
PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 1

High-Performance Software Protection using
Reconfigurable Architectures

Joseph Zambreno, Student Member, IEEE, Dan Honbo, Student Member, IEEE,
Alok Choudhary, Senior Member, IEEE, Rahul Simha, Member, IEEE, and Bhagi Narahari, Member, IEEE

Abstract— One of the key problems facing the computer indus-
try today involves ensuring the integrity of end-user applications
and data. Researchers in the relatively new field of software
protection investigate the development and evaluation of controls
that prevent the unauthorized modification or use of system
software. While many previously developed protection schemes
have provided a strong level of security, their overall effectiveness
has been hindered by a lack of transparency to the user in
terms of performance overhead. Other approaches take to the
opposite extreme and sacrifice security for the sake of this need
for transparency. In this work we present an architecture for
software protection that provides for a high level of both security
and user transparency by utilizing Field Programmable Gate
Array (FPGA) technology as the main protection mechanism.
We demonstrate that by relying on FPGA technology, this
approach can accelerate the execution of programs in a cryp-
tographic environment, while maintaining the flexibility through
reprogramming to carry out any compiler-driven protections
that may be application-specific. Furthermore, we show how
programmable FPGA resources not reserved towards software
protection can be realized as performance-oriented architectural
optimizations, and we evaluate the effectiveness of this concept
with an investigation into instruction prefetching.

I. INTRODUCTION AND MOTIVATION

THREATS to a particular piece of software can originate
from a variety of sources. A substantial problem from

an economic perspective is the unauthorized copying and
redistribution of applications, otherwise known as software
piracy. Although the actual damage sustained from the piracy
of software is certainly a debatable matter, some industry
watchdog groups have estimated that software firms in 2002
lost as much as $2 billion in North American sales alone [1].
A threat that presents a much more direct harm to the end-user
is software tampering, whereby a hacker maliciously modifies
and redistributes code in order to cause large-scale disruptions
in software systems or to gain access to critical information.
For these reasons, software protection is considered one of
the more important unresolved research challenges in security
today [2]. In general, any software protection infrastructure
should include 1) a method of limiting an attacker’s ability to
understand the higher level semantics of an application given
a low-level (usually binary) representation, and 2) a system

J. Zambreno, D. Honbo, and A. Choudhary are with the Depart-
ment of Electrical and Computer Engineering, Northwestern University,
Evanston, IL 60208 USA (e-mail: zambro1@ece.northwestern.edu; d-
honbo@northwestern.edu; choudhar@ece.northwestern.edu).

R. Simha and B. Narahari are with the Department of Computer Science,
The George Washington University, Washington, DC 20052 USA (e-mail:
simha@gwu.edu; narahari@gwu.edu).

Strength of Security

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Non-Cryptographic Security Cryptographic Security

H
igh O

verhead
Low

 O
verheadIdeal – highly secure,

transparent solution

Software managed
encryption

Obfuscation

Software-based
watermarking,

tamper proofing

Cryptographic coprocessors /
hardware crypto acceleration

Concept: FPGA accelerated
software protection

Strength of Security

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Non-Cryptographic Security Cryptographic Security

H
igh O

verhead
Low

 O
verheadIdeal – highly secure,

transparent solution

Software managed
encryption

Obfuscation

Software-based
watermarking,

tamper proofing

Cryptographic coprocessors /
hardware crypto acceleration

Concept: FPGA accelerated
software protection

Fig. 1. Performance and security strength of various software protection
approaches

of checks that make it suitably difficult to modify the code at
that low level. When used in combination, these two features
can be extremely effective in preventing the circumvention of
software authorization mechanisms.

Current approaches to software protection can be cate-
gorized both by the strength of security provided and the
performance overhead when compared to an unprotected en-
vironment (see Fig. 1). Two distinct categories emerge from
this depiction - on one end of the security spectrum are
the solely compiler-based techniques that implement both
static and dynamic code validation through the insertion of
objects into the generated executable. On the other end are the
somewhat more radical methods that encrypt all instructions
and data and that often require the processor to be architected
with cryptographic hardware. Both of these methods have
some practical limitations. The software-based techniques will
effectively only hinder an attacker, since tools can be built to
identify and circumvent the protective checks. On the other
hand, the cryptographic hardware approaches, while inherently
more secure, are limited in the sense that their practical
implementation requires a wholesale commitment to a custom
processor technology. More background on these software
protection schemes can be found in Section 2.

Also, as can be inferred from Fig. 1, software protection
is not an all-or-nothing concept, as opposed to other aspects

0000–0000/00$00.00 c© 2004 IEEE

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 2

Processor
Core

I$

L1
Cache

D$

Secure Hardware Component (FPGA)

Integrity
Validation
Unit (IVU)

Instruction
Filters /

Translators

Buffers,
Caches, etc.

Cryptographic
Primitives

Encrypted
portions

Unencrypted
but with

embedded
codes

Main Memory

Executable Program

Processor
Core

I$

L1
Cache

D$

Secure Hardware Component (FPGA)

Integrity
Validation
Unit (IVU)

Instruction
Filters /

Translators

Buffers,
Caches, etc.

Cryptographic
Primitives

Encrypted
portions

Unencrypted
but with

embedded
codes

Main Memory

Executable Program

Secure Hardware Component (FPGA)

Integrity
Validation
Unit (IVU)

Instruction
Filters /

Translators

Buffers,
Caches, etc.

Cryptographic
Primitives

Encrypted
portions

Unencrypted
but with

embedded
codes

Main Memory

Executable Program

Encrypted
portions

Unencrypted
but with

embedded
codes

Main Memory

Executable Program

Encrypted
portions

Unencrypted
but with

embedded
codes

Main Memory

Executable Program

Fig. 2. Conceptual view

of computer security where the effectiveness of an approach
depends on its mathematical intractability; the resultant per-
formance overhead is often not a key design consideration of
these systems. In contrast, performance is equally important to
the strength of security when protecting user applications, as
there is generally some level of user control over the system
as a whole. Consequently, any software protection scheme that
is burdensome from a performance perspective will likely be
turned off or routed around.

Field Programmable Gate Arrays (FPGAs) are a hardware
resource that combine various amounts of user-defined digital
logic with customizable interconnect and I/O. A key feature
of FPGAs is that their functionality can be reconfigured on
multiple occasions, allowing for changes in the design to be
implemented after the initial time of development. FPGAs
have become an increasingly popular choice among architects
implementing algorithms in fields such as multimedia process-
ing or cryptography - this has been attributed to the fact that
the design process is much more streamlined than that for
ASICs, as FPGAs are a fixed hardware target.

In this paper we present a high-performance architecture
for software protection that uses this type of reconfigurable
technology. By choosing FPGAs as the main protection mech-
anism, this approach is able to merge the application tunability
of the compiler-based approaches with the additional security
that comes with a hardware implementation. As can be seen
in Fig. 2, our proposed method works by supplementing a
standard processor with an FPGA-based Integrity Validation
Unit (IVU) that sits between the highest level of on-chip cache
and main memory. This IVU is capable of performing fast
decryption similar to any other hardware accelerated crypto-
graphic coprocessing scheme, but more importantly the IVU
also has the ability to recognize and certify binary messages
hidden inside regular unencrypted instructions. Consequently
our approach is completely complementary to current code
restructuring techniques found in the software protection lit-
erature, with the added benefit that as the run-time code
checking can be performed entirely in hardware it will be
considerably more efficient. Our experiments show, that for
most of our benchmarks, the inclusion of the FPGA within
the instruction stream incurs a performance penalty of less
than 20%, and that this number can be greatly improved upon
with the utilization of unreserved reconfigurable resources for
architectural optimizations, such as buffering and prefetching.

The remainder of this paper is organized as follows. In

Section 2 we provide additional background into the field
of software protection, with a review of some of the more
commonly-used defensive techniques. Section 3 sets the back-
drop of our research, both illustrating the threat model under
which we apply our approach and making the argument
for the level of security that is provided. In Section 4 we
present our architecture in more detail, illustrating how we
can utilize an FPGA situated in the instruction stream to
ensure software integrity. In this section we also provide an
introduction to some custom compiler techniques that are
well suited to such an architecture. Section 5 discusses the
performance implication of our approach, first by explicitly
quantifying the security/performance tradeoff and then through
experimental analysis. In Section 6, we describe several archi-
tectural optimizations that are possible within our framework
and provide results detailing the effectiveness of instruction
prefetching. Finally, in Section 7 we present our conclusions
alongside a discussion of future techniques that are currently
in development.

II. BACKGROUND

While the term software protection often refers to the
purely software-based defense mechanisms available to an
application after all other safeguards have been broken, in
practical systems this characterization is not necessarily so
precise. For our purposes, we classify hardware-supported
secure systems as being tools for software protection as long
as they include one of the three commonly found elements
of a software-based protection scheme [3] detailed below. A
survey of the broader area of software security in the context
of DRM appears in [4], [5].

Watermarking is a technique whereby messages are hidden
inside a piece of software in such a way that they can be
reliably identified [6]. While the oldest type of watermarking
is the inclusion of copyright notices into both code and digital
media, more recent watermarking approaches have focused on
embedding data structures into an application, the existence
of which can then be verified at run-time. Venkatesan et al.
present an interesting variation on watermarking in [7], where
the watermark is a subprogram that has its control flow graph
merged with the original program in a stealthy manner.

