A Compiler-Hardware Technique for Protecting Against
Buffer Overflow Attacks

Eugen Leontie, Gedare Bloom, Olga Gelbart, Bhagirath Narahari and Rahul Simha
Department of Computer Science
The George Washington University
Washington, DC 20052
Contact: eugen@gwu.edu

Abstract: Buffer overflow attacks are widely acknowledged by
computer security professionals to be one of the greatest threats to
the security of computer systems. We present an integrated software-
hardware approach to protect against buffer overflow attacks while
minimizing performance degradation, software development time,
and deployment costs. Our technique does not change the proces-
sor core, but instead adds a hardware module in the form of a Field
Programmable Gate Array (FPGA) that sits between cache and mem-
ory and that is able to defend return addresses from buffer overflow
attacks. Our solution exhibits neither the performance overhead of
software solutions nor the CPU redesign costs of hardware solutions.

Keywords: Software security, Buffer overflow, Computer archi-
tecture, Embedded design

1 Introduction

Buffer overflow (overrun) attacks continue to be among the most
prevalent form of attacks on computer systems [1]. A buffer over-
flow occurs when data is written outside of the bounds of its allo-
cated memory buffer. A buffer overflow is a technique that exploits
vulnerabilities in languages that lack bounds checking on memory
accesses, allowing an attacker to write malicious content past the end
of a reserved memory region. Stack memory, which holds automatic
variables and function return addresses, is a common target for buffer
overflow attacks. Attacks that target buffers allocated in stack mem-
ory are extremely powerful, because overflowing a stack-allocated
buffer enables an attacker to overwrite the return address. If the re-
turn address is overwritten, the return from that function no longer
preserves the application’s original control flow, instead branching
to an arbitrary location determined by the attacker. If the attacker
supplies the address of a buffer containing malicious code, then the
CPU will execute the injected malicious code with the same privilege
level as the original application. Thus, a buffer overflow in a supe-
ruser privileged application enables an attacker to gain administrative
privileges after a successful attack.

Due to their prevalence, buffer overflow vulnerabilities have re-
ceived a lot of attention in the literature. Past work on preventing
buffer overflow attacks in unsafe languages includes software-only
approaches, code instrumentation techniques, and hardware-assisted
approaches. (We provide a summary of past work in Section 6.)
Static software-only approaches do not prevent run-time attacks and
more complex overflow attacks. Code instrumentation techniques
support runtime detection of attacks but rely on operating system
primitives and incur high performance overheads. Hardware assisted
approaches improve on software schemes and result in low perfor-
mance overheads, but require architectural modifications, often to
the CPU and instruction set, thereby requiring a significant buy-in
from chip manufacturers.

In this paper, we present a combined software-hardware approach
to protecting the function return address that does not require a re-
design of the processor core. On the software side, the compiler adds
instructions to every function call and return; these added instruc-
tions interface with a new secure hardware module called a Guard.

The Guard, which sits between the cache and main memory, can be
implemented as reconfigurable logic such as a field programmable
gate array (FPGA) that augments the CPU functionality, or simply
as a gateway chip that interfaces the CPU with the system bus. We
model our simulations with the FPGA method. Note that recent work
has shown the effectiveness of using FPGA architectures to address
specific security threats. For example [2] discusses an FPGA based
module for intrusion detection. As a potential architecture platform
for our solution, systems such as Xilinx Corporation’s Virtex Pro
family [3] provide a CPU core with an on-chip FPGA logic which
can be used to implement our solution.

Our approach can be summarized as follows (with details in Sec-
tion 3). The return address is copied to a memory region in the hard-
ware Guard that is inaccessible through any direct memory calls.
This memory region is called the return address (RA) stack, and it
is automatically managed by a modified compiler. The compiler-
inserted instructions to manage the RA stack synchronize the state
of the RA stack with the program stack, independent of code local-
ity and caching policies. On each function call (CALL), the return
address is stored in the RA stack, and at each function return (RET),
the Guard checks if an overflow has occurred and ensures that the
correct address is returned to the processor. Thus, the Guard main-
tains a copy of the valid return address and ensures that the correct
address is always returned regardless of any buffer overflows.

