

JFlow is a source to source translator that also has a static checker. Most

annotations are removed during this process. Most notably, since they are

statically checked, all static labels are removed without affecting the run-

time of the java program. Some expressions get translated to equivalent

Java code that accomplishes the original goals. There are a few built in

types for the run-time systems, which allow for the dynamic checks of

labels and principles as needed.

Another contribution of this work is the idea of label polymorphism.

Classes in Java are written to be generic as possible, to allow reuse in

a number of applications. Consider the Java Vector class, a class that

can store an arbitrary number of object. This class in parameterized in

the Java standard library, which allows the user to generically store a

specific type of object in the vector. This allows the vector class to store a

specific, but arbitrary type of data. The same concept applies for labels.

The vector class is parameterized for a generic label, which does not have

to be specified until it is actually being used (e.g. object instantiation).

Without this ability, a different Vector class would have to be written for

each label type. The same idea applies to method parameters, as they

can use generic labels so only one method has to be used.

A.C. Myers has continued to work in the area of language-based information-

flow. In a 2005 article on the subject [33], A.C. Myers and A. Sabelfeld

discussed the current trends in the area. They discuss extensively on

how new research has handled issues in the areas concurrency, covert

channels, language expressiveness, and security policies. The important

contribution of this work is their discussion of open challenges in the area

of information-flow. One such issues has been touched on briefly already

in this chapter, certifying compilation (see section 5.1). Current informa-

tion flow research assumes the compiler to be in the trusted computing



base, but it is desirable to remove this necessity. Next, the idea of system-

wide security requires information-flow tracking to be integrated with the

rest of the system security mechanisms to provide a secured computing

environment. Finally, there is a discussion of the practical issues involved

with the language-based modifications for not only information-flow, but

all security mechanisms.

8 Rule-checking, Verification and Runtime

Support

Runtime systems have been around since the 1950’s, starting with the

Lisp interpreter. Software verification has been a topic of concern for

a similar time frame. Research in these areas have been considerable

since that time. High profile languages such as Java are interpreted just

as Lisp has been. Other research projects have added run-time systems

to languages such as C, to aid in the security and usability of these

languages. Software verification has come a long way in that time frame

as well. In this section, we will discuss some recent advances in these

technologies.

8.1 Current Research

Formal methods have a rich history, but usage in security has not been

widespread. One place where they are being used is at Microsoft. In 2004,

Thomas Ball et al. published a paper on the SLAM project [3]. SLAM

is an analysis engine that checks to make sure a program adheres to the

interfaces provided by an external library. This project is the basis of

Microsoft’s Static Driver Verifier (SDV), which is now part of the driver

signing procedure for Windows.

Performance of the original SLAM project was fine, but they had a non-

negligible amount of false positives in their checks. At just over 25%, it



generally meant that some programmer would have to check each alarm

to see if the alert was correct. Thomas Ball et al. decided to try to fix this

problem by fully re-implementing the entire system, improving the areas

that they found were causing the most errors. They were able to get the

false positive rate to a manageable 4% in their new SLAM 2 system [2].

The Microsoft Singularity Project [37] started in 2004 as an attempt to

create a secure, dependable operating system. While it is an OS, work on

the Singularity project is also influencing the area of language research

as well, defining their own C# dialect called Sing#. In Singularity, each

application is executed in isolation, a model known as Software-Isolation

Processes (SIP). Each SIP is a closed object and code space, meaning

that objects cannot be shared between SIPs, and code cannot load or

generate code after it begins execution. In order for such a system to

work, a communication mechanism needs to be established.

Singularity provides bi-directional channels for processes to communi-

cate over. Each channel has a contract, which defines what messages are

transmitted over the channel and in what order to expect them. These

contracts can be statically enforced, and can be interpreted by the run-

time garbage collector to determine when such static enforcement is un-

able to be performed. The channel contracts are a language feature which

allows for the communication to be checked, and their experience with

the implementation has been a positive one [18].