The concept behind tamper-proofing is that a properly
secured application should be able to safely detect at run-
time if it has been altered. A type of dynamic “self-checking”
is proposed in both [8] and [9], these approaches assert

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 3

application integrity by essentially inserting instructions to
perform code checksums during program execution. An in-
teresting technique is proposed by Aucsmith in [10], in which
partitioned code segments are encrypted and are handled in
a fashion such that only a single segment is ever decrypted
at a time. The novelty of this approach is that the program
flows between segments based on a function of the current
segment; consequently any modification to the code will result
in an incorrect path execution. One flaw with many of these
tamper-proofing approaches is that in most architectures it
is relatively easy to build an automated tool to reveal the
checking mechanisms. For example, checksum computations
can be easily identified by finding code that operates directly
on the instruction address space. Accordingly, the security of
these approaches is depends heavily on the security of the
checking mechanisms themselves.

These same checksums suggested for software can be
computed in hardware. Unfortunately, this approach relies on
designing hardware that has access to memory and that is
started by software instructions. The latter creates an opening
for attack whereas the former complicates both design and
efficiency since the specialized hardware must now have
access to the memory address and data lines.

Proof-Carrying Code (PCC) is a recently proposed solution
that has techniques in common with other tamper-proofing ap-
proaches. PCC allows a host to verify code from an untrusted
source [11], [12], [13], [14]. Safety rules, as part of a theorem-
proving technique, are used on the host to guarantee proper
program behavior. Applications include browser code (applets)
[15] and even operating systems [14]. One advantage of proof-
carrying software is that the programs are self-certifying,
independent of encryption or obscurity. The PCC method is
essentially a self-checking mechanism and is vulnerable to the
same problems that arise with the code checksum methods
discussed earlier; in addition they are static methods and do
not address changes to the code after instantiation.

The goal of obfuscation is to limit code understanding
through the deliberate mangling of program structure - a
survey of such techniques can be found in [16]. Obfuscation
techniques range from simple encoding of constants to more
complex methods that completely restructure code while main-
taining correctness [16], [17]. Wang et al. [18], [19] provide
some transformations that make it difficult to determine the
control flow graph of the original program, and show that
determining the control flow graph of the transformed code
is NP-hard. It is important to note that, just as with tamper-
proofing, obfuscation can only it make the job of an attacker
more difficult, since tools can be built to automatically look
for obfuscations, and tracing through an executable in a
debugger can reveal vulnerabilities. These and other theoretical
limitations are discussed in more detail in [20].

A. Other Hardware-based Approaches

Using our definition, there have been several hardware-
based software protection approaches. Secure coprocessors
are computational devices that enable execution of encrypted
programs. Programs, or parts of the program, can be run in

an encrypted form on these devices thus never revealing the
code in the untrusted memory and thereby providing a tamper
resistant execution environment for that portion of the code. A
number of secure coprocessing solutions have been designed
and proposed, including systems such as IBM’s Citadel [21],
Dyad [22], [23], [24], the Abyss and mAbyss systems [25],
[26], [27], and the commercially available IBM 4758 which
meets the FIPS 140-1 Level 4 validation [28], [29], [30].

Smart cards can also be viewed as type of secure copro-
cessing; a number of studies have analyzed the use of smart
cards for secure applications [31], [32]. Sensitive computations
and data can be stored in the smart card but they offer no direct
I/O to the user. Most smart card applications focus on the
secure storage of data although studies have been conducted
on using smart cards to secure an operating system [33]. As
noted in [8], smart cards can only be used to protect small
fragments of code and data.

Recent commercial hardware security initiatives have fo-
cused primarily on cryptographic acceleration, domain sepa-
ration, and trusted computing. These initiatives are intended
to protect valuable data against software-based attacks and
generally do not provide protection against physical attacks
on the platform. MIPS and VIA have added cryptographic
acceleration hardware to their architectures. MIPS Technolo-
gies’ SmartMIPS ASE [34] implements specialized processor
instructions designed to accelerate software cryptography al-
gorithms, while VIA’s Padlock Hardware Security Suite [35]
adds a full AES encryption engine to the processor die.
Both extensions seek to eliminate the need for cryptographic
coprocessors.

Intel’s LaGrande Technology [36], ARM’s TrustZone Tech-
nology [37], and MIPS Technologies’ SmartMIPS ASE imple-
ment secure memory restrictions in order to enforce domain
separation. These restrictions segregate memory into secure
and normal partitions and prevent the leakage of secure
memory contents to foreign processes. Intel and ARM further
strengthen their products’ domain separation capabilities by
adding a processor privilege level. A Security Monitor process
is allowed to run at the added privilege level and oversee
security-sensitive operations. The Security Monitor resides in
protected memory and is not susceptible to observation by user
applications or even the Operating System.

Several companies have formed the so-called Trusted Com-
puting Group (TCG) to provide hardware-software solutions
for software protection [38]. The TCG defines specifications
for the Trusted Platform Module, a hardware component that
provides digital signature and key management functions,
as well as shielded registers for platform attestation. Intel’s
LaGrande Technology and Microsoft’s Next-Generation Se-
cure Computing Base [39] combine the TPM module with
processor and chipset enhancements to enable platform at-
testation, sealed storage, strong process isolation, and secure
I/O channels. All of these approaches require processor or
board manufacturers to commit to a particular design, and
once committed, are locked into the performance permitted
by the design.

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 4

Traditional CPU
Architecture

Main Memory (RAM)

Instructions

Data

(a)

Traditional CPU
Architecture

Main Memory (RAM)

Encrypted
Instructions

Encrypted
Data

Cryptographic
HW/SW

(b)

Traditional CPU
Architecture

Main Memory (RAM)

Instructions

Data

Traditional CPU
Architecture

Main Memory (RAM)

Instructions

Data

(a)

Traditional CPU
Architecture

Main Memory (RAM)

Encrypted
Instructions

Encrypted
Data

Cryptographic
HW/SW

Traditional CPU
Architecture

Main Memory (RAM)

Encrypted
Instructions

Encrypted
Data

Cryptographic
HW/SW

(b)

Fig. 3. Standard von Neumann architecture with a CPU and main memory, as compared to (b) - an Encrypted Execution and Data (EED) platform

B. Closely Related Work

In [40], researchers at Stanford University proposed an
architecture for tamper-resistant software based on an eXecute-
Only Memory (XOM) model that allows instructions stored
in memory to be executed but not manipulated. A hardware
implementation is provided that is not dissimilar to our pro-
posed architecture, with specialized hardware being used to
accelerate cryptographic functionality needed to protect data
and instructions on a per-process basis. Three key factors dif-
ferentiate our work from the XOM approach. One distinction
is that our architecture requires no changes to the processor
itself. Also, our choice of reconfigurable hardware permits a
wide range of optimizations that can shape the system security
and resultant performance on a per-application basis. Most
importantly, we consider a host of new problems arising from
attacks on encrypted execution and data platforms.

In [41], researchers at UCLA and Microsoft Research
propose an intrusion prevention system known as the Se-
cure Program Execution Framework (SPEF). Similar to our
proposed work, the SPEF system is used as the basis for
compiler transformations that both obfuscate and also embed
integrity checks into the original application that are meant to
be verified at run-time by custom hardware. While an inter-
esting project, the SPEF work in its current form concentrates
solely on preventing intruder code from being executed, and
consequently neglects similar attacks that would focus mainly
on data integrity. Also, the compiler-embedded constraints in
the SPEF system require a predefined hardware platform on
which to execute; this limits the scope of any such techniques
to the original processor created for such a purpose.

Pande et al. [42], [43] address the problem of information
leakage on the address bus wherein the attacker would be
snooping the address values to gain information about the
control flow of the program. They provide a hardware obfus-
cation technique which is based on dynamically randomizing
the instruction addresses. This is achieved through a secure
hardware coprocessor which randomizes the addresses of the
instruction blocks, and rewrites them into new locations. Using
this scheme, for example, the attacker would be unable to
determine control flows such as loops and branches since
they do not see a recurrence in the addresses being fetched.
While this scheme provides obfuscation of the instruction
addresses, thereby providing a level of protection against IP
theft, it does not prevent an attacker from injecting their
own instructions to be executed and thereby disrupting the
processor and application.

C. FPGAs and Security

FPGAs have been used for security-related purposes in the
past as hardware accelerators for cryptographic algorithms.
Along these lines Dandalis and Prasanna [44], [45] have led
the way in developing FPGA-based architectures for internet
security protocols. Several similar ideas have been proposed
in [46], [47]. The FPGA manufacturer Actel [48] offers
commercial IP cores for implementations of the DES, 3DES,
and AES cryptographic algorithms. Similar to our approach,
these implementations utilize FPGAs not only for their com-
putational speed but for their programmability; in security
applications the ability to modify algorithmic functionality in
the field is crucial. In an attempt to raise consumer confidence
in FPGA security, Actel is currently developing new anti-fuse
technologies that would make FPGAs more difficult to reverse-
engineer [49].

III. SYSTEM MODEL AND RATIONALE

Fig. 3a shows a depiction of the standard von Neumann
architecture with a CPU and main memory (RAM); we will
refer to the main memory as RAM in the sequel. In the
standard model, a program consisting of instructions and data
is placed in RAM by a loader or operating system. Then,
the CPU fetches instructions and executes them. Apart from
the complexity introduced by multiprocessors and threads, this
basic model applies to almost any computing system today
including desktops, servers and small embedded devices.

However, from a security point of view, the execution of
an application is far from safe. An attacker with access to
the machine can not only examine the program (information
leakage) but can actively interfere with the execution (disrup-
tion) while also accumulating information useful in attacks on
similar systems.