Our solution is efficient, and incurs low development and deploy-
ment costs. Code modification occurs in the compiler tool-chain,
therefore the programmer’s work is not increased. The same com-
piler technique can be made to work with binary instrumentation
to retrofit legacy code and libraries, as long as binary dissassem-
bly can identify the code regions and there are sufficient registers
available for the extra instructions. Our modular Guard does not re-
quire changing the CPU and is physically located beyond the cache
boundaries to minimize impact on memory access time. We tested
our system using a suite of benchmarks — the average performance
overhead is a modest 7%.

Although we have achieved good performance, our results are val-
idated in an embedded environment. In particular, our technique is
applicable to a wide range of applications that are statically linked
and single-threaded. Embedded systems, which typically do not have
a complicated operating system, would benefit greatly from our tech-
nique by providing built-in security for these networked and ubiqui-
tous embedded computing devices. Furthermore, embedded systems
are often programmed using low-level procedural langagues to min-
imize performance overheads, leading to fewer compute cycles for
an embedded device to perform its task, thus providing a longer bat-
tery life. Such languages avoid bounds checking, which incurs non-
negligible overheads, and thus they provide the possibility for buffer
overflow attacks, so hardware support for preventing a successful at-
tack is desirable.

The rest of the paper is organized as follows. In Section 2 we

describe how overflow attacks occur and introduce our technique.
Section 3 presents the details. Performance results are given in Sec-

Original stack Compromised Stack

Hi Hi
caller stack caller stack
frame frame
Fp —» Fp —»
a 10
return address ‘&buf[O]
caller FP)_).
buf[99]
buf[98]
buf [0] (.
sp —» SP —p ==
\j \j
Low Low
(a) (b)

Figure 1: Stack layout for a function with a 100 words local buffer:
(a) stack layout before attack; (b) the attacker’s code is placed on
the stack and the return address (RA) is overwritten to with the local
buffer’s start address

tion 4, with discussions in Section 5 and related work in Section 6.
Conclusions and future work are discussed in Section 7.

2 Overview

Buffer overflow attacks can be categorized based on where overflow
data is written and how the attack vector affects the system. These
categories are stack smashing, arc injection, pointer subterfuge, and
heap smashing [4]. The original buffer overflow attack, as well as the
majority of vulnerabilities reported, rely directly on stack smashing
attacks [5] [6].

We first explain the vulnerability that enables stack smashing and
then describe the stack smashing attack in more detail. Stack smash-
ing is a simple concept that exploits the placement of the return ad-
dress in close proximity to local function variables. The compiler
determines the layout of these variables, which are stored on the
program’s stack segment. For each function call, the compiler al-
locates a memory region on the program stack. Function parameters,
the caller’s frame pointer, and the return address are copied on the
stack. Stack space is also reserved for local (automatic) variables.
Figure 1(a) demonstrates a stack layout for a simple function. A
stack smashing attack proceeds in two steps, first an overflow that
can change the return address and then controlling the execution to
achieve the attackers intended actions.

The first part of a stack smashing attack is to cause an overflow
to replace the return address value stored on the stack. Statically al-
located buffers are extremely vulnerable to stack smashing attacks.
If the attacker succeeds in providing the application an input data
stream longer than a static buffer, the over-length input will write
memory locations adjacent to the buffer. One of the locations vulner-
able to overwriting contains the return address. Because the return
address value is used for an implicit jump at the function return, the
attacker can make arbitrary control flow redirections.

The second part of a stack smashing attack involves executing the
attacker’s code. In a simple scenario, the buffer that the attacker uses
to overflow the stack contains executable code constructed by the at-
tacker. By overwriting the return address value with the address of
the buffer, upon the function return the attacker’s code is executed;
more complicated scenarios are also possible. Fig. 1(a) shows the
stack layout during the execution of a function with vulnerabilities.
An attacker first writes executable code into the buffer buf and con-
tinues writing past the original length (100 elements) allocated for
the buffer. By overwriting the return address with the starting ad-
dress of buf, the attacker diverts the program control flow such that
the processor starts executing the injected code (Fig. 1(b)).