CoreDet [4] is a compiler and runtime system for deterministic execution

of multithreaded programs. This is accomplished without language mod-

ifications or hardware support. Bugs that result from Non-deterministic

behavior is very difficult to reason about. Executing code in a determin-

istic way allows for programmer to replicate bugs easily, in order to solve

such issues. This work is an extension of the work from the DMP [13]

project, implementing the algorithms proposed in a deployable runtime

system.



There are several modes which CoreDet can operate in. The most basic

mode is a serial mode, where every thread is executed serially. This is a

simple way to solve the non-determinism problem, but is also the slowest.

DMP-O is a mode where ownership of data is tracked on a per thread

basis. As long as threads are accessing data that they “own,” then the

threads are allowed to execute in parallel. When data is accessed that is

not “owned” by a thread, all threads execute in serial until the access

is finished. DMP-B executes all threads in parallel, on a segment by

segment basis. Each thread as a private buffer of data that is used in

each segment. At the end of each parallel segment, the threads enter a

serial commit phase, where values from each private buffer is committed

to the global memory space. DMP-PB combines DMP-O and DMP-B to

increase the scalability of the system.

Over all of the modes, DMP-PB scales the best as the number of threads

increases. When compared to non-deterministic execution, there is per-

formance loss for all of the modes in CoreDet. This is to be expected,

since all modes have at least one sequence where code is executed in a

sequential manner. However, as more CPU cores are used, the difference

between CoreDet and non-deterministic execution closes. These results

rely on optimal configuration settings for each, but the authors claim

that the benefits of deterministic execution is worth the degradation in

performance.

9 Language Modifications for Increased Safety

and Security

As discussed in sections 6 and 4, we discussed how some languages are

not as “safe” as other languages. Programs written in C are susceptible

to attacks (such as the buffer-overflow attack) that the Java language

is not. Many legacy programs are written in these “unsafe” languages,



and are vulnerable to such attacks. Furthermore, new programs continue

to be written in these languages. In this section, we will survey projects

that have modified existing languages in an attempt to make them more

safe.

9.1 Current Research

One of the most common complaints about Java is its performance. Be-

cause of interpretation overhead, as well as the run time safety checks,

Java programs have trouble keeping up with the performance of C or

C++ programs. One way to overcome this deficiency is to incorporate

native-code into the program, using the Java Native Interface (JNI). Un-

fortunately, this bypasses the security model in Java. Robusta [36] is a

modification of the Java virtual machine, which isolates native code from

affecting the rest of the program.

Robusta uses the Native Client (NaCl) project [43], a software-based

fault isolation system from Google. NaCl is modified to comply with the

standard Java programming model, such as allowing dynamic linking and

loading of classes. Robusta also inserts safety checks before an after each

JNI call. These calls ensure that the native code does not bypass any

of the JVM’s security mechanisms. For example, when native code calls

a Java method, Robusta checks to make sure that all parameters are of

the correct type. It is able to achieve this through the use of trampoline

and springboard functions, which are the only functions that are allowed

to cross the boundary of the isolated environment.

All tests performed show decent performance for a series of JNI bench-

marks. Most overheads were less than 10%, although there were two

benchmarks that had substantial overheads. The authors of Robusta

state that this is likely due to their high number of context switches,

which were orders of magnitude higher than the other benchmarks. Com-

paring to other JNI safety systems, the Robusta overheads are promising.



Many programmers like the control that the C language provides. The

precise control over memory management and data structures gives the

programmer the ability to manage the execution of the program as they

see fit. Other languages lack the control that C provides, but lack the

problems that C can have, such as buffer overflows and out-of-bounds

pointers. Cyclone [20] tries to gain the safety of languages such as Java

and Lisp, without losing all of the control that C has.

All of the changes to the C language in Cyclone are to handle poten-

tial safety violations. Most of the changes deal with how pointers are

handled. For example, Pointer arithmetic is restricted, in an attempt to

prevent certain buffer overflow attacks. Only certain types of pointers

can have arithmetic performed on them. These pointers contain bounds

information, which is used to check the arithmetic performed, to ensure

the new pointer is still within the bounds of the allocated range.

One of the most drastic change is how memory is managed is handled in

Cyclone. Since free can cause dangling pointers, they decided to make

free a no-op. They provide two new ways to reclaim unused memory.