Most commercial desktop and server systems are today
being designed to sustain attacks via a network. The bulk of
these attacks are from hackers or commercial predators who
are not on-site. However, military systems need to be designed
to also sustain the sophisticated attacks possible when the
computing equipment is captured and carefully taken apart
in a resourceful laboratory by experts. For such systems, it is
desirable to encrypt the application to minimize information
leakage and to prevent disruption.

The starting point for our proposed work is a recent body
of work that has proposed building computing platforms with
encrypted execution. We refer to these as EED (Encrypted
Execution and Data) platforms. In this platform (Fig. 3b),

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 5

the executable and application are encrypted. The processor
(or supporting hardware) is assumed to have a key. These
processors are either separate chips or processor cores that
are supplied by core manufacturers for use in System-on-
Chip (SoC) systems. The overall goal is to prevent leakage of
information, to prevent tampering and to prevent disruption.
Consider, for example, the computing platform of a wireless
device. The chipset will typically consist of a processor
chip, a transceiver, RAM, and supporting connector chips and
microcontrollers. We assume that an attacker that gains control
of the device has significant hardware resources available for
reverse engineering and malicious insertion of signals between
chips. For the highest degree of security, both instructions
and data will need to be encrypted using well-established
encryption techniques. It should be noted that full-fledged EED
platforms are still in their infancy.

The basis for our proposed work is the following:

• EED platforms, while undoubtedly more secure than
the standard von Neumann model, are nonetheless still
vulnerable to attacks that do not need decryption. That
is, the attacker can find vulnerabilities without needing
to decrypt and understand the software. We will refer to
these attacks as EED attacks.

• Because attackers are presumed to be sophisticated, nei-
ther the RAM nor the CPU can be fully trusted. This
situation also arises when RAM and CPU manufacturing
is sub-contracted to third parties whose designs or cores
cannot be easily verified.

• A class of reconfigurable hardware technology, the Field
Programmable Gate Array (FPGA) has proved adept at
solving performance-related problems in many computing
platforms. As a result, tested FPGAs are commercially
available for a variety of processors. Our approach ex-
ploits the combination of the programmability of FPGAs
with the inherent additional security involved with com-
puting directly in hardware to address EED attacks.

• A key part of our exploiting FPGAs involves the use
of compiler technology to analyze program structure
to enable best use of the FPGA, to help address key
management and to increase performance. Consequently
our approach allows for a level of security that is tunable
to an individual application.

In a nutshell, the addition of the FPGA to the von Neumann
model results in a new platform to sustain EED attacks.

A. Focus Areas

The contributions of our work can be categorized into four
areas as seen in Fig. 4. We use the term structural integrity to
refer to the proper execution path of a program when the data
is assumed to be correct. Since an EED attacker can alter the
control flow without decryption or even touching the data, we
refer to such an attack as a structural EED attack. Thus the
first area of contributions is shown as Area 1 in the figure, in
which we use a compiler-FPGA approach to address structural
attacks.

The second area of contribution arises from considering
EED attacks on data integrity. There are two sub-categories

Area 1:
Structural Integrity

Area 3: Processor Validation

Area 4: Compilation/Simulation Infrastructure

Area 2:
Data Integrity

Goal: Ensure blocks of
instructions execute in

desired pattern.
Control-flow

attacks

CPU

FPGA

RAM

Data
attacks

Malicious
CPU

Threat
model

Idea: Augment CPU with an FPGA-based
secure hardware component to provide an

efficient and effective level of security.

Crypto
Hardware

Instr
Filters

Rule
Checks

Goal: Provide secure data
allocation and identify

attacks on data.

Goal: Detect functional or malicious CPU
defects in a stealthy manner.

� Out-of-stream (microcode) solutions
� In-stream (result checking) solutions
� Functional units, CPU backdoors

� Identify basic blocks
� Block encryption
� FPGA decryption HW
� Integrity checking

� Stack, heap security
� Key management
� Integrity checking
� FPGA encryption/
decryption HW

Area 1:
Structural Integrity

Area 3: Processor Validation

Area 4: Compilation/Simulation Infrastructure

Area 2:
Data Integrity

Goal: Ensure blocks of
instructions execute in

desired pattern.
Control-flow

attacks

CPU

FPGA

RAM

Data
attacks

Malicious
CPU

Threat
model

Idea: Augment CPU with an FPGA-based
secure hardware component to provide an

efficient and effective level of security.

Crypto
Hardware

Instr
Filters

Rule
Checks

Goal: Provide secure data
allocation and identify

attacks on data.

Goal: Detect functional or malicious CPU
defects in a stealthy manner.

� Out-of-stream (microcode) solutions
� In-stream (result checking) solutions
� Functional units, CPU backdoors

� Identify basic blocks
� Block encryption
� FPGA decryption HW
� Integrity checking

� Stack, heap security
� Key management
� Integrity checking
� FPGA encryption/
decryption HW

Fig. 4. Research focus areas as they relate to the conceptual view

here, the regular data used by an application and the runtime
data (stack, heap) needed for the execution. Thus, our contri-
bution in this second area is the use of the compiler-FPGA
approach to provide key management techniques for data and
data integrity techniques for runtime data.

The third area, processor validation, arises from considering
a maliciously inserted processor instrumented to allow the
attacker control over functional operations. Our approach is
to have the compiler instrument the code with processor-
validation meta-instructions that are then interpreted in the
FPGA to validate desired processor operations. Finally, per-
haps most importantly, we developed a compiler-FPGA in-
frastructure for the purpose of implementing and testing our
ideas. This infrastructure, which features a modern processor
(ARM family) and compiler (gcc), can be used beyond our
project.

B. Threat Model

As mentioned in Section 1, research in the field of software
protection has seen its motivation arrive from two different
directions. On one side are vendors of various types of
electronic media - their main concern is the unauthorized
use or copying of their product. On the other side are those
end users (with supporting hardware and software vendors)
whose main interest is in protecting personal and corporate
systems from outside attack. While the goals may be different,
the approaches used by hackers in avoiding Digital Rights
Management (DRM) schemes are often quite similar to those
used by malicious crackers in attacking web servers and
other unsecured applications. Hackers around the world know
that the first step in attacking a software system is to first
understand the software through the use of a debugger or other
tracing utilities, and then to tamper with the software to enable
a variety of exploits. Common means of exploiting software

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 6

Instruction at 0x00fc
repeated at request for

0x0100

Addr Instruction

0x00f0

0x00f4

0x00f8

0x00fc

0x0100

0x0104

ADD r12,r12,#0xe0

ADD r3,r13,#0xa0

SUB r12,r1,r0

ADD r14,r13,#4

ADD r14,r13,#4

LDR r3,[r3,r0,LSL #2]

0x0108 LDR r2,[r2,r1,LSL #2]

0x010c ADD r0,r0,#1

0x0110 MLA r2,r12,r3,r2

(a) Original Instruction Stream (b) Instruction Stream with Replay Attack

Addr Instruction

0x00f0

0x00f4

0x00f8

0x00fc

0x0100

0x0104

ADD r12,r12,#0xe0

ADD r3,r13,#0xa0

SUB r12,r1,r0

ADD r14,r13,#4

LDR r12,[r14,r12,LSL #2]

LDR r3,[r3,r0,LSL #2]

0x0108 LDR r2,[r2,r1,LSL #2]

0x010c ADD r0,r0,#1

0x0110 MLA r2,r12,r3,r2

Instruction at 0x00fc
repeated at request for

0x0100

Addr Instruction

0x00f0

0x00f4

0x00f8

0x00fc

0x0100

0x0104

ADD r12,r12,#0xe0

ADD r3,r13,#0xa0

SUB r12,r1,r0

ADD r14,r13,#4

ADD r14,r13,#4

LDR r3,[r3,r0,LSL #2]

0x0108 LDR r2,[r2,r1,LSL #2]

0x010c ADD r0,r0,#1

0x0110 MLA r2,r12,r3,r2

(a) Original Instruction Stream (b) Instruction Stream with Replay Attack

Addr Instruction

0x00f0

0x00f4

0x00f8

0x00fc

0x0100

0x0104

ADD r12,r12,#0xe0

ADD r3,r13,#0xa0

SUB r12,r1,r0

ADD r14,r13,#4

LDR r12,[r14,r12,LSL #2]

LDR r3,[r3,r0,LSL #2]

0x0108 LDR r2,[r2,r1,LSL #2]

0x010c ADD r0,r0,#1

0x0110 MLA r2,r12,r3,r2

Fig. 5. A sample instruction stream that is targeted with a replay attack

include buffer overflows, malformed printf() statements,
and macro viruses.

Consider a sophisticated attacker who has gained control of
an EED computing platform. For example, this platform could
be a CPU board on a desktop or a board from an embedded
device. In a resourceful laboratory, the attacker can control the
various data, address and control lines on the board and will
have access to the designs of well-known commercial chips.
Using this information, the attacker can actively interfere in
the handshaking protocol between CPU and RAM, can insert
data into RAM or even switch between the actual RAM and
an attacker’s RAM during execution.

We will assume that the cryptographic strength is such that
the attacker cannot actually decrypt the executable or data.
How then does an attacker disrupt a system without being
able to decrypt and understand? The following are examples
of EED attacks:

• Replay attacks - consider an EED platform with en-
crypted instructions. An attacker can simply re-issue an
instruction from the RAM to the CPU. This is relatively
easy for an attacker who has complete control of the
processor-RAM bus. What does such an attack achieve?
The application program logic can be disrupted and the
resulting behavior exploited by the attacker. Indeed, by
observing the results of a multitude of replay attacks, the
attacker can catalogue information about the results of
individual replay attacks and use such attacks in tandem
for greater disruption. A sample replay attack is depicted
in Fig. 5.