Protected stack

Hi
caller stack
frame
Fp —»
a Guard
&pop & .
o
caller FP ©
2
buf [99] O A
buf [98]
Ce caller RA
buf[0]
Ssp —p main RA
V RA stack
Low

Figure 2: The push operation transfers the return address to the pro-
tected storage and the pop operation checks and restores the correct
return address (see Section 3 for details)

A simple defense mechanism is to prevent execution of data lo-
cated in the stack memory region, thus preventing the injected code
from executing. This is easily accomplished with non-executable
memory regions, for example by using memory pages with no-
execute (NX) permission bit or a Harvard architecture, in which
data and instruction memory are explicitly separated. In response
to such defense techniques, attackers have devised more complex
attacks known as “return-to-libc”, “return-oriented programming”
[7, 8] or architecture specific attacks [39]. In the return-to-libc at-
tack, attackers overwrite the return address with the location of a C
library function, such as exec (), or system (). These functions
accept parameters such as “/bin/sh”, which will spawn a shell with
the same privilege as the exploited application. A successful attack
can potentially give the attacker the ability to run any commands on
the vulnerable system with root privilege. Return-oriented program-
ming involves creating a forged stack with a series of fake callers by
injecting return addresses along with parameters to the stack. Thus,
the attacker creates a sequence of operations that are executed by ex-
isting code based on the contents of the forged stack. Preventing the
more complex variants of the stack smashing attack requires prevent-
ing the return address from being successfully overwritten, since the
attack code is no longer injected onto the stack.

Our solution offers a compiler-hardware approach both to detect
and to prevent overwriting of the return address. We store the return
address in the Guard, and the compiler modifications are necessary to
maintain the RA stack. The modified compiler adds instructions for
each CALL and RET, as shown in Fig. 2. Our safeguards guarantee
that if the return address on the program stack is overwritten, the
hardware Guard detects the changed address and still provides the
correct return address. Thus our solution provides both detection
and prevention of stack smashing attacks. We discuss the details of
the hardware and the added instructions in the next section.

3 Details: Protecting the Stack

In this section we describe the system architecture and implementa-
tion details for preventing and detecting stack smashing attacks. A
simplified view of the functionality we implement to protect the re-
turn address is:

e Upon a function call, the return address is stored in the RA stack.

e Upon a function’s return, the correct return address is provided by
the RA stack.

In our solution, we store and manage the RA stack in a secure
hardware component called a Guard which augments the existing
processor-memory hierarchy, as shown in Figure 3. The additional

Processor Core

Bus

CPU
Core

Cache (.

D
7

<%C;alct@a,bI,ef\rr

Guard

Return
Address
Stack

Bus .
— Main

Memory

Control
Logic

Figure 3: Processor with added hardware Guard. New functionality is implemented in the Guard, providing protection for unmodified CPU

cores.

hardware is supported by compiler modifications which add new
assembly-level instructions that can be implemented at the machine
level using the existing ISA. A performance concern is that every
function return needs to retrieve the correct return address, which is
an access to the Guard (but not all the way to memory). We mea-
sure these performance concerns in our experiments, as described in
Section 4.

The Guard implements part of the system bus architecture (e.g.
the OPB [9] or HyperTransport [10]) so that it can monitor memory
traffic for specific operations. Every instruction fetched by the CPU
on an instruction cache (I-cache) miss goes through the Guard, thus
exposing all instructions fetched by the CPU. Design limitations pre-
vent deployment on devices which lack non-cacheable memory areas
or which encapsulate the full memory hierarchy with the CPU. For
such devices, or for better performance, the CPU core can be modi-
fied to support the Guard. Otherwise, the Guard can be implemented
as reconfigurable logic in FPGA based processing cores or as a phys-
ical gateway on standard bus systems.

