
Energy-aware Allocation of Dynamic Variables in Partitioned Memory 
Architectures 

 
 
    Renato Levy         Bhagirath Narahari       Rahul Simha 
          rlevy@i-a-i.com         narahari@gwu.edu              simha@gwu.edu  

  Intelligent Automation, Inc. Department of Computer Science 
  Rockville, MD, USA  George Washington University 

Washington, DC, USA 
 

Abstract  
This paper addresses the problem of minimizing the 
energy consumption by the memory subsystem in an 
embedded system. While significant work in the 
literature has addressed compiler driven energy 
aware allocation of global static variables, no general 
solutions have been proposed for the corresponding 
problem of allocating run-time dynamic variables. 
This paper proposes an approach, and the 
corresponding framework, to compiler driven energy 
aware allocation of dynamic variables. The approach 
is driven by the use of execution profile information 
and the concept of heap segmentation. Our 
framework and solution have been integrated into a 
compiler backend tool. Experimental results with 
some benchmark applications indicate that our 
techniques result in up to 40% memory energy 
reduction and 20-25% overall system energy 
reduction.  
 

1 Introduction 
 
A major constraint in embedded systems is energy 
and power consumption since many of these systems 
rely on a limited source of energy in the form of a 
battery. Energy consumption in the system has direct 
implication on the lifetime of the system, in addition 
to other issues such as heat dissipation, size and 
weight of the system. As a result a number of 
researchers have proposed both hardware and 
software techniques for energy optimization in 
embedded systems, including compiler driven 
optimizations for energy conservation [1,2,3,4]. 
Software techniques, including compiler techniques, 
have addressed various aspects such as processor 
energy consumption, peripherals, cache memories, 
and memory sub-system [1,2,3]. It has been observed 
that the portion of energy consumed by the memory 
sub-system (memory budget) can be as much as 90% 
of the total energy required by the system [1,2,3], 
thus making it a good candidate to target energy 
optimization techniques.  
 

 In designing the memory subsystem of an embedded 
system to use power efficiently, a common approach 
is to use partitioned memory architectures which use 
a bank of smaller, individually controllable memory 
devices so that devices are powered only during use 
[5,6]. However, the energy thus saved will depend on 
how the application’s data has been allocated to the 
different memories, on how the overall memory 
address space has been partitioned amongst the 
devices, and which particular device is used for each 
partition. The focus of this work is on compiler 
directed approaches for data allocation. Energy 
savings can be obtained through compiler directed 
approaches by exploiting memory reference behavior 
to dynamically control power (on or off) to the 
memory modules.  This depends on how the data has 
been allocated and therefore the need for compiler 
directed energy aware data allocation methods, a 
number of which have been designed. Past work in 
this area has focused on static analysis and on 
allocation of static global variables such as arrays.  
This paper considers the problem of compiler 
directed energy aware allocation of dynamic 
variables. 
 
The purpose of this paper is to address the problem of 
energy aware allocation of dynamic, run-time heap 
allocated, variables and present an approach, and 
framework, to solving this problem in an effective 
manner. Our solution is based on using dynamic 
profile information to model the optimization 
problem and proposes segmenting the runtime heap 
to perform an energy aware allocation. We target our 
optimization technique to optimize energy savings in 
the memory sub-system by customizing the 
allocation of dynamic variables and by dynamically 
controlling the power states of memory banks. The 
contributions of this paper are 
• A framework for solving the dynamic variables 

allocation problem. The framework suggests the 
use of execution, and power, profile information 
and proposes segmenting the heap to provide 
energy aware allocation. 



• Formulation of the optimization problem. We 
provide a graph theoretic formulation for the 
energy aware allocation of dynamic variables. 

• Heuristic algorithm for energy aware allocation 
of dynamic variables. This algorithm extends our 
recent work [17] on allocation of static variables 
using profile information and the concept of 
segmenting the heap. 

• Back-end compiler tool. We have integrated our 
techniques and algorithms into a back-end 
compiler tool written for the ARM family of 
processors. The tool takes ARM assembly 
language as input and is thus complementary to 
several higher level compiler optimizations such 
as loop optimizations [6] and can be integrated 
into the back-end of most compilers. 

 
The rest of this paper is organized as follows. Related 
work is reviewed next in Section 2. The problem is 
described, mathematically formulated, and 
framework implementation and assumptions stated in 
Section 3, following which our solution and 
implementation is described in Section 4.  We present 
experimental results in section 5 and conclusions in 
section 6. 

2 Related Work  
A number of energy optimization techniques, using 
software approach, that explore the memory sub-
system have been proposed in the literature. These 
studies have considered embedded systems where the 
memory system is assumed to have no cache. 
Designing partitioned memory systems was explored 
initially in [5] and revisited in [8]. In their work, the 
authors pursue the problem of identifying the best 
block partitioning for scratch-pad memory once the 
expected access profile and memory power features 
are known. Intractability of the problem is shown and 
heuristics are proposed.   
 