• Control-flow attacks - the sophisticated attacker can
elucidate the control-flow structure of a program without
decryption. This can be done by simply sniffing the
bus, recording the pattern of accesses and extracting the
control-flow graph from the list of accesses. To disrupt,
the attacker can prematurely transfer control out of a
loop, or even simply transfer control to a distant part of
the executable. Again, by repeatedly studying the impact
of such control-flow attacks, the attacker can accumulate
a database of attacks to be used in concert. A sample
control-flow attack is depicted in Fig. 6.

• Runtime data attacks - by examining the pattern of data
write-backs to RAM, the attacker can intelligently guess
the location of the run-time stack even if that is encrypted,
as commonly used software stack structures are relatively

simple (Fig. 7). By swapping contents in the stack, the
attacker can disrupt the flow of execution or parameter
passing via the stack. Again, the attacker does not need to
decrypt to achieve this disruption. Similarly, by observing
the same pattern of accesses, the attacker can guess at
heap locations and engage in similar attacks.

• Application data attacks - an attacker can simply change
application data (using, for example, replays from the
time-history of a variable) to create an attack. This
might cause improper execution (i.e., change the flow of
execution) or the computation of incorrect results.

• Improper processor computations - the CPU itself may
be untrustworthy, since an attacker with considerable
resources may simulate the entire CPU and selectively
change outputs back to RAM.

Taken together, the above attacks can also be combined
with cryptanalytic techniques to uncover cribs for decryption.
This suggests that a secure computing platform should be able
detect such attacks and prevent disruption.

C. A Note on FPGA Security

Thus far we have been working off the assumption that
as the software protection mechanisms are situated directly
in hardware (FPGA), these dynamic checks are inherently
more secure than those validated through purely-software
mechanisms. While this may very well be the case, some
recent work has suggested that the use of FPGA hardware
in embedded systems invites a range of attacks. For example,
physical attacks that take advantage of the fact that not all data
is lost in a Static RAM (SRAM) memory cell when its power is
turned off have been shown to be very successful at retrieving
information from memory devices that use SRAM technology
[50]. It is likely that the techniques developed to facilitate these
types of attacks would also be useful in extracting information
from SRAM FPGAs. Another point of weakness is the FPGA
bitstream. In our system, this file would need to be stored
on disk just as the application itself. This potentially exposes
some of our techniques to a reverse engineering attack.

Before we lose hope in the prospect of an FPGA as a secure
hardware component, several clarifications need to be made.
First, many of the proposed attacks on FPGAs assume that
the physical security of the entire system has already been
breached. No system, regardless of the underlying hardware

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 7

i := 0
j := 0

enter

Control Flow Graph (CFG)

i < N true

exit

false

j < M

j := 0
i := i + 1

back

false

Cij := Aij · Bij

j := j + 1

true

back

Malicious code
segment

Diverted
Flow

i := 0
j := 0

enter

Control Flow Graph (CFG)

i < N true

exit

false

j < M

j := 0
i := i + 1

back

false

Cij := Aij · Bij

j := j + 1

true

back

Malicious code
segment

Diverted
Flow

Fig. 6. A sample Control Flow Graph (CFG) with a diverted flow

Local variables

Return address

funcC() stack space

Local variables

Return address

funcB() stack space

Local variables

Return address

funcA() stack space

Potential
stack attack

Local variables

Return address

funcC() stack space

Local variables

Return address

funcB() stack space

Local variables

Return address

funcA() stack space

Potential
stack attack

Fig. 7. A structural attack on an instruction stack

or software security, is safe assuming that the physical security
has been breached. Consequently, under such assumptions, the
choice of FPGA provokes no further risks in terms of physical
security. Second, reverse engineering a hardware description
is a considerably more difficult task than reverse-engineering
an equivalent software description, due to the lack of readily
available tools and the increased complexity of hardware
designs. This task can be made even more difficult through
the encrypting of the bitstream itself. These reasons, combined
with the fact that newer FPGAs are being built with highly
secure antifuse and flash-based technologies, have motivated
the argument made by some that FPGAs are more difficult to
reverse-engineer than an equivalently functional ASIC [48].

IV. OUR APPROACH

At its highest level, our approach is best classified as an
attempt to combine the tunability of classical compiler-based
software protection techniques with the additional security
afforded through hardware. Consequently, our work is unique
in that we utilize a combined hardware/software technique, and
that we provide tremendous flexibility to application designers
in terms of positioning on the security/performance spectrum.
Also, going back to Fig. 1, our approach improves upon

previous software protection attempts by accelerating their
performance while not sacrificing any security.

A. Architecture Overview

We accomplish our low-overhead software protection this
through the placement of an FPGA between the highest level
of on-chip cache and main memory in a standard processor
instruction stream (see Fig. 8). In our architecture, the FPGA
traps all instruction cache misses, and fetches the appropriate
bytes directly from higher-level memory. These instructions
would then be translated in some fashion and possibly ver-
ified before the FPGA satisfies the cache request. Both the
translation and verification operations could be customized

The key features of our software protection architecture can
be summarized as follows:

• Fast Decryption - Much work has been done in re-
cent years on FPGA implementations of cryptographic
algorithms; a popular target is the Advanced Encryption
Standard (AES) candidate finalists [51]. These results
have shown that current-generation FPGAs are capable
of extremely fast decryption, as an example in [52] an
implementation of Rijndael, the AES cipher [53] attained
a throughput far exceeding 10 Gbps when fully pipelined.
Consequently, by placing AES hardware on our FPGA
we can perform instruction stream decryption without
the prohibitive delays inherent in an equivalent software
implementation.

• Instruction Translation - As a computationally less
complex alternative to the full decryption described
above, we can instantiate combinational logic on the
FPGA to perform a binary translation of specific in-
struction fields. For example, a simple lookup table can
map opcodes such that all addition instructions become
subtractions and vice versa. As the mapping would be
completely managed by the application developer, this
technique would provide an effective yet extremely low-
cost level of obfuscation.

• Dynamic Validation - In order to effectively prevent
tampering, we can program the FPGA with a set of
“rules” that describe correct program functionality. For a
code segment that is fully encrypted, these rules can be as
simple as requiring that each instruction decode properly.
An example of a more complex rule would be one based
on a predetermined instruction-based watermark. These
software integrity checks can be performed either at each
instruction or at a predefined interval - in either case
given a detection of a failure condition the FPGA would
require special attention from the system. Although it is
possible that the FPGA would set a control signal to halt
the CPU directly, it is more practical that it would simply
return hard-coded instructions that can warn the operating
system of a security violation.

• Message Passing - With the instantiation of simple
instruction decode logic on the FPGA, we can utilize
undefined mappings in the processor’s instruction set
architecture to pass directives to the FPGA. Unlike most
ISA modifications, this would require no changes in the

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 8

Main Memory

Ln+1 Cache

Processor Core

Ln Instruction
Cache

Ln Data
Cache

Verified Instruction
Buffer

Instruction
Decoding/Filtering

Combinational
Translators

Cryptographic
PrimitivesMessage

Detection Unit

Translation
Control

FPGA

Verified Instruction
Buffer attempts to
satisfy Ln cache

request while it also
performs the Ln+1

cache lookup

Different operations are
performed on the

instruction stream based
on Translation Control

Dynamic tamper-checking
carried out through the

Validation Unit

Validation
Unit

Main Memory

Ln+1 Cache

Processor Core

Ln Instruction
Cache

Ln Data
Cache

Verified Instruction
Buffer

Instruction
Decoding/Filtering

Combinational
Translators

Cryptographic
PrimitivesMessage

Detection Unit

Translation
Control

FPGA

Verified Instruction
Buffer attempts to
satisfy Ln cache

request while it also
performs the Ln+1

cache lookup

Different operations are
performed on the

instruction stream based
on Translation Control

Dynamic tamper-checking
carried out through the

Validation Unit

Validation
Unit

Fig. 8. FPGA-Based software protection architecture

processor itself, as the passed message can actually be
returned as just a normal NOP instruction to the Ln cache.
Some potentially useful messages include data-embedded
watermark addresses, cryptographic keys, and directives
for translation mode shifting.

• Performance Optimizations - Many of the operations
required by these components are relatively simple in
terms of required instantiated logic. Consequently, for
any choice of FPGA technology it is quite possible that a
portion of the total reconfigurable resources will remain
unused. As our FPGA is situated in the instruction fetch
stream, it makes sense to utilize those “extra” resources as
performance-oriented architectural optimizations. In Sec-
tion 6, we investigate into some depth the performance
impact of implementing instruction prefetching [54], [55],
[56].

B. Compiler Support

As mentioned earlier, every feature that is implemented in
our architecture requires extensive compiler support to both
enhance the application binary with the desired code trans-
formations and to generate a hardware configuration for an
FPGA that incorporates the predetermined components. Many
of the standard stages in a compiler can be modified to include
software protection functionality. As an example, consider
the data flow analysis module. In a standard performance-
oriented compiler, the goal of this stage is to break the
program flow into basic blocks and to order those blocks
in a manner that increases instruction locality. However, it is
possible to reorganize the code sequences in such a fashion
that sacrifices some performance in exchange for an increased
level of obfuscation. This is an example of a transformation
that requires no run-time support; for others (such as those
that use encryption), the compiler must also generate all the
information needed to configure an FPGA that can reverse

the transformations and verify the output. Our work currently
focuses on compiler back-end transformations (i.e. data flow
analysis, register allocation, code generation), although there
are possiblities in the front-end to examine in the future as
well.