First, they provide an optional garbage collector. Second, to provide

finer-grained control of memory, they provide a new feature called a

growable region. Regions are code blocks where all data allocated in the

region is implicitly deallocated at the end of the region block. These

regions have handle variables, which can be passed to other functions

as necessary. Static analysis can then determine if the variables that are

declared within the region are used in a way that could cause safety

violations, such as storing pointers into the region in a global variable.

Many other restrictions exist, but full discussion is out of the scope of

this section. During testing, Cyclone was able to find errors in a few of

the benchmarks. There was overhead caused by Cyclone, most of which

was caused by the bounds checking performed. Most I/O bounded ap-

plications experienced nominal overheads, but computationally intensive



programs had considerable overhead. The authors claim that some pro-

grams took six times as long to execute. The authors were able to achieve

they goal to bring safety guarantees to a low level language such as C.

CCured [29] has a similar motivation as Cyclone. Both languages attempt

to bring safety to the C language without major syntax changes. In

CCured’s case, George Necula et al. attempt to make C type safe. CCured

is a two part system. First, there is a static analyzer which verifies type

safety at compile time. Second, run-time checks are performed to check

those portions of the program that cannot be verified statically.

The major contribution of the CCured work is the creation of three

separate pointer types. First, there is a special pointer type for pointers

accessing arrays. These pointers are bounds checked when dereferenced,

to make sure the reference stays within the bounds of the memory region.

Second, there are safe pointers. These pointers are always either null, or

valid. They are not allowed to have pointer arithmetic performed on

them. Finally, there are dynamic pointers. These pointers encompass all

other forms of pointers, but they still have bounds checking performed

on them upon dereference. CCured deals with dynamic memory similar

to how Cyclone does, by ignoring explicit frees. Instead, CCured relies

on a garbage collector to reclaim unused memory. They claim that it is

possible to use a precise garbage collector, but leave that to future work

Another of the major contributions of CCured is its type inference en-

gine. One of their main goals was to be able to take legacy C code, and

allow CCured to work directly with it without having to annotate the

code. They simply could change all pointers to be of the dynamic type,

but there are benefits to the safe and sequence pointers (such as skip-

ping bounds checks for safe pointers, or saving some space for sequence

pointers). The inference system finds the minimum number of dynamic

pointers, then makes the rest of the pointers sequential if any pointer



arithmetic is performed on them. The remainder are defined as safe. The

inference algorithm is linear in the size of the program.

The performance of CCured is not great. The performance is not as bad

as CCured without the type inference engine, but the performance ranged

from 1.03 times to 2.44 times longer execution time. They were able to fix

several bugs in the SPECINT95 benchmark suite. Their work performs

much better than the Purify [19] tool, which instruments binaries to

detect memory errors.

10 Conclusions and Future Work

We have only scratched the surface of language and software based pro-

tection mechanisms in this chapter. Language choice when writing soft-

ware can have a major affect on the vulnerabilities present in the final

program. The environment the program is executed in has a similar af-

fect. The techniques described can help protect software in spite of the

flaws in the default language tools and environment. Even with the se-

curity gains we have discussed, there are still many issues that need to

be solved.

Protecting software from piracy can be accomplished using watermarking

or obfuscation. However, current techniques use cryptographic or runtime

protection mechanisms. Some forms of piracy protection have been met

with large amounts of opposition from the end users, mainly due to the

restrictions placed on the usage of the software. Future work will look

at how the mechanisms discussed here can be used to protect software

from piracy without harming the experience of the end user.

Another trend in the current technological environment is the move to-

wards mobile computing devices. Most mobile phone environments, such

as the Android OS, have their own protection mechanisms in place in

order to mitigate the amount of damage to the system in the presence of



a malicious application. Still, devices such as the iPhone have had pub-

lished vulnerabilities, even if they only affect user-modified phones. Even

the default Android OS has had its fair share of malicious programs as

well. Future work in software protection will have to consider protecting

mobile devices.