Compiler directed energy aware data allocation 
techniques, such as in [3,6,11], most closely resemble 
the focus of our research. They consider the same 
target platform as this paper but focus only on global 
scalar arrays variables and thus their solution cannot 
be applied to dynamic variables. They used the 
lifetime of variables to determine the layout of arrays 
in memory. The techniques rely on loop 
optimizations to increase the independency between 
variables within a control loop and to break big 
arrays in order to fit each variable within a singular 
memory block. In recent work we have suggested 
improvement to their algorithms for global variables 
[17]. However, both approaches focused only on 
allocating global static variables and do not consider 
allocation of dynamic variables.  Run-time 
recompilation to address the dynamic nature of the 

energy consumption model, such as available battery 
energy, has been discussed in [11]. Dynamic 
profiling approaches to determine lifetime of 
variables  was also presented in [4,8]. Our work 
differs from previous work in power/energy 
optimizations in partitioned memory systems, 
because we consider direct memory control for heap 
allocated (dynamic) variables. The overhead impact 
of our power-aware technique is a consequence of the 
control instructions introduced in the code by the 
optimization, and varies only as a function of the 
program’s path of execution decided at runtime.  
 
In contrast to allocation by the compiler, techniques 
[9,10,11] have also been designed to control the 
memory power state at the operating system level by 
providing a modification to the virtual page control 
algorithm. Because the system relies on the final 
physical allocation done when a page fault occurs, 
there is no power control directly exercised over the 
memory by the application.  
 
The behavior of dynamically allocated data objects 
has been studied previously with the objective of 
increasing cache results and reducing paging in 
virtual memory systems to improve system 
performance. The use of profiling to trace lifetime of 
dynamic objects to reorganize the heap was studied 
in [12].  The concept of fragmenting the heap to 
improve virtual memory allocation was proposed in 
[13]. In [14] Lattner and Adve presented a link time 
pointer analysis to isolate dynamic allocated data 
structures that were locally used. The strategies 
developed in previous work cannot be directly 
applied to our energy optimization problem since 
their objective was performance and not energy 
conservation, but they did lead to some of the 
insights used in our solution and in particular the 
concept of profile driven optimizations and 
segmenting the heap. In relation with previous 
dynamic allocation techniques our work differs in 
providing a heap segmentation technique that 
generates a variable number of segments and in the 
manner in which the dynamic allocated data is 
assigned to these segments. The organization of 
dynamic allocated data into the segments is 
determined by the affinity groups to which they 
belong (retrieved from the input code), and the usage 
patterns of these groups rather then the details of the 
individual data object.  
 

3 Problem Description 
The objective of this research is to examine the 
problem of energy aware allocation of dynamic 
variables to partitioned memory architectures. Static 
global variables are un-initialized global variables 



defined outside the scope of a function and visible 
across all sections of the code, and are defined with a 
fixed size by the compiler. Dynamic variables are 
data objects allocated and de-allocated at run-time, 
usually referred only by usage of pointers. In data 
intensive systems, which handle large amounts of 
data and act based on results obtained in processing 
of the data, the size of dynamic variables can form a 
substantial part of the overall memory requirements. 
Thus, in such systems, it is imperative to address 
energy optimizations of dynamic variables. Since 
precise information of dynamic variables, such the 
precise access pattern and sizes, is known only at 
run-time this is an especially challenging problem in 
the context of compiler driven techniques.  

3.1 Proposed Approach 
Our research is motivated by the question: if 
information, such as access patterns and sizes, about 
dynamic variables can be obtained can an energy 
aware allocation of these variables be accomplished 
by the back-end of a compiler. This paper proposes a 
framework for allocating dynamic variables at the 
back-end of the compilation process. Our framework 
is based on two key aspects: (1) use of profiling to 
derive information about the dynamic variables and 
(2) segmenting the heap thereby reducing the 
problem to allocating data objects to discrete 
segments.  By obtaining the information using 
profiling and viewing the heap as a collection of 
segments consisting of a number of memory 
modules, we formulate the dynamic allocation as a 
variation of the static allocation problem. 
 
Our framework, and solutions, are targeted to work at 
the assembly level and thus based entirely on 
information present at the assembly code level. While 
working at this level has its challenges and 
disadvantages it also allows our techniques to be 
incorporated into the backend of any compiler 
thereby providing a general solution framework 
which makes no assumptions on properties of the 
high level language. In addition, it enables existing 
code to be readily processed for energy optimization 
even if the source code is not available thereby 
enabling conversion of existing code to optimized 
code.  Our techniques are thus applied directly at the 
basic block level of the code, without regard to any 
high structures that may exist in the original source. 
 
The profile information needed for our approach 
should capture both the execution profile and the 
power consumption profile. Our energy-aware 
allocation is based on creating affinity groups of 
dynamic allocated data based on the location in the 
input code where data is allocated (allocation point).  
The affinity groups are clustered based on their 
utilization pattern which is obtained by the dynamic 

profiler, during code execution. Clusters are assigned 
to heap segments in a manner to maximize the energy 
gains that can be obtained by keeping the memory 
blocks that belong to unneeded segments in a 
“sleeping mode”.  The number of heap segments is 
determined by heuristics. Due to the dynamic nature 
of heap operation, the partitioning of a heap has 
profound side effects, such as increasing the memory 
requirements, and altering the speed of access to heap 
allocated objects. In order to reduce this effect we 
must try to limit the number of segments in which we 
partition the heap, and we provide control parameters 
for the user that can be used to shape the results of 
the heuristics. Finally, to accommodate for the 
imprecise nature of profiling in predicting size and 
patterns, we suggest a modification to the runtime 
allocation process (such as malloc)  by providing an 
“overflow” segment to the heap to handle cases 
where a segment runs out of space. Power control 
instructions are then applied for all memory blocks 
belonging to a segment. A segment is kept powered 
during a basic block if any of the affinity groups 
placed within the segment may be used during this 
basic block execution. The segment is kept in 
“sleeping mode” in other condition. 