C. Example Implementations

Up to this point, in detailing the different features available
in our software protection architecture, we have maintained a
fairly high-level view. In the following sections, we delve into
the specifics of two examples that illustrate the potential of
our combined compiler/FPGA technique.

Example 1 - Tamper-resistant register encoding. Con-
sider a code segment in any application and focus on the
instructions as they are fetched from memory to be executed by
the processor (the instruction stream). In most instruction set
architectures, the set of instructions comprising a sequentially-
executed code segment will contain instructions that use
registers. In this example, the decoding unit in the FPGA
will extract one register in each register-based instruction -
we can refer to the sequence of registers so used in the
instruction stream as the register stream. In addition, the FPGA
also extracts the opcode stream. As an example, the sequence
of instructions load x, r1 | load y, r2 | add r1, r2 can be
decoded to generate the register stream of r1, r2, r2. After
being extracted, the register stream is then given a binary
encoding; in our example r1 can encode 0 and r2 can encode 1,
and therefore the particular sequence of registers corresponds
to the code 0 1 1.

A binary translation component then feeds this string
through some combinational logic to generate a key. This
function can be as simple as just flipping the bits, although
more complex transformations are possible. The key is then
compared against a function of the opcode stream. In this
example, an instruction filter module picks out a branch
instruction following the register sequence and then compares
the key to a hash of the instruction bits. If there is a match, the
code segment is considered valid, otherwise the FPGA warns
the system that a violation condition has been detected. This
concept is similar to those proposed in [41] and [57].

How does such an approach work? As register-allocation
is performed by the compiler, there is considerable freedom
in selecting registers to allow for any key to be passed to
the FPGA (the registers need not be used in contiguous
instructions since it is only the sequence that matters). Also,
the compiler determines which mechanism will be used to
filter out the instructions that will be used for comparisons.
If the code has been tampered with, there is a very high
probability that the register sequence will be destroyed or that
the opcode filtering will pick out a different instruction. As
an example, if the filtering mechanism picks out the sixth
opcode following the end of a register sequence of length k,
any insertion or deletion of opcodes in that set of instructions
would result in a failure.

It is important to note that this type of tamper-proofing
would not normally be feasible if implemented entirely in soft-
ware, since the checking computation could be easily identified

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 9

L1: LOAD Y, r3
ADD r7, r4
MOV r1, r2

.

.

.
DECRYPT ON

L2: LOAD X, r1
SUB 3, r1

.

.

.
CMP r1, r3
BNE L2
DECRYPT OFF

Message parsing

Translation
control

Instruction
decryption

Instruction
valid?

Implemented in FPGA

YES ∴∴∴∴ continue
execution

NO ∴∴∴∴ halt the
processor

Possible states – {AES, DES,
3DES, NONE}

Ciphertext
instructions

Plaintext
instructions

state = DECRYPT

C
od

e
se

gm
en

t

L1: LOAD Y, r3
ADD r7, r4
MOV r1, r2

.

.

.
DECRYPT ON

L2: LOAD X, r1
SUB 3, r1

.

.

.
CMP r1, r3
BNE L2
DECRYPT OFF

Message parsing

Translation
control

Instruction
decryption

Instruction
valid?

Implemented in FPGA

YES ∴∴∴∴ continue
execution

NO ∴∴∴∴ halt the
processor

Possible states – {AES, DES,
3DES, NONE}

Ciphertext
instructions

Plaintext
instructions

state = DECRYPT

C
od

e
se

gm
en

t

Fig. 9. Selective Basic Block Encryption

and avoided entirely. Also, the register sequence can be used to
encode several different items, such as authorization codes or
cryptographic keys. This technique can also be used to achieve
code obfuscation by using a secret register-to-register mapping
in the FPGA. Thus, if the FPGA sees the sequence (r1, r2, r1),
this can be interpreted by the FPGA as an intention to actually
use r3. In this manner, the actual programmer intentions can
be concealed by using a mapping customized to a particular
processor. Finally, we note that when examining a block of
code to be encrypted using our scheme, it will often be the case
that the compiler will lack a sufficient number of register-based
instruction with which to encode a suitable key. In this case,
“place-holder” instructions which contain the desired sequence
values, but which otherwise do not affect processor state, will
need to be inserted by the compiler. In Section 5.2 we examine
how these inserted instructions can effect the overall system
performance.

Example 2 - Selective basic block encryption. Selective
encryption is a useful technique in situations where certain
code segments have high security requirements and a full-
blown cryptographic solution is too expensive from a perfor-
mance perspective. The example code segment in Fig. 9 shows
how the compiler could insert message instructions to signify
the start of an encrypted basic block (the compiler would
also encrypt the block itself). As this message is decoded by
the FPGA, an internal state would be set that directs future
fetched instructions to be fed into the fast decryption unit.
These control signals could be used to distinguish between
different ciphers or key choices. The freshly-decrypted plain-
text instructions would then be validated before being returned
to the Ln cache of Fig. 8. The encryption mode could then be
turned off or modified with the decoding of another message
instruction.

Although properly encrypting a code segment makes it
unreadable to an attacker who does not have access to
the key, using cryptography by itself does not necessarily
protect against tampering. A simple way of verifying that
instructions have not been tampered with is to check if
they decode properly based on the original instruction set
architecture specification. However, this approach does not
provide a general solution, as the overwhelming portion of
binary permutations are usually reserved for the instruction
set of most processors. This increases the likelihood that a
tampered ciphertext instruction would also decode properly. A
common approach is the use of one-way hash functions (the
so-called “message digest” functions), but in our case, it would

be prohibitively slow to calculate the hash of every encrypted
basic block in even medium-sized applications. A more simple
approach would be to recognize patterns of instructions in
the code segment that make sense in terms of the register
access patterns. Specific care must also be taken to ensure
the integrity of the message instructions themselves. This
can be implemented through a combination of the register
encoding techniques discussed previously and other dynamic
code checking methods.

This example describes an approach that would be inher-
ently slow in a purely-software implementation. Consequently,
using the FPGA for decryption allows the application designer
the flexibility to either improve the overall performance or
increase the level of security by encrypting a greater number of
code subsections while still meeting the original performance
constraints.

D. Advantages of our Approach

Based on these two previous examples, we can summarize
the advantages that our approach contains over current soft-
ware protection methodologies as follows:

1) Our approach simultaneously addresses multiple attacks
on software integrity by limiting both code understand-
ing and code tampering.

2) The compiler’s knowledge of program structure, cou-
pled with the programmability of the FPGA, provides
the application developer with an extreme amount of
flexibility in terms of the security of the system. The
techniques available to any given application range from
simple obfuscation that provides limited protection with
a minimal impact on performance to a full cryptographic
solution that provides the highest level of security with
a more pronounced impact on performance.

3) Our approach provides the ability to combine both
hardware specific techniques with hardware-optimized
implementations of several of the software-based meth-
ods proposed recently [9], [8].

4) The selection of the FPGA as our secure component
minimizes additional hardware design. Moreover, the
choice of a combined processor/FPGA architecture en-
ables our system to be immediately applicable to cur-
rent SoC designs with processors and reconfigurable
logic on-chip, such as the Xilinx Virtex-II Pro archi-
tecture [58].

5) As opposed to ASICs, FPGAs are especially well-
suited towards cryptographic applications as their re-
configurable nature allows cipher designers to make
changes to the implementation after the initial time of
programming - this can be used to fix previously-unseen
flaws in the cipher algorithm, switch between a set of
parameters at run-time, or optimize the implementation
for a predetermined fixed range of inputs.

We have up to this point in this paper demonstrated the
usefulness of our architecture by providing specific examples
of how our approach can be used in a software protection
scheme. What remains to be seen, however, is to what extent
the insertion of the FPGA in the instruction memory hierarchy

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 10

effects system security and performance. We address this
question in the following section.

V. ANALYZING PERFORMANCE OVERHEAD

Since the majority of the techniques we leverage operate
on a single program basic block at a time, it makes sense
to analyze the effect of the FPGA on instruction memory
hierarchy performance at that level of granularity. We begin
by considering the replacement penalty of a single block of
cache directly from a pipelined main memory. With a fixed
block size and memory bus width (in terms of number of
bytes), we can estimate the penalty as the sum of an initial
nonsequential memory access time for the first bytes from
memory plus the delay for a constant amount of sequential
accesses, which would be proportional to the product of the
block size with the inverse of the memory bus width.

Now, considering a basic block of instructions of a certain
length in isolation from its surrounding program, we can
estimate the number of instruction cache misses as the number
of bytes in the basic block divided by the number of bytes in
the cache block, as each instruction in the basic block would
be fetched sequentially. Consequently the total instruction
cache miss delay for a single fetched basic block can be
approximated as the product of the number of fetches and
average fetch delay as described above.

What effect would our software protection architecture
have on performance? We identify two dominant factors: the
occasional insertion of new instructions into the executable
and the placement of the FPGA into the instruction fetch
stream. For the first factor, the inserted instructions will only
add a small number of cache misses for the fetching of the
modified basic block, since for most cases the number of
inserted bytes will be considerably smaller than the size of
the cache block itself. For the second factor, we note that
the majority of the operations performed in the FPGA can
be modeled as an increase in the instruction fetch latency.
Assuming a pipelined implementation of whatever translation
and validation is performed for a given configuration, we can
estimate the delay for our FPGA as that of a similar bandwidth
memory device, with a single nonsequential access latency
followed by a number of sequential accesses. In the remainder
of this section, we explain our experimental approach and then
provide quantitative data that demonstrates how these terms
are affected by the security requirements of any application.