Introducing the Guard to an existing architecture does not require
changing the processor’s internal (pipeline) architecture. Indeed, the
CPU does not need to be aware of the additional verification, which
takes place outside the core boundary. An added benefit is that for
reconfigurable cores, proprietary designs can remain black boxes.

The key to protecting the return address is that the Guard must be
aware of both function calls and returns. We expose the CALL in-
structions by instrumenting the compiler to prepend each CALL with
a memory-mapped “store to the Guard” instruction (push_guard)
to push the function’s return address to the Guard’s RA stack. Sim-
ilarly, another instruction (notify_guard) is inserted just be-
fore every RET to trigger the Guard verification. Pseudo-code for
push_guard and notify_guard is given in Algorithms 1 and
2 respectively. The latency of these instructions is somewhere be-
tween a cache hit and a full memory access, potentially requiring an
off-chip access to the Guard.

Algorithm 1 push_guard
Require: RET_Addr
Ensure: RET_Addr is stored on RA stack

push(RET_Addr) to RA Stack
if RA Stack is Full then
Save RA Stack to Mem

RET_Addr Register «— pop_ret_addr
return

The push_guard instruction sends the correct return address
(RET-Addr) to the Guard, which pushes the RET_Addr to its hard-
ware stack. After the stack push, the Guard checks if the stack
is reaching its capacity and will evict previous return addresses to

memory if necessary. The instruction terminates by loading the
pop-ret_addr into the processor’s return address register.

Algorithm 2 notify_guard
Require: PC, FP
Ensure: Guard prepares RET_Addr

RET_Addr « pop() from RA Stack
Prepare instruction: branch RET_Addr
req < wait_for_cachemiss() {req gets addr or timeout }
while req <> pop_ret_addr do
if invalid_mem _access(req, PC, FP) then
Attack Detected
else if timeout_occurs then
Attack _Detected

else
data < fetch_from_mem(req)
supply_to_cpu(data)
req «— wait_for_cachemiss()

supply_to_cpu(branch RET_Addr instruction)

if RA Stack in Mem then
Restore RA Stack from Mem
return

The notify_guard instruction begins with the processor sup-
plying the current program counter (PC) and frame pointer (FP). The
Guard pops the correct return address (RET_Addr) from the top of
its hardware stack and then prepares a branch instruction with branch
target RET_Addr. Now the Guard must wait for the processor to issue
a fetch for the instruction located at pop_ret_addr. Because the return
can cause I-cache and data cache misses, a valid but bounded num-
ber of memory accesses may occur before the return finishes. Such
a situation requires the Guard to validate memory accesses (using
the PC and FP) and to have a timeout value. The timeout allows for
execution time and data access times, and can change if the Guard
observes valid cache misses. In the absence of an attack, the pro-
cessor will request the instruction located at pop_ret_addr before the
timeout. When that request occurs, the Guard will supply the crafted
branch instruction, thus causing the processor to jump to the correct
return address. As a cleanup operation, the Guard will check if some
of its hardware stack should be restored from memory (due to previ-
ous eviction in push_guard).

Because the only modifications to the source code are made at
CALL and RET locations, we may sometimes perform instrumen-
tation directly on binaries, allowing for support of legacy applica-
tions and libraries distributed as binary images. Binary instrumen-
tation is possible if sufficient registers are available to perform the
push_guard and notify_guard instruction sequences, and if

foo:
mov ip, sp
push_guard 1r
;real return address(lr) is saved by Guard
mov 1lr, pop_ret addr
stmfd sp!, {fp, ip, lr, pc}
;Regular function call preamble
;the address in 1lr will force a cache miss
notify guard(PC)
;signal that a function return is coming
ldmea fp, {fp, sp, pc}
;at this point pc contains pop_ret addr
main:
bl foo
retAddr:

pop_ret addr:
b retAddr
;jsince pc contains pop_ret addr, we adjust
;it and jump to retAddr, the real address

;pop_ret_addr is mapped in the Guard space

Figure 4: Source-level instrumentation to add a cache miss on every
function return (added instructions are in bold).

the code and data segments of the binary can be distinguished. In
summary, the Guard contains the secure RA stack and necessary
logic to examine and verify instruction addresses and memory loads.
On every I-cache miss, the processor requests instruction blocks
through the Guard. Both of the new instructions are implemented as
memory-mapped operations, and we use non-cacheable addresses to
force the Guard to process every function return. We next examine
how push_guard and notify_guard are used by applications,
and conclude this section with some extensions to provide protection
for non-LIFO control flow.