3.2 Architecture and Simulator 
We assume that the embedded system memory sub-
system architecture consists of a partitioned memory, 
with no cache, consisting of a number of memory 
banks. We evaluated our power-aware optimization 
techniques using an operation level simulator – 
TriSim developed during our research. Based on a 
given hardware configuration TriSim executes the 
code and calculates the power and timing information 
which includes the memory and processor energy 
(power). The input to the simulator is ARM assembly 
output generated by a GCC compiler after it has been 
processed by our optimizer. During simulation, 
TriSim executes the power control pseudo-
instructions introduced by our optimizer, modifies the 
power state of the memory banks, and also 
implements the segmentation of the heap area in 
memory as specified by the pseudo-instructions in the 
optimized code. The most relevant output of TriSim, 
for the purpose of this research, is the energy profile 
of the code, which includes the amount of energy 
consumed by each memory block, the number of 
times each basic block in the code was executed, and 
the total number of cycles used by the processor to 
complete the program. TriSim has also other 
profiling outputs that were used to retrieve dynamic 
information about the code execution.  

3.3 Notation and problem formulation 
In order to formally model this problem,  

• A program F is defined to be a set of basic 
blocks B={b0,b1,b2,….,bn}. (A basic block is 



a straight line segment of code with exactly 
one entry point at the start and one exit point 
at the end of the basic block.)  

• Let D={d0,d1,d2,…dk} denote the set of 
dynamic data objects allocated at runtime by 
F.  

• For each di there is a bi in B that allocates 
the data object from the heap at runtime. 
The allocation of each di in the heap, is a 
function of its impact on the total power 
optimization of F.  

The index of the basic block (allocation point) that 
creates di can be used as a differentiator of the type of 
information held (bi) by the data object. Therefore we 
can partition the set D of F into n sub-sets, referred to 
as data sets, based on their allocation basic blocks in 
the form: 
 
D = {D1, D2, …, Dn},where data set Di represents the 
sub-set of D allocated by bi during execution. 
 
In normal programming practices, dynamic data 
objects allocated at a specific runtime call in a 
program tend to represent a certain type of 
information. One must observe that at the assembly 
level this is the only “type” information available. In 
our approach, we assume, without loss of generality, 
that the type of information held at di is consistently 
used in other basic blocks across the program during 
its execution. In other words, if a block bk is able to 
manipulate a data object allocated at basic block bj, 
then it should be able to handle any object allocated 
by bj. 
 
Let B*

i denote the use set of di, which is composed by 
the set of basic blocks in F that use the data object di. 
Let B’

j denote the set of basic blocks of F that can 
handle data objects allocated at basic block bj 
(overlap set). Assuming di was allocated at basic 
block bj, then di∈Dj. Our assumption of consistent 
use implies that B’j is the union of B*

i for all di in Dj, 
and can be expressed by the statement below: 
 
If bm ∈ B*

i and di ∈ Dj  bm ∈ B’
j 

 
Possible power savings of partitioned memory 
architecture is based on the pattern of utilization of a 
program’s data objects. In our approach to dynamic 
data objects, we analyze the overlap sets (B’

j) of the 
data objects, and determine which of its basic block 
members are also members of overlap sets of data 
objects allocated elsewhere in the program. 
 
(bm ∈ B’

j) and (bm ∈ B’
k), where j≠k    

 
In this case, there is a possible synergy/afinity 
between the utilization of data objects allocated at bj 

and data objects allocated at bk. This synergy may be 
explored by targeting the memory allocation of bj and 
bk to the same heap segment. In this manner, the 
exact number of segments in which the heap is 
divided will depend on the actual code being 
optimized, as well as the heuristics used to determine 
the segmentation of the heap.  
 
This problem can be represented as a graph 
assignment problem in which the vertices of the 
graph correspond to the set of data objects allocated 
in each bi – i.e., the data sets (Di). The arcs between 
vertices Di and Dj are labelled with the set of basic 
blocks that can handle objects allocated on both 
vertices (B’i∩B’j). If B’i∩B’j = ∅ then the nodes are 
not connected. The basic blocks that belong to B’i 
and are not shared with any other overlap set in the 
code, are considered a sub-set of B’i denoted as B’’i, 
and represented in the graph as a self-arc on vertice 
Di. Figure 1 shows a graph equivalent to the proposed 
problem formulation. This problem formulation has 
similarities with the one presented for the static 
variables problem in [6,17], with some important 
distinctions that are based on the dynamic nature of 
the objects. Firstly, each vertex represents a set of 
dynamic allocated data objects rather then a unique 
data object. Secondly, is the emphasis given to the 
weight of the basic blocks in which the data set is 
used by itself. Thirdly, weights are represented based 
on the actual utilization of the data objects across the 
program’s execution using the profile information 
and not based on their static access patterns such as 
loop location as in [6].  