A. Experimental Methodology

For the following experiments, we incorporated a behavioral
model of our software protection FPGA hardware into the
SimpleScalar/ARM tool set [59], a series of architectural
simulators for the ARM ISA. We examined the performance of
our techniques for a memory hierarchy that contains separate
16 KB 32-way associative instruction and data caches, each
with 32-byte lines. With no secondary level of cache, our
non-sequential memory access latency is 100 cycles and our
sequential (pipelined) latency is 2 cycles. We inserted our
protective techniques into the back-end of a modified version
of the gcc compiler targeting the ARM instruction set.

To evaluate our approach, we adapted six benchmarks
from two different embedded benchmark suites. From the
MediaBench [60] suite we selected two different voice com-
pression programs: adpcm – which implements Adaptive
Differential Pulse Code Modulation decompression and com-
pression algorithms, and g721 – which implements the more
mathematically complex CCITT (International Telegraph and
Telephone Consultative Committee) standard. We also selected
from MediaBench the benchmark pegwit, a program that
implements elliptic curve algorithms for public-key encryp-
tion. From the MiBench [61] embedded benchmark suite we
selected three applications: cjpeg – a utility for converting
images to JPEG format through lossy image compression,
djpeg – which reverses the JPEG compression, and dijkstra
– an implementation of the famous Dijkstra’s algorithm for
calculating shortest paths between nodes, customized versions
of which can be found in network devices like switches and
routers.

It should be noted that both our simulation target and
selected workload characterize a processor that could be found
in a typical embedded system. This choice was motivated
by the fact that commercial chips have relatively recently
been developed that incorporate both embedded processors and
FPGAs onto a single die (ex. Xilinx Virtex-II Pro Platform
FPGAs [58]). Consequently, even though we see our tech-
niques as one day being useful to a wide range of systems, the
tradeoffs inherent in our approach can be best demonstrated
through experiments targeting embedded systems, as these
results are directly applicable to current technology.

B. Initial Results

Using this simulation platform, we first explored the effects
of our approach on performance and resultant security with
an implementation of the tamper-resistant register encoding
example from Section 3.2. In this configuration, the compiler
manipulates sequences of register-based instructions to embed
codes into the executable which are verified at run-time by the
FPGA. As the operations required are relatively simple, for our
experiments we assumed that the operations performed by the
FPGA to decode individual instructions requires 1 clock cycle,
and that verifying an individual basic block by comparing a
function of the register sequence with a function of the filtered
instruction requires 3 clock cycles.

As mentioned previously, it is often the case that the
compiler will not have enough register-based instructions in
a given basic block with which to encode a relatively long
sequence string. Consequently, in these cases the compiler
must insert some instructions into the basic block which
encode a portion of the desired sequence but which otherwise
do not affect processor state. However, as these “place-holder”
instructions must also be fetched from the instruction cache
and loaded in the processor pipeline they can cumulatively
have a significant detrimental impact on performance.

While quantifying the security of any system is not a simple
task, we can estimate the overall coverage of an approach
independent of the instantiated tamper-checking computations.
For our register encoding approach, we can measure this

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 11

0

50

100

150

200

250

 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

N
o

rm
al

iz
ed

 E
xe

cu
tio

n
 T

im
e

 (%
)

adpcm cjpeg dijkstra djpeg g721 pegwit

I-Cache Miss Stall

D-Cache Miss Stall

Pipeline Execution

0

50

100

150

200

250

 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

N
o

rm
al

iz
ed

 E
xe

cu
tio

n
 T

im
e

 (%
)

adpcm cjpeg dijkstra djpeg g721 pegwitadpcm cjpeg dijkstra djpeg g721 pegwit

I-Cache Miss Stall

D-Cache Miss Stall

Pipeline Execution

Fig. 10. Performance breakdown of the tamper-resistant register encoding
scheme as a function of the basic block select rate

aggressiveness as a function of both the desired register
sequence length and the percentage of basic blocks that are
protected. Fig. 10 considers the performance of our system
when the sequence length is kept at a constant value 8 and
the percentage of encoded basic blocks is varied from 0 -
100%. For each experiment the results are normalized to the
unsecured case and are partitioned into three subsets: (1) the
stall cycles spent in handling data cache misses, (2) the “busy”
cycles where the pipeline is actively executing instructions,
and (3) the stall cycles spent in handling instruction cache
misses.

Several general points can be made about the results in
Fig. 10. First, it is obvious that the selected embedded bench-
marks do not stress even our relatively-small L1 instruction
cache, as on average these miss cycles account for less than 3%
of the total base case run-time. This is a common trait among
embedded applications, as they can often be characterized as
a series of deeply-nested loops that iterate over large data
sets (such as a frame of video). This high inherent level of
instruction locality means that, although the inserted register
sequence instructions do affect the cycles spent in handling in-
struction cache misses, there is a relatively significant negative
impact on the non-stall pipeline cycles. The average slowdown
for this scheme is approximately 48% in the case where all
the basic blocks are selected, but then drops to 20% if we
only select half the blocks. These results clearly demonstrate
the tradeoff between security and performance that can be
managed in our approach.

In Fig. 11, we now consider the case where the basic block
selection rate is kept constant at 25 and the effect of the desired
register sequence length is examined. Although for most of the
benchmark/sequence combinations the performance impact is
below 50%, there are cases where lengthening the sequences
can lead to huge increases in execution time, as the basic
blocks are too short to supply the needed number of register-
based instructions. This can be seen in the results for the most
secure configuration (sequence length value of 32), where the
average performance penalty is approximately 66%.

In our next set of experiments, we investigated the perfor-
mance impact of the selective basic block encryption scheme.
FPGA implementations of symmetric block often strive to
optimize for either throughput or area. Recent implementations

0

50

100

150

200

250

 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

N
o

rm
al

iz
e

d
 E

xe
c

u
ti

o
n

 T
im

e
(%

)

adpcm cjpeg dijkstra djpeg g721 pegwit

I-Cache Miss Stall

D-Cache Miss Stall

Pipeline Execution

0

50

100

150

200

250

 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

N
o

rm
al

iz
e

d
 E

xe
c

u
ti

o
n

 T
im

e
(%

)

adpcm cjpeg dijkstra djpeg g721 pegwitadpcm cjpeg dijkstra djpeg g721 pegwit

I-Cache Miss Stall

D-Cache Miss Stall

Pipeline Execution

Fig. 11. Performance breakdown of the tamper-resistant register encoding
scheme as a function of the register sequence length

of the Advanced Encryption Standard (AES) have reached a
high throughput by unrolling and pipelining the algorithmic
specification [52]. The resultant pipeline is usually quite deep.
Consequently the initial access latencies are over 40 cycles,
while the pipelined transformations can be executed in a
single cycle. Assuming an AES implementation on our secure
FPGA, we can make the intelligent assumption of a 50 cycle
nonsequential access and a single cycle sequential access
delay. Note that other AES implementations concentrate on
optimizing other characteristics besides throughput (i.e. area,
latency, throughput efficiency), but an examination of the
performance impact of those designs on our architecture is
outside the scope of this paper.

Fig. 12 shows the performance breakdown of our selective
basic block encryption architecture as a function of the block
select rate. The increased nonsequential access time for the
FPGA has the expected effect on the instruction cache miss
cycles, which for several of our benchmarks become a more
significant portion of the overall execution profile. It is inter-
esting to note that the average performance penalty of the case
where the entire program is initially encrypted is less than
20%, a number that is significantly less than the seemingly
simpler register-sequence encoding approach.

Why is this the case? This question can be answered
by again examining the ratio of the instruction cache miss
cycles to the pipeline execution cycles. Although the AES
instantiation brings with it a significant increase in the former
factor when compared to the register-based approach, the
compiler pass that encrypts the executable only requires that
two instructions (the start and stop message instructions) be in-
serted for every basic block. Consequently for applications that
have excellent instruction cache locality such as our selected
benchmarks, we would expect the performance of this scheme
to be quite similar to that of the previous approach configured
with a sequence length value of 2. A quick comparison of
Fig. 10 with Fig. 12 shows this to be the case.

These results clearly demonstrate the flexibility of our
approach. With the modification of a few compiler flags an
application developer can evaluate both a tamper-resistant
register encoding system that covers the entire application
with a significant performance detriment, to a partially cov-

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 12

0

20

40

60

80

100

120

140

160

 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

N
o

rm
al

iz
e

d
 E

xe
cu

tio
n

 T
im

e
(%

)

adpcm cjpeg dijkstra djpeg g721 pegwit

I-Cache Miss Stall

D-Cache Miss Stall

Pipeline Execution

0

20

40

60

80

100

120

140

160

 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

N
o

rm
al

iz
e

d
 E

xe
cu

tio
n

 T
im

e
(%

)

adpcm cjpeg dijkstra djpeg g721 pegwitadpcm cjpeg dijkstra djpeg g721 pegwit

I-Cache Miss Stall

D-Cache Miss Stall

Pipeline Execution

Fig. 12. Performance breakdown of the selective basic block encryption
scheme as a function of the block select rate

ered cryptographic solution that has a much more measured
impact on performance. Many of the more severe performance
numbers are fully expected based on previous work - as an
example, estimates for the XOM architecture [40] predict less
than a 50% performance impact when coupled with a modern
CPU. While the results in this section show that the instruction
miss penalty isn’t a dominant factor, this will generally not be
the case when considering the larger applications that could be
used with our approach. This, combined with the possibility
that programmable FPGA resources will not all be allocated
for software protection purposes motivates the configuration
of these resources as performance-oriented architectural opti-
mizations. We examine instruction prefetching in the following
section to investigate the impact of such an approach.