3.1 Replacing the Return Address

The assembly code in Figure 4 shows an example of how the Guard
inserts the correct return address. To guarantee an I-cache miss on
a function’s return, thus ensuring that the Guard verification takes
place, we instrument the following steps:

1. The start of every function is modified to call push_guard, sav-
ing the real return address on the Guard’s RA stack.

2. A non-cacheable address, called the pop_ret_addr, is selected
and is written to the register holding the real return address.

3. Prior to the function’s return, not i fy_guard is called, signaling
the Guard that a function return is coming.

4. Within a bounded period of time, the CPU will issue a request
for the instruction located at pop_ret_addr, which causes an
I-cache miss.

5. Upon receiving the pop_ret_addr request the Guard will inject
a branch instruction to the real return address which is located on
the top of the RA stack.

The processor will thus jump to the correct address.

This scheme ensures that every function return is guaranteed to
cause a cache miss, and that a correct return address (which was
safely saved by the Guard) is restored, thus preventing buffer over-
flow attacks from redirecting control flow. The case of stack “spill-
over” can easily be handled by the Guard without extra help from
the operating system, as the overflow function return addresses can

be stored encrypted in regular memory without having the operating
system manage a separate secure memory. The Guard can also con-
tain extra processing logic to handle non-LIFO situations, which we
explain next.

3.2 Non-Lifo Control Flow

Performance optimizations and fast search algorithms sometimes use
a non-lifo model of function returns. For example, a deeply nested
tree search algorithm will use set jmp () and longjmp () to cir-
cumvent the long nested returns by returning directly to the search
root when a result is found deep in the tree. setjmp () creates
a buffer with the context of the current function, and 1ongjmp ()
forces a return to that context, ignoring other contexts saved on the
stack. Because this return mechanism will use the return value in the
setjmp () buffer, and not a stack value, return address protection
will trap this valid usage as an attack.

We solve the non-lifo problem by adding two memory mapped
operations: push_set jmp and notify_lngjmp. set jmp calls
push_set jmp to inform the Guard of its return address, and
longjmp calls notify_lngjmp instead of notify_guard. The
Guard reserves a special register (only one address is needed) and
an index to keep the return address of the set jmp function, and
replaces the set jmp buffer value with a pop_ret_addr to force
a cache miss. The index stores the number of pops the hardware
stack needs to execute in order to discard the return addresses cir-
cumvented by 1ongjmp. Unfortunately, this re-instrumentation of
setjmp () /longjmp () requires a recompilation of the program,
so binary rewriting is harder to implement because the binary sig-
nature of set jmp () and longJjmp () varies with the architecture,
compiler, and libc version.

4 Experimental Results

To evaluate the performance overhead, we used the SimpleScalar
[11] simulation suite and the gcc cross-compiler for the ARM proces-
sor. The benchmarks included programs from the MiBench [12] and
Data Intensive Systems (DIS) [13], computationally intensive bench-
marks commonly used to evaluate performance of architectures.

From MiBench [12] we used the following benchmarks: bitcount
- tests the bit manipulation abilities of a processor by counting the
number of bits in an array of integers; crc - checksum calculation for
a file; dijkstra - an implementation of the graph algorithm for cal-
culating the shortest paths between nodes; fft - Fourier transforms
are used in digital signal processing to find the frequencies contained
in a given input signal; sha - the standard secure hashing algorithm
used in many security transactions; stringsearch search algorithm for
given words in phrases using a case insensitive comparison algo-
rithm; susan - an image processing suite with three variants—corners,
edges, and smoothing. Field, pointer, transitive and update are data
intensive benchmarks from DIS.