An arc between two vertices is as strong as the 
number of basic blocks (taking into consideration 
their sizes and profiles) that are common to their 
overlap sets. If two connected data sets are assigned 
to the same segment hi, then their connecting arc is 
represented in their assignment, because by powering 
hi the basic blocks in both overlap sets can use the 
dynamic objects allocated in either vertex. Thus, this 
suggests a correspondence between the weight of the 
arc and importance of keeping both sets of datasets in 
the same segment. The allocation hypothesis of an 
arc to a segment (edge) has a value which is related 
with the original arc value, but also evaluates the 
impact of this allocation in the power profile of the 
program’s. The weight (or value) of the edges is 
defined using multiple variable functions and are 
defined in detail in Section 4.  

An allocation ∏ is an assignment of the vertices in 
the dependence graph to the k segments in the heap 
{h1,h2,…,hk}.  
∏: {D1, D2, …, Dn} → {h1,h2,…,hk}  
 



The value, or weight, W(∏) of the assignment 
indicates the amount of energy conserved by co-
locating the data sets, and is defined as the sum of the 
weights of the edges w(i,j) that are mapped to the 
same segment,  i.e.,  
W(∏)= ∑(∏(Di)=∏(Dj)  w(i,j) 

 
Figure 1 – Dependence Graph equivalent to the 

code-data dependencies of dynamic objects 

 
Maximizing the energy savings is equivalent to 
finding the allocation ∏ with maximum value W(∏). 
For brevity we omit the formal proof of NP 
completeness for this optimization problem, (observe 
the analogy to the graph partitioning problem). The 
intractability suggests the need for efficient 
heuristics.  

3.4 Framework and Assumptions 
Key aspects of our solution approach are (a) the use 
of dynamic profiles to obtain the information used in 
our problem formulation and (b) segmenting the heap 
into k segments. We next discuss how these are 
implemented in our framework and the assumptions. 

3.4.1 Heap segmentation 
As mentioned earlier our approach is based on 
segmenting the heap into k segments. We assume that 
our heap may be composed of multiple types of 
memory blocks. A heap area corresponds to a 
homogeneous contiguous part of memory. A heap 
area may contain one or more segments. Each heap 
segment can span multiple memory blocks, and the 
overall size of all segments combined must not 
exceed the total memory available for the heap. For 
simplicity, two general assumptions are used for 
segment size and location: 

1. Segment boundaries coincide with memory 
block boundaries. 

2. The memory block structure is homogenous 
for any specific segment.  

 

The two assumptions above will bound the number of 
segments into which the heap can be partitioned.  
 
Since the number of segments in which the heap is 
partitioned can have significant impact on the total 
footprint and performance (speed and power) of the 
program, a parameter was introduced to let the 
system’s user provide guidance on how many 
segments he/she believes are appropriate for the 
application. The number of segments suggested by 
the user is not necessarily adopted by the algorithm, 
but rather is used as an input to control the overall 
size of each segment.  

3.4.2 Dynamic size 
Utilization of dynamic data objects and global data 
objects have an important difference in semantics that 
needs to be taken into consideration in the 
determination of the heap segment sizes. Global 
objects are allocated once for the duration of the 
program. Dynamic objects can be de-allocated at 
runtime. This extra functionality allows two different 
data objects to be placed in the same memory area 
provided their lifetime is not concurrent. This 
flexibility is the reason why data and event driven 
programs use dynamic data in order to decrease their 
memory requirements.  
 
This flexibility is exploited in programs through 
natural covariance among the sizes of two apparently 
distinct dynamic data sets. In order to capture the 
dynamic nature of this behavior, we have substituted 
the notion of a maximum size required by a set of 
dynamic objects, with the notion of a historic 
variation of the dynamic set size across the program’s 
execution. Our dynamic profiler captures the total 
size allocated by each distributed set along the 
execution of the program. This size variation is 
defined as the dynamic size of the data object set. 
Using this concept, we can define the dynamic sum 
of the sizes of two data object sets as the space 
required for allocating the two data objects sets at any 
moment during the program execution. We denote 
this dynamic sum operation by the symbol ‡. 
 
Let σi be the dynamic size of Di, which is the set of 
sizes of Di captured during execution. Let σj be the 
dynamic size of Dj, which is the set of sizes of Dj 
during execution. Then if σi = {si1,si2,si3, …, sin} and 
σj = {sj1,sj2,sj3, …, sjn} , the dynamic sum of Di and Dj 
sizes is 
 
σi ‡ σj = (sik + sjk) , ∀ 1 <= k <= n     
where n is the number of size samples captured by 
the simulator 
 



The segmentation algorithm must take into 
consideration when allocating dynamic sets to 
segments the natural covariance between the size 
variations of the dynamic sets. Ignoring this feature, 
which is the key reason for using dynamic data, will 
wrongfully increase the memory demands to execute 
a program. Correct capture of this dynamic behavior 
from the program will allow the optimization to 
position dynamic sets with negative correlation on 
the same segment, reducing the fragmentation effect 
introduced by the heap segmentation while reducing 
the impact on the size of the segment. 