VI. ADDITIONAL PERFORMANCE OPTIMIZATIONS

For systems with a low instruction cache efficiency and
long memory latencies, both buffering and prefetching have
been shown to be useful optimizations for reducing cache
misses and subsequently improving system performance. In
this section we concentrate on prefetching and examine how
including instruction prefetching logic on the FPGA affects
performance.

Prefetching techniques tend to monitor cache access patterns
in order to predict which instructions will be requested in
the immediate future. These guesses are used as the basis
whereby instructions are fetched from slow main memory into
cache before they are requested. In general, the usefulness
of a prefetching scheme is based on the percentage of cache
misses that it is able to prevent. In other words, prefetching
instructions will only improve performance if the average per-
access overhead of the prefetching hardware is outweighed by
the average overall fetch latency.

A. FPGA-based Next-N-Line Prefetching

One of the most popular prefetching techniques is known
as next-N-line prefetching. The main concept behind this
technique is that when a block of instructions are requested
main memory, the prefetching mechanism also returns the next
N lines to the instruction cache. Our architecture for next-N-
line prefetching can be described as follows (see Fig. 13).

A relatively small N-line buffer is instantiated on the FPGA
which responds to instruction cache requests concurrently with
the other security-related mechanisms of the FPGA. If the
requested line is found, then the other FPGA operations are
canceled and the data is returned directly from the buffer. If
there is no match, then the result is returned from higher-
level memory with no additional delay (assuming the latency
in accessing higher-level memory is greater than that of the
prefetching buffer). In either case, the next N lines following
the requested address are then fetched through the remainder
of the FPGA. This can be a quite simple operation for
sequentially fetched blocks - it is very likely that many of
the next N lines have already been recently prefetched and
do not need to be fetched again. In order to minimize the
average prefetching overhead we configured our FPGA to halt
its current prefetching operation in the case of a new request
from the L1 cache.

It is important to note that this requires no changes to the
L1 instruction cache itself. This is nice feature as it means that
if a cache miss leads to a poorly speculated prefetch operation
(as could be the case in a procedure call that quickly returns
to the callee location), the cache will not get polluted with
useless lines. Also since our prefetch control is configured to
not continue in its fetching of the next N lines in the case of a
new request, such an architecture is likely to service any given
request with a minimal additional delay.

B. Results

We configured the FPGA in our selective basic block en-
cryption approach to perform next-N-line instruction prefetch-
ing for the case when 25 percent of the eligible basic blocks
are selected. The results for varying values of N can be seen
in Fig. 14. Our most aggressive prefetching architecture (N
= 16) does a fairly good job at predicting future misses
- on average the prefetch buffer in this configuration suc-
cessfully responds to 71% of the instruction cache requests.
This correlates directly to an instruction cache miss cycle
improvement. Fig. 14b shows that on average there is an
average of 18% savings in instruction stall overhead. For our
current benchmarks this translates to a relatively small overall
performance improvement but given some benchmarks with a
lower instruction locality this can have a great effect with no
additional hardware cost.

VII. CONCLUSIONS AND FUTURE WORK

Both the methods used by hackers in compromising a
software system and the preventative techniques developed in
response thereto have received an increased level of attention
in recent years, as the economic impact of both piracy and
malicious attacks continues to skyrocket. Many of the recent
approaches in the field of software protection have been found
wanting in that they either a) do not provide enough security,
b) are prohibitively slow, or c) are not applicable to currently
available technology. This paper describes a novel architecture
for software protection that combines a standard processor
with dynamic tamper-checking techniques implemented in

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 13

Addr[0]

Addr[1]

Addr[N-1]

Line[0]

Line[1]

Line[N-1]

.

.

.

.

.

.

Prefetch Buffer

Prefetch
Control

=

addr_in data_out

Remainder of FPGA

addr_out data_in

FPGA

Address not found

IDLE

A in
Prefetch
Buffer?

Return
data from

FPGA /
MEM

Return
data from

Buffer

Prefetch
A+1 into
Buffer

Prefetch
A+i into
Buffer

Line request
(addr_in = A)

Address found

All prefetching
completed (i == N)

Line request (addr_in = A)

(i = 1)

Prefetch
completed
(i = i + 1)

(i = 2)

Addr[0]

Addr[1]

Addr[N-1]

Line[0]

Line[1]

Line[N-1]

.

.

.

.

.

.

Prefetch Buffer

Prefetch
Control

=

addr_in data_out

Remainder of FPGA

addr_out data_in

FPGA

Addr[0]

Addr[1]

Addr[N-1]

Line[0]

Line[1]

Line[N-1]

.

.

.

.

.

.

Prefetch Buffer

Prefetch
Control

=

addr_in data_out

Remainder of FPGA

addr_out data_in

FPGA

Address not found

IDLE

A in
Prefetch
Buffer?

Return
data from

FPGA /
MEM

Return
data from

Buffer

Prefetch
A+1 into
Buffer

Prefetch
A+i into
Buffer

Line request
(addr_in = A)

Address found

All prefetching
completed (i == N)

Line request (addr_in = A)

(i = 1)

Prefetch
completed
(i = i + 1)

(i = 2)

IDLE

A in
Prefetch
Buffer?

Return
data from

FPGA /
MEM

Return
data from

Buffer

Prefetch
A+1 into
Buffer

Prefetch
A+i into
Buffer

Line request
(addr_in = A)

Address found

All prefetching
completed (i == N)

Line request (addr_in = A)

(i = 1)

Prefetch
completed
(i = i + 1)

(i = 2)

Fig. 13. Architecture and state diagram for a next-N-line prefetching technique implemented in FPGA

reconfigurable hardware. We have evaluated two distinct ex-
amples that demonstrate how such an approach provides much
flexibility in managing the security/performance tradeoff on a
per-application basis. Our results show that a reasonable level
of security can be obtained through a combined obfuscating
and tamper-proofing technique with less than a 20% per-
formance degradation for most applications. When a highly-
transparent solution is desired, FPGA resources not allocated
for software protection can be used to mask some of the high
latency operations associated with symmetric block ciphers.

Future work on this project will include implementing a
method for calculating and storing hash values on the FPGA
in order to secure data and file storage. Also, while our
current simulation infrastructure is adequate for the exper-
iments presented in this paper, it is also inherently limited
in the sense that the component delays are completely user-
defined. Although we intelligently estimate these values based
on previous work in hardware design, in the future it would
be considerably more convincing to assemble the results based
on an actual synthesized output. This would require our
compiler to be modified to generate designs in either a full
hardware description language such as VHDL or Verilog, or at
a minimum, a specification language that can drive pre-defined
HDL modules. Taking this concept a step further, as our
techniques can be fully implemented with commercial off-the-
shelf components, it would be useful to port our architecture
to an actual hardware board containing both a processor and
FPGA. Such a system would allow us to obtain real-world
performance results and also to refine our threat model based
on the strengths and weaknesses of the hardware.

REFERENCES

[1] International Plannning and Research Corporation, “Seventh annual BSA
global software piracy study,” available at http://www.bsa.org, June
2002.

[2] Computer Security Institute and Federal Bureau of Investigation,
“CSI/FBI 2002 computer crime and security survey,” available at
http://www.gocsi.com, Apr. 2002.

[3] C. Collberg and C. Thomborson, “Watermarking, tamper-proofing, ob-
fuscation: tools for software protection,” IEEE Transactions on Software
Engineering, vol. 28, no. 8, pp. 735–746, Aug. 2002.

[4] S. Chang, P. Litva, and A. Main, “Trusting DRM software,” in Proceed-
ings of the W3C Workshop on Digital Rights Management for the Web,
Jan. 2001.

[5] J. Wyant, “Establishing security requirements for more effective and
scalable DRM solutions,” in Proceedings of the Workshop on Digital
Rights Management for the Web, Jan. 2001.

[6] C. Collberg and C. Thomborson, “Software watermarking: models and
dynamic embeddings,” in Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Jan.
1999, pp. 311–324.

[7] R. Venkatesan, V. Vazirana, and S. Sinha, “A graph theoretic approach
to software watermarking,” in Proceedings of the Fourth International
Information Hiding Workshop, Apr. 2001.

[8] H. Chang and M. Atallah, “Protecting software code by guards,” in
Proceedings of the ACM Workshop on Security and Privacy in Digital
Rights Management, Nov. 2000, pp. 160–175.

[9] B. Horne, L. Matheson, C. Sheehan, and R. Tarjan, “Dynamic self-
checking techniques for improved tamper resistance,” in ACM Workshop
on Security and Privacy in Digital Rights Management, Nov. 2001, pp.
141–159.

[10] D. Aucsmith, “Tamper-resistant software: An implementation,” in Pro-
ceedings of the 1st International Workshop on Information Hiding, May
1996, pp. 317–333.

[11] A. W. Appel and E. W. Felten, “Proof-carrying authentication,” in Pro-
ceedings of the 6th ACM Conference on Computer and Communications
Security, Nov. 1999, pp. 52–62.

[12] L. Bauer, M. A. Schneider, and E. W. Felten, “A proof-carrying autho-
rization system,” Department of Computer Science, Princeton University,
Tech. Rep. CS-TR-638-01, Apr. 2001.