Stack-based buffer overflow exploits are still relatively common. They

are no longer the most common attack on a software system. The drive

towards cloud computing has converted many software systems into in-

ternet applications. Cross-site scripting (XSS) attacks, as well as SQL

injections have become the attack of choice for these applications. In an

SQL injection attack, a malicious user is able to execute SQL queries

in order to modify the underlying database for the application. While a

large number of SQL injection attacks can easily be defended by prop-

erly sanitizing user data before usage in SQL statements, others can be

fairly difficult to defend against. XSS attacks allow a malicious entity to

inject code into another, generally trusted website. The injected code is

then run on the client machine. Protecting internet applications against

these attacks is an important area of future work.

Exercises

1. Discuss the similarities and differences between watermarking pro-

tocols discussed in section 2, and a cryptographic protocol. Is water-

marking a form of steganography?

2. In section 3, we discussed several uses of code obfuscators. A com-

mon technique when writing code in J2ME (Java 2 Micro Edition,

commonly used in mobile phone development) is to perform an ob-

fuscation as the last step. Other than an increase in security, what

other benefit can be pulled from performing such obfuscations.

Hint: You might want to compile a sample program before and after

a simple abstraction transform, to compare class files.



3. Consider dynamically typed languages such as Python. Are these

languages easier to obfuscate than their strongly typed counterparts?

Why or why not?

4. Write a C program to perform a stack-based buffer overflow attack

as described in section 4. Does your compiler automatically inject

stack protection? If not, can you force it to do so?

5. How would you determine the layout of the heap to perform a heap-

based buffer overflow attack? Are there programming languages that

are naturally resistant to heap based attacks?

6. Brainstorm some uses for the information flow tracking discussed in

section 7.

7. Many of the C based tools and techniques discussed here require a

modification of the language itself. Does this mean that the lan-

guage is inherently unsafe to use in its general form? Why is C so

prominently used over “safer” languages such as Java?

8. Throughout this chapter, we have discussed the differences between

static and dynamic protection mechanisms. In the field of cyber-

physical systems, the trade-offs between execution time and precision

are important. For each of the following examples, discuss which type

of protection mechanism (static or dynamic) is best suited:

– Spy Satellite

– Air traffic controller system

– Smartphone
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17. Aurélien Francillon and Claude Castelluccia. Code injection at-

tacks on harvard-architecture devices. In Proceedings of the 15th

ACM conference on Computer and communications security, CCS

’08, pages 15–26, New York, NY, USA, 2008. ACM.

18. Manuel Fhndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson,

Galen Hunt, James R. Larus, and Steven Levi. Language support

for fast and reliable message-based communication in singularity os.

In Proceedings of the EuroSys 2006 Conference, pages 177–190, New

York, NY, USA, 2006. Association for Computing Machinery, Inc.

19. Reed Hastings and Bob Joyce. Purify: fast detection of memory leaks

and access errors. In Proceedings of the Winter Usenix Conference,

Berkeley, CA, USA, 1992. USENIX Association.

20. Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks,

James Cheney, and Yanling Wang. Cyclone: A safe dialect of c.

In Proceedings of the General Track of the annual conference on

USENIX Annual Technical Conference, pages 275–288, Berkeley,

CA, USA, 2002. USENIX Association.

21. Steve Jobs. Thoughts on music, February 2007.

http://www.apple.com/hotnews/thoughtsonmusic/.

22. Mazen Kharbutli, Xiaowei Jiang, Yan Solihin, Guru Venkataramani,

and Milos Prvulovic. Comprehensively and efficiently protecting the

heap. SIGARCH Comput. Archit. News, 34:207–218, October 2006.

23. Kenneth Knowles and Cormac Flanagan. Hybrid type checking.

ACM Trans. Program. Lang. Syst., 32(2):1–34, 2010.

24. Matias Madou, Ludo Van Put, and Koen De Bosschere. Loco: an

interactive code (de)obfuscation tool. In PEPM ’06: Proceedings

of the 2006 ACM SIGPLAN symposium on Partial evaluation and



semantics-based program manipulation, pages 140–144, New York,

NY, USA, 2006. ACM.

25. Matias Madou, Ludo Van Put, and Koen De Bosschere. Understand-

ing obfuscated code. In ICPC ’06: Proceedings of the 14th IEEE In-

ternational Conference on Program Comprehension, pages 268–274,

Washington, DC, USA, 2006. IEEE Computer Society.