3.4.2.1 Overflow heap segment 
Grouping dynamic sets within a segment reduces the 
sensitivity of the technique to the differences between 
the training set data and the actual execution of the 
program in the field since not all paths of execution 
will necessary hold the same size relationships for 
different dynamic sets. Even with careful profiling 
and selection of input data, it is possible for a 
segment to run out of allocation space due to internal 
fragmentation or to a non-expected runtime data 
input mix. This can happen even while other 
segments still have room for allocation. In this case, 
it is important to guarantee the correctness of the 
program by allowing the runtime allocation routine, 
such as malloc, to allocate memory from an overflow 
segment. 
 
The overflow segment can be composed either by a 
special memory block which was reserved for this 
function and kept away from the allocation process or 
by the assignment of memory blocks left unused after 
the allocation process. The overflow segment is used 
only in extreme conditions and therefore does not 
need to be energized during execution, unless an 
active allocation was performed.  

3.4.3 Insertion of control instructions 
All the memory blocks that belong to a segment 
change power state at the same time. Power control 
instructions are introduced at start and end of basic 
blocks in a manner to guarantee that the memory will 
be in full active mode when the access is performed. 
 
If a basic block bx belongs to the overlap set of a data 
set Di, which is allocated at segment h, then a power 
on control instruction for the memory blocks in h is 
introduced as the first instruction of basic block bx. 
Since we have assumed that the memory blocks are 
able to re-synchronize within the time that is takes to 
execute the power instruction then the memory will 
be active for any subsequent access performed during 
the basic block execution. The memory blocks of 
segment h are returned to power off mode by a power 
off control instruction introduced at the end of the 

basic block bx. If the last instruction of bx is a branch 
instruction, then the power control instruction must 
be inserted before the last instruction, otherwise the 
control instruction is inserted as the last instruction in 
basic block bx. 
 
The overflow segment is not directly controlled by 
inserted instructions in the code. When the runtime 
allocation routine is forced to allocate memory at the 
overflow segment, it sets the hardware support to 
energize the segment. The segment will be kept 
powered and active until all memory allocated in the 
overflow segment is freed, when it can be again de-
energized (zero consumption). In this way, the energy 
consumed by the overflow segment can be computed 
as part of the system overhead energy. The memory 
budget X will be reduced during the period in which 
the overflow segment is activated to a new X’ value. 
The overall savings of the system will remain 
between the boundaries for X and X’ memory 
budgets. 

3.4.4 Dynamic Profiler  
As seen from our problem formulation, our approach 
to the dynamic variable allocation problem is heavily 
dependent on run-time profile information. The 
dynamic profiler used in our work traces each access 
to memory during the program’s execution in a log 
file. The log file relates the usage of a dynamically 
allocated data object by a basic block with the point 
in the code where this data object was allocated. In 
this manner we can identify each B*i and construct 
the overlap sets for each data set. The dynamic 
profiler would also indicate the frequency of 
execution of each basic block. The frequency of 
execution is important to determine the weights of 
the arcs along with the size of each basic block. The 
final contribution of the dynamic profiler in 
extracting the features of the input code is in tracing 
the amount of memory allocated (and still used) by 
each allocation point on the code. The simulator 
outputs the accumulated allocated size for each 
allocation point before each dynamic de-allocation 
statement is executed, and at the end of the execution. 
We have chosen to use the de-allocation statement as 
a reference point to capture the accumulated sizes of 
the data sets, because only if memory is released, 
there is a chance of capturing the relative co-
variances between data-structures in the code. If no 
de-allocation statement is executed the sizes of all 
data sets increase during the program’s execution and 
the profile of dynamic sizes is reduced to the final 
value required for each set. 
 
One weak point of our profile-based technique is the 
determination of the sizes of the dynamic-sets and the 
correct identification of the possible co-variances 



between different data sets to derive the overlap sets. 
This limitation comes from the strong sensitivity in 
the data collected to the correct mix used in the data 
training.  Unfortunately, this is a feature not from the 
manner in which we recovered the dependencies, but 
is in fact related to the high level of runtime 
flexibility of data intensive systems. We have also 
looked at composing the overlap set using pointer 
analysis based on allocation site [15] and shape 
analysis [16]. These techniques were developed 
towards the utilization in source code of high-level 
languages, where type-reach information is available. 
However, we observed that pointer analysis 
techniques would not be able to bound the size of 
dynamic size sets any better then dynamic profiling. 

4 A Heuristic Algorithm 
In order to decide which data sets should be clustered 
together in the same segment, we developed 
heuristics to evaluate the importance of co-locating 
two sets into the same segment by defining an edge 
weight function. A greedy four phase algorithm 
selects each data set segment based on the values of 
the edges related with the arcs in the graph. 
 

4.1 Algorithm Description 
 
Our allocation algorithm has four phases: 

• Phase 1: Organization of data 
• Phase 2: Allocation of connected dynamic 

sets 
• Phase 3: Allocation of independent dynamic 

sets 
• Phase 4: Placement of segments on the heap. 

 
We next describe the process in each phase. 

4.1.1 Phase 1: organization of data 
During this phase, we extract from the input all the 
required information, such as the weight of each arc, 
the control flow graph of the input code, and the 
architecture information about the heap memory. The 
initial segment of each heap area is constructed. 