[13] G. Necula, “Proof-carrying code,” in Proceedings of the 24th ACM

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 14

0

10

20

30

40

50

60

70

80

90

 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16

P
re

fe
tc

h
 B

u
ff

er
 H

it
 R

a
te

 (
%

)

adpcm cjpeg dijkstra djpeg g721 pegwit

0

10

20

30

40

50

60

70

80

90

100

 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16

N
o

rm
al

iz
ed

 I-
C

ac
h

e
M

is
s

C
yc

le
s

(%
)

(a) (b)
adpcm cjpeg dijkstra djpeg g721 pegwit

0

10

20

30

40

50

60

70

80

90

 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16

P
re

fe
tc

h
 B

u
ff

er
 H

it
 R

a
te

 (
%

)

adpcm cjpeg dijkstra djpeg g721 pegwitadpcm cjpeg dijkstra djpeg g721 pegwit

0

10

20

30

40

50

60

70

80

90

100

 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16 N2 N4 N8 N16

N
o

rm
al

iz
ed

 I-
C

ac
h

e
M

is
s

C
yc

le
s

(%
)

(a) (b)
adpcm cjpeg dijkstra djpeg g721 pegwitadpcm cjpeg dijkstra djpeg g721 pegwit

Fig. 14. Effectiveness of next-N-line instruction prefetching optimization as a function of N

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guagers, Jan. 1997, pp. 106–119.

[14] G. Necula and P. Lee, “Safe kernel extensions without run-time check-
ing,” in Proceedings of the 2nd USENIX Symposium on OS Design and
Implementation, Oct. 1996, pp. 229–243.

[15] D. Baifanz, D. Dean, and M. Spreitzer, “A security infrastructure
for distributed Java applications,” in Proceedings of the 2000 IEEE
Symposium on Security and Privacy, May 2000, pp. 15–26.

[16] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, Tech. Rep. 148, July 1997.

[17] ——, “Breaking abstractions and unstructuring data structures,” in Pro-
ceedings of the IEEE International Conference on Computer Languages,
May 1998, pp. 28–38.

[18] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of software-
based survivability mechanisms,” in Proceedings of the 2001 IEEE/IFIP
International Conference on Dependable Systems and Networks, July
2001.

[19] C. Wang, J. Hill, J. Knight, and J. Davidson, “Software tamper re-
sistance: obstructing the static analysis of programs,” Department of
Computer Science, University of Virginia, Tech. Rep. CS-2000-12, May
2000.

[20] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im)possibility of obfuscating programs,” in
Proceedings of Advances in Cryptology (CRYPTO ’01), Aug. 2001, pp.
1–18.

[21] S. White, S. Weingart, W. Arnold, and E. Palmer, “Introduction to the
Citadel architecture: Security in physically exposed environments,” IBM
Research Division, T.J Waston Research Center, Tech. Rep. RC 16682,
May 1991.

[22] D. Tygar and B. Yee, “Dyad: A system for using physically secure copro-
cessors,” Department of Computer Scence, Carnegie Mellon University,
Tech. Rep. CMU-CS-91-140R, May 1991.

[23] B. Yee, “Using secure coprocessors,” Computer Science Department,
Caregie Mellon University, Tech. Rep. CMU-CS-94-149, May 1994.

[24] B. Yee and D. Tygar, “Secure coprocessors in electronic commerce
applications,” in Proceedings of the 1st USENIX Workshop on Electronic
Commerce, July 1995, pp. 155–170.

[25] S. Weingart, “Physical security for the mABYSS system,” in Proceed-
ings of the IEEE Symposium on Security and Privacy, Apr. 1987, pp.
52–58.

[26] S. Weingart, S. White, W. Arnold, and G. Double, “An evaluation system
for the physical security of computing systems,” in Proceedings of the
6th Computer Security Applications Conference, Dec. 1990, pp. 232–
243.

[27] S. White and L. Comerford, “ABYSS: A trusted architecture for software
protection,” in Proceedings of the IEEE Symposium on Security and
Privacy, Apr. 1987, pp. 38–51.

[28] IBM, “Secure systems and smart cards,” available at
http://www.research.ibm.com/secure systems, 2002.

[29] S. Smith, “Secure coprocessing applications and research issues,” Com-
puter Research and Applications Group, Los Alamos National Labora-
tory, Tech. Rep. LA-UR-96-2805, Aug. 1996.

[30] S. Smith and V. Austel, “Trusting trusted hardware: towards a formal
model of programmable secure coprocessors,” in Proceedings of the 3rd
USENIX Workshop on Electronic Commerce, Aug. 1998, pp. 83–98.

[31] H. Gobioff, S. Smith, D. Tygar, and B. Yee, “Smart cards in hostile envi-
ronments,” in Proceedings of the 2nd USENIX Workshop on Electronic
Commerce, Nov. 1996, pp. 23–28.

[32] B. Schneier and A. Shostack, “Breaking up is hard to do: modeling se-
curity threats for smart cards,” in Proceedings of the USENIX Workshop
on Smartcard Technology, May 1999, pp. 175–185.

[33] P. Clark and L. Hoffman, “BITS: A smartcard protected operating
system,” Communications of the ACM, vol. 37, no. 11, pp. 66–70, Nov.
1994.

[34] MIPS, “SmartMIPS application-specific extension,” available at
http://www.mips.com, 2004.

[35] VIA, “Padlock hardware security suite,” available at http://www.via.com,
2004.

[36] Intel, “Intel LaGrande technology,” available at http://www.intel.com,
2004.

[37] ARM, “ARM TrustZone technology,” available at http://www.arm.com,
2004.

[38] Trusted Computing Group, http://www.trustedcomputing.org, 2003.
[39] Microsoft, “Next-generation secure computing base,” available at

http://www.microsoft.com, 2004.
[40] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,

and M. Horowitz, “Architectural support for copy and tamper resistant
software,” in Proceedings of the 9th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Nov. 2000, pp. 168–177.

[41] D. Kirovski, M. Drinic, and M. Potkonjak, “Enabling trusted software
integrity,” in Proceedings of the 10th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Oct. 2002, pp. 108–120.

[42] X. Zhuang, T. Zhang, H.-H. Lee, and S. Pande, “Hardware assisted
control flow obfuscation for embedded processors,” in Proceedings of
the International Conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES), Oct. 2004.

[43] X. Zhuang, T. Zhang, and S. Pande, “HIDE: an infrastructure for
efficiently protecting information leakage on the address bus,” in Pro-
ceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 2004.

[44] A. Dandalis, V. Prasanna, and J. Rolim, “An adaptive cryptographic
engine for IPSec architectures,” in Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines, Apr. 2000, pp.
132–144.

[45] V. Prasanna and A. Dandalis, “FPGA-based cryptography for internet
security,” in Online Symposium for Electronic Engineers, Nov. 2000.

[46] J.-P. Kaps and C. Paar, “Fast DES implementations for FPGAs and its
application to a universal key-search machine,” in Proceedings of the
5th Annual Workshop on Selected Areas in Cryptography, Aug. 1998,
pp. 234–247.

[47] R. Taylor and S. Goldstein, “A high-performance flexible architecture
for cryptography,” in Proceedings of the Workshop on Cryptographic
Hardware and Software Systems, Aug. 1999.

[48] Actel, “CoreDES data sheet, v2.0,” available at http://www.actel.com,
2003.

[49] ——, “Design security with Actel FPGAs,” available at
http://www.actel.com, 2003.

[50] O. Kommerling and M. Kuhn, “Design principles for tamper-resistant

PROCEEDINGS OF THE IEEE, VOL. X, NO. XX, SEPTEMBER 2004 15

smartcard processors,” in Proceedings of the USENIX Workshop on
Smartcard Technology, May 1999, pp. 9–20.

[51] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA implementation
and performance evaluation of the AES block cipher candidate algorithm
finalists,” in The Third Advanced Encryption Standard (AES3) Candidate
Conference, Apr. 2000, pp. 13–27.

[52] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A fully pipelined
memoryless 17.8 Gbps AES-128 encryptor,” in Proceedings of the
International Symposium on Field Programmable Gate Arrays (FPGA),
Feb. 2003, pp. 207–215.

[53] J. Daeman and V. Rijmen, “The block cipher Rijndael,” in Smart Card
Research and Applications, ser. Lecture Notes in Computer Science, J.-
J. Quisquater and B. Schneier, Eds. Springer-Verlag, 2000, vol. 1820,
pp. 288–296.

[54] C.-K. Luk and T. Mowry, “Cooperative prefetching: Compiler and
hardware support fo effective instruction prefetching in modern pro-
cessors,” in Proceedings of the 31st Annual Internation Symposium on
Microarchitecture (MICRO-31), Dec. 1998.

[55] G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction
prefetching,” in Proceedings of the 32nd Annual International Sympo-
sium on Microarchitecture (MICRO-32), Nov. 1999.

[56] I.-C. K. Chen, C.-C. Lee, and T. Mudge, “Instruction prefetching using
branch prediction information,” in Proceedings of the International
Conference on Computer Design (ICCD), Oct. 1997, pp. 593–601.

[57] J. Zambreno, A. Choudhary, R. Simha, and B. Narahari, “Flexible
software protection using HW/SW codesign techniques,” in Proceedings
of Design, Automation, and Test in Europe, Feb. 2004, pp. 636–641.

[58] Xilinx, “Virtex-II Pro Platform FPGA data sheet,” available at
http://www.xilinx.com, 2003.

[59] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
Department of Computer Science, University of Wisconsin-Madison,
Tech. Rep. CS-TR-97-1342, June 1997.

[60] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in Proceedings of 30th Annual International Symposium on
Microarchitecture, Dec. 1997, pp. 330–335.

[61] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the 4th IEEE Annual Workshop on
Workload Characterization, Dec. 2001, pp. 3–14.