26. Andrew C. Myers. Jflow: Practical mostly-static information flow

control. In In Proc. 26th ACM Symp. on Principles of Programming

Languages (POPL, pages 228–241, 1999.

27. George C. Necula. Proof-carrying code. In POPL ’97: Proceedings

of the 24th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 106–119, New York, NY, USA, 1997.

ACM.

28. George C. Necula and Peter Lee. The design and implementation of

a certifying compiler. SIGPLAN Not., 39(4):612–625, 2004.

29. George C. Necula, Scott McPeak, and Westley Weimer. Ccured:

type-safe retrofitting of legacy code. SIGPLAN Not., 37:128–139,

January 2002.

30. Landon Curt Noll, Simon Cooper, Peter Seebach, and Leonid A.

Broukhis. The international obfuscated c code contest.

http://www.ioccc.org/.

31. Aleph One. Smashing The Stack For Fun And Profit. Phrack, 7(49),

November 1996.

32. Jonathan Pincus and Brandon Baker. Beyond stack smashing: Re-

cent advances in exploiting buffer overruns. IEEE Security and Pri-

vacy, 2004.

33. A. Sabelfeld and A.C. Myers. Language-based information-flow se-

curity. Selected Areas in Communications, IEEE Journal on, 21(1):5

– 19, jan. 2003.

34. Securom TM. http://www2.securom.com/.



35. Hovav Shacham. The geometry of innocent flesh on the bone: return-

into-libc without function calls (on the x86). In Proceedings of the

14th ACM conference on Computer and communications security,

CCS ’07, pages 552–561, New York, NY, USA, 2007. ACM.

36. Joseph Siefers, Gang Tan, and Greg Morrisett. Robusta: taming

the native beast of the jvm. In CCS ’10: Proceedings of the 17th

ACM conference on Computer and communications security, pages

201–211, New York, NY, USA, 2010. ACM.

37. Singularity - Microsoft Research. http://research.microsoft.com/en-

us/projects/singularity.

38. Saravanan Sinnadurai, Qin Zhao, and Weng fai

Wong. Transparent runtime shadow stack: Protection

against malicious return address modifications, 2008.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.5702.

39. Stackshield: A ”stack smashing” technique protection tool for linux.

http://www.angelfire.com/sk/stackshield.

40. Ramarathnam Venkatesan, Vijay V. Vazirani, and Saurabh Sinha. A

graph theoretic approach to software watermarking. In Proceedings

of the 4th International Workshop on Information Hiding, IHW ’01,

pages 157–168, London, UK, 2001. Springer-Verlag.

41. Wikipedia. Content scramble system — wikipedia, the free encyclo-

pedia, 2011.

42. Zhenyu Wu, Steven Gianvecchio, Mengjun Xie, and Haining Wang.

Mimimorphism: a new approach to binary code obfuscation. In CCS

’10: Proceedings of the 17th ACM conference on Computer and com-

munications security, pages 536–546, New York, NY, USA, 2010.

ACM.

43. Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert

Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas



Fullagar. Native client: a sandbox for portable, untrusted x86 native

code. Commun. ACM, 53:91–99, January 2010.

44. Changjiang Zhang, Jianmin Wang, Clark Thomborson, Chaokun

Wang, and Christian Collberg. A semi-dynamic multiple watermark-

ing scheme for java applications. In DRM ’09: Proceedings of the

nineth ACM workshop on Digital rights management, pages 59–72,

New York, NY, USA, 2009. ACM.

Index

boolean satisfiability, 27

buffer overflow, 15, 24, 36

– heap-based, 19

– stack-based, 17

compiler, 20, 33

– certifying, 22

cross-site scripting, 39

digital rights management, 2, 6, 9

DRM, see digital rights manage-

ment

formal methods, 32

information flow, 29

malware, 9, 13

obfuscation, 7

PCC, see Proof Carrying Code

piracy, 2

Proof Carrying Code, 20

runtime, 32

SQL injection, 39

static analysis, 23

– type checking, 24

watermark, 3