4.1.2 Phase 2:allocation of connected sets 
This phase of the algorithm is composed of three 
steps. During the first step, the data sets are grouped 
in connected pairs. Two data sets represent a 
connected pair if they are used by the same basic 
block of code (indicated by an arc in the dependence 
graph). Each arc’s allocation to an existing segment 
is evaluated using the heuristic edge weight objective 
function (defined in the next subsection). The arc is 
also evaluated for creation of a new segment on each 

heap area that holds enough free memory blocks to 
allocate the data sets.  
 
The result of the first step is a list of “edges” that 
evaluates each tuple (Di, Dj, hx) based on the heuristic 
objective function, where Di and Dj are connected 
data (vertices in the arc) and hx represents an 
allocation hypothesis for Di and Dj on an existing or 
newly created segment.  
 
The second step will select the edge with highest 
value and assign the data sets to the segment, creating 
a new segment in the heap if necessary. Segments 
will grow to the required size in order to be able to 
hold the additional data sets.  
 
Since the assignment performed at step 2 may result 
in a change on the segment’s size and composition, in 
step 3 each existent edge is re-evaluated. If a new 
segment was created during step 2, then a new 
assignment hypothesis is created for remaining data 
set pair in the list, and the proper edges to represent 
this assignment is generated. It is also possible that 
due to increased size or creation of new segments, 
some previous allocation hypothesis are no longer 
valid. In this case, such edges are removed from the 
list. Steps 2 and 3 are repeated until all connected 
data sets, i.e., vertices,  have been assigned to a 
segment. 

4.1.3 Phase 3:allocation of independent sets 
This phase assigns to the segments the data sets that 
do not share execution basic blocks with any other 
data set in the input code (independent sets). In graph 
representation the independent sets are vertices which 
only contain a self edge. 
 
This phase follows the same steps as phase 2, but the 
function that calculates the value of an edge is 
simplified to handle only one data set. 

4.1.4 Phase 4: placement of segments in heap 
The last phase of the algorithm defines the address 
boundaries of each segment. The segment is placed 
on the heap area that corresponds to its memory type 
based on the number of memory blocks required by 
the segment and the order in which the segment was 
created during the allocation process. 
 

4.2 Edge Weights Computation 
The purpose of the edge weight functions is to 
translate into a (energy savings) number the energy-
wise importance of each data set placement into the 
available segments or areas. During phase 2, data sets 
are placed in pairs, because the objective is to 
determine which of the possible clustering 



opportunities are more relevant for the input code. In 
phase 3, the possible synergies between data sets that 
could result in power gains have already been 
explored, and the objective of the function is to find 
the placement of independent data sets that avoids 
reducing the potential energy gains. The weight or 
value of an edge (i.e., the objective function) is 
therefore composed of 4 separate components: 
 

• α: Indicates how important the association 
of dynamic sets is in the program. 

• β:  Indicates the impact of allocating 
this/these dynamic sets to an existing 
segment. 

• γ: Indicates the impact of allocating 
this/these dynamic sets to a new segment in 
this heap area. 

• δ : Indicates the power saving potential of 
the memory type in this heap area. 

 
α and δ components are features of the input code and 
platform respectively, and do not change during the 
course of the allocation process. β and γ depend  on 
the current allocation status of the segments and their 
values are re-evaluated after the placement of a 
distributed set in a segment. 

4.2.1 Edge value composition 
The weight, or value, W of each edge will either 
consider the allocation of the data set (or pair of) in 
an existing segment (β-edges) or into a  newly 
created segment (γ-edges). The value of an edge is a 
function of the four components as shown below. 

 

          (α+β)/δ,  if (α+β) > 0       

W =     (α+β)*δ ,  if (α+β) < 0  

            α*γ/δ , for γ-edges   

   
Not all allocations options are valid for all data set 
combinations. The edges that represent a non-valid 
placement option are eliminated. When the dynamic 
sets of a selected edge are successfully placed by the 
heuristics in the according with the hypothesis 
evaluated by the edge, we say that the heuristics have 
accommodated the edge. 

4.2.2 Defining the four weight components 
Each of the four edge weight components is 
computed based on a formal definition. For brevity 
we provide the formal definitions for computing the α 
component and describe what the other components 
model and the reader is referred to our report [18]for 
a detailed computation model. 

The α component of an edge value is proportional to 
the number of instructions executed that belong to 
basic blocks of the program in which both data sets 
could be accessed. Let B’ij denote the intersection set 
of B’i and B’j (B’ij=B’i∩B’j). If B’ij = {b1, …, bn} and 
ωi denotes the frequency of execution of bi in the 
profile and si denotes its size in instructions, then the 
component α of an edge for distributed sets i and j, is 
calculated by : 

αij = Σ1

n

 si* ωi , bi ∈ B’ij 
 
The second component β of the edge value 
incorporates the cost of growing the size of a 
segment, given the previous allocations already 
realized by the greedy algorithm. In the calculation of 
β, the dynamic size of the data sets to be allocated are 
dynamically added to total size of the data sets 
already allocated in the segment using the operation 
for dynamic size defined in section 3.1.2. If the 
segment needs to be enlarged to support the newly 
added data sets, then the impact of this proportional 
increase is deducted from the value of the edge. If 
one of the data object sets of arc i-j has already been 
allocated by another edge, then only the size of the 
unallocated data object set is considered. In this case, 
only the edge that will allocate the second set in the 
same segment of the first set is valid. Even when just 
one of the data sets is allocated, an edge for every 
segment area in which a new segment can still be 
created, must be considered. 
 
The value of γ uses the available space in the 
segment area, the total number of segments already 
created, and the user’s input to evaluate the potential 
of allocating the arc in a new segment. 
 
Components β and γ treat the need to allocate more 
memory exclusively from the point of view of 
memory blocks. The last component δ is responsible 
for capturing the power heterogeneity in memory 
technologies. There is a value of δ for each segment 
area on the heap. Since we are only interested in the 
relative savings between different types of memory, 
we normalize all δ’s by the potential savings of the 
first memory type, hence for homogeneous memory 
the value of δ is one.  

4.2.3 Tie-break rules 
As with any multi-objective function, it is possible 
that edges that represent different options of 
allocation may result in equal value for the heuristics. 
Often, the impact of the selection between edges of 
same value can play an important role in the final 
energy savings obtainable.  We  created the following 
tie breaking rules, priority order, which can translate 

for β-edges 



into important differences in energy and heap 
organization: 
1. Select edge that does not segment the heap 
2. Select edge that allocates more dynamic sets 
3. Select edge with highest δ component 
4. Select edge that does not increase size of 

segment 
5. Select edge which leads to a segment that uses 

less energy to power after allocation (in 
homogenous memories rule five translates to less 
number of memory blocks) 

5 Experimental Setup and Results  
5.1 Architecture and Benchmarks 
The hardware configuration simulated, for our 
experiments, consists of an ARM7TDMI processor, 
with ten memory banks each consisting of four 
memory devices to form a 32k bank of 32 bits width. 
Two of these memory banks are set as non-
controllable and are reserved for instruction code, 
static data, stack, and overflow segment since these 
are not targets for our optimization. The remaining 
eight blocks are power controlled during execution 
and are reserved for heap data (where dynamic 
objects are allocated). Energy consumption 
calculations were based on the energy profile of the 
ARM processor and the IDT71256L35Y memory 
device which has the power savings modes used in 
the optimization methods discussed in this paper. In 
our test platform, we have modeled the pseudo-
instruction that controls the memory state as a store 
instruction to a privilege address. This combination 
of memory control and memory device allows the 
memory to re-synchronize (return to active state) 
during the time the processor takes to execute the 
store instruction. The memory budget (energy 
consumed by the controllable memory banks) of our 
configuration is modeled to 70% of the overall 
system energy budget. 
 

5.1.1 DIS benchmarks 
The set of test programs selected were four programs 
from the data intensive systems benchmark suite 
(DIS 2000) [19]. They were selected mostly because 
they represent a set of programs that are the prime 
target of this power optimization approach – namely, 
embedded systems which are designed to handle 
large amounts of data, and act based on the results 
obtained in the processing of this data. These 
programs rely on pointers, dynamic variable 
utilization, and data driven loop control. The four 
DIS benchmarks used were transitive closure, Pointer 
(pointer following), Update (pointer following with 
memory updates) and Field (collect statistics on large 
field of words). 

5.2 Experimental Results 
Tables 1 and 2 show the savings in memory energy 
and overall system energy obtained using our energy 
aware allocation of dynamic variables. The numbers, 
for each benchmark, are shown as percentage energy 
consumed when compared to the non-optimized base 
case. Thus, the first row in each table shows the base 
case energy percentages (i.e., 100% in Table 1). The 
first column in Table 1 shows the amount of energy 
originally consumed by the memory, which 
corresponds to 70% of the total energy required by 
the system. Each row indicates the memory savings 
associated with a specific benchmark. The first 
column indicates the energy consumed by the 
memory sub-system after the optimization process is 
performed. The second column indicates the 
overhead energy spent by the rest of the system (as a 
percentage of the energy consumed by the memory 
sub-system), due to extra cycles introduced in the 
execution by the optimization process. The last 
column shows overall savings in the energy 
consumed by the memory system. 
 

 

Table 1 - Memory Energy for DIS benchmarks 

 
Table 2– System Energy for DIS benchmarks 
 
Table 2 presents the energy savings as a function of 
the total energy spent by the system. The first column 
shows the total energy consumed by the application. 
The second column represents the energy consumed 
by the non-controlled parts of the system (processor 
and non-controllable memory banks), which is 
invariant in our optimization approach. The third 
column presents the overhead incurred by the non-
controlled system, due to the extended period of 
execution of the optimized program. The fourth 
column shows energy used by the memory subsystem 
as a function of the overall energy required to execute 
the benchmark. 
 
From Table 1, we see that our power optimizations 
techniques for the DIS benchmarks can lead to 
memory energy savings of up to 40%, even after 
compensating for the amount of system overhead 

Memory Energy System OH Savings
NOT OPTIMIZED 100.00% 0.00% 0.00%
TRANSITIVE 55.02% 4.52% 40.46%
POINTER 57.17% 6.78% 36.05%
UPDATE 52.08% 8.60% 39.32%
FIELD 61.02% 2.75% 36.23%

Total Energy System Energy System OH Memory Energy Savings
NOT OPTIMIZED 100.00% 30.00% 0.00% 70.00% 0.00%
TRANSITIVE 71.68% 30.00% 3.17% 38.51% 28.32%
POINTER 74.76% 30.00% 4.75% 40.02% 25.24%
UPDATE 72.47% 30.00% 6.02% 36.46% 27.53%
FIELD 74.64% 30.00% 1.92% 42.71% 25.36%



energy required by the optimization. Overall system 
energy savings, from Table 2, vary from 20% to 30% 
of the total energy requirements for the execution of 
the benchmark. The experimental results demonstrate 
that the technique is successful in obtaining 
significant gains in the memory energy. 
 
The speed overhead impact resulting from the 
aggressive control of memory power states by the 
technique can be significant as shown in Figure 2. 
While this increased overhead is always outweighed 
by the energy saved by the memory, in time critical 
systems it is possible for the performance impact to 
outside the system’s specifications. This is the 
subject of our ongoing study and we have developed 
a smoothing technique that balances performance 
with energy conservation [18]. 
 

Increase in Execution Time (DIS Benchmarks)

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

TRANSITIVE POINTER UPDATE FIELD

 
Figure 2 - Increased execution time  

 

6 Conclusion 
This paper suggested a framework and solution for 
compiler directed energy aware allocation of 
dynamic variables. Our approach is based on using 
information from the execution profile and proposes 
heap segmentation, and the concept of an overflow 
segment to ensure correctness, to solve the allocation 
problem. The technique presented is applied at the 
assembly level and thus can be incorporated into any 
compiler back-end. The techniques and framework 
were implemented as a backend compiler tool and 
experimental results were presented to evaluate our 
solution. The experimental results, on data intensive 
system benchmarks, demonstrate potential savings of 
25% in overall system energy and up to 40% in 
memory energy for some data intensive benchmarks. 
Our ongoing efforts include reducing the overhead to 
provide a balance between impact on execution time 
and the energy conserved. This paper considered only 
sleeping and active modes, and future work must 
address usage of multiple power modes which are 
available in the current memory devices.  
 
References 

 
1. M. Kandemir, N. Vijaykrishnan, M. J. Irwin and W. Ye. 
"Influence of compiler optimizations on system power",  
IEEE Transactions on VLSI Systems,9(6),801-804,2001.  
2. Vijaykrishnan, N., et al. Energy-driven integrated 
hardware-software optimizations using SimplePower. in 
International Symposium on Computer Architecture. 2000. 
3. Delaluz, V., et al., Hardware and Software Techniques 
for Controlling DRAM Power Modes. IEEE Trans. on 
Computers, 2001. 
4. Udayakumaran, S. and R. Barua. Compiler-decided 
dynamic memory allocation for scratch-pad based 
embedded systems. in International Conference on 
Compilers, Architectures and Synthesis for Embedded 
Systems (CASES). 2003. 
5. Benini, L., A. Macii. A Recursive Algorithm for Low-
Power Memory Partitioning. in Int. Symposium on Low 
power Electronics and Design. 2000. 
6. Delaluz, V., et al. Energy-Oriented Compiler 
Optimizations for Partitioned Memory Architectures.Proc. 
CASES  2000. 
7. Hajj, N.B.I., C. Polychronopoulos, and G. Stamoulis. 
Architectural and Compiler Support for Energy Reduction 
in the Memory Hierarchy of High Performance 
Microprocessors.  ISLPED98. 1998.  
8. Udayakumaran, S., B. Narahari, and R. Simha. 
Application Specific Memory Partitioning for Low Power. 
Compiler and Oper. Syst for Low Power (COLP), 2002. 
9. Lebeck, A.R., et al. Power aware page allocation.  9th Int 
Conf. on Architectural support for prog. languages and 
operating systems(ASPLOS). 2000. 
10. Delaluz, V., et al. Scheduler based DRAM Energy 
Management.  39th Design Automation Conference. 2002. 
11. DeLaLuz, V., et al. Energy-Conscious Memory 
Allocation and Deallocation for Pointer-Intensive 
Applications. in Third International Conference on 
Embedded Software. 2003.  
12. Barrett, D.A. and B.G. Zorn. Using Lifetime Predictors 
to Improve Memory Allocation Performance. Conf on 
Prog. Language Design and Implementation (PLDI). 1993. 
13. Seidl, M.L. and B.G. Zorn. Segregating Heap Objects 
by Reference Behavior and Lifetime, Proc. ASPLOS-1998. 
14. Lattner, C. and V. Adve. Automatic pool allocation for 
disjoint data structures, Workshop on Memory system 
performance. 2002. ACM Press. 
15. Chase, D.R., M. Wegman, and F.K. Zadeck. Analysis 
of pointers and structures, in PLDI, 1990.  
16. Sagiv, M., T. Reps, and R. Wilhelm, Parametric shape 
analysis via 3-valued logic, ACM Trans. Prog. Languages 
and Systems (TOPLAS), 2002. 24(3): p. 217 - 298. 
17. Levy, R, Narahari, B, and Simha, R,  Assembly code 
level power optimization for partitioned memory 
architectures, to appear at IASTED International 
Conference on Advances in Computer Science and 
technology (ACST 2004), Nov 2004. 
18. R. Levy, B. Narahari, R. Simha, “Compiler directed 
Energy Aware allocation algorithms for partitioned 
memory systems”, Technical Report, Department of 
Computer Science, GWU, 2004. 
19. Data Intensive Systems Benchmark Suite. 2000, 
Atlantic Aerospace Electronics Corporation. 
 
 
 