Because the protection technique operates on every function call,
the performance penalty is highly dependent on the number of func-
tion calls for each program. Figure 5 shows the frequency of function
calls with respect to other instructions for each of the benchmarks.

The performance penalty P per function call is

Pec =T+ 1Ts,

where T is the access time to the Guard and T is the Guard’s access
time to the RA stack. These variables will change based on the speed
of the CPU, the Guard, and the interconnect bus. In general, Tz will
consume 1 bus cycle and 5 Guard cycles and 75 will consume 1
Guard cycle. How the Guard and bus frequency relate to the CPU
frequency ultimately will determine the performance penalty. The
performance penalty on a function return is

Pr=T¢+Tv + T,

where T and T's are the same as before, and 7 is the time required
by the Guard to verify the return address. 7y will consume 1 Guard

3.5

25

Function calls per 100 cycles
N

sha

stringsearch

fft(inv)

o
o w
L
bitcount

crc
dikstra [
fft

patricia

smooth |
edge 4}
corners
field [
pointer
tc J
update

Figure 5: Frequency of function calls per benchmark

cycle. Finally, the overall performance penalty is
P:I+Cm+(Nc*Pc)+(NR*PR),

where [is the number of cycles consumed by added instructions, Cy,
is the number of cycles waiting on cache misses, N¢ is the number
of function calls, and N is the number of function returns. Thus P
shows the extra execution cycles that are added to the baseline execu-
tion by the compiler (push_guard and pop_-guard), the penalty
of extra cache misses caused by the increased code size, and the ver-
ification penalty for each function call and return.

Our processor model has one level of instruction and data caches,
each 32KB in size, 32-way associative, with 32-byte cache lines —
changing cache size and associativity does not impact the overheads,
so we only show results for a single fixed cache size. The simula-
tor used was sim-outorder. The processor models an average
embedded system: a 400 MHz CPU augmented with a 200 MHz
FPGA (for the Guard), and an external bus and memory running at
100 MHz. Thus every Guard cycle takes 2 CPU cycles, and every
bus cycle takes 4 CPU cycles.

Figure 6 shows performance penalties for each benchmark. On
average, our scheme achieves a 7% performance penalty, with crc
being a special case, containing the highest frequency of function
calls and having a very high performance penalty.

5 Discussion

In this section, we describe some of the changes (or lack thereof)
required to support systems that do not fit the model we assumed
throughout this paper. Our scheme is general enough to work on
most systems, although some parameters may need to be modified
from system to system.

The not ify_guard instruction is aided by the availability of the
program counter (and frame pointer), but can still execute securely
without access to either. At one extreme are processors that provide
direct access to the control registers, such as the ARM and PowerPC,
which are well suited for our approach. In such cases we can save and
restore the original control flow by directly modifying control regis-
ters instead of using the artificial branch instruction generated by the
Guard. At the other extreme are call and return processors, which
do not give any other means of saving the control registers and need
micro architecture level changes, defeating the non-intrusive nature
of our design. In between are architectures such as the soft core
Microblaze by Xilinx, which permit read only access to the control
registers. This allows saving the return address, but requires the extra
branch instruction for restoring the control flow.

The time between notify._guard and the request for
pop-ret_addr will vary by architecture, and multiple layers of

cache can provide an attacker with extra time to launch an attack, but
will not allow any successful off-chip accesses, so the attack is lim-
ited. Some additional care is taken to guarantee tight timing restric-
tions between when notify_guard is issued and when the Guard
expects a request for the pop_ret_addr. The notify_guard
instruction passes the Guard the values of the program counter (PC)
and frame pointer (FP) so that the Guard can verify subsequent mem-
ory requests as valid cache misses caused during the function return.
If there is no request for pop_ret_addr in the bounded time, the
Guard identifies that an attack happened and can halt execution. The
timeout value is determined by the number of possible cache misses
and cycle time required for the function return instruction to generate
the request for new instructions at pop_ret_addr.

Systems that support execution reordering and multiprocessing
may also require additional changes. Fortunately, in an out-of-order
processor the memory mapped instructions are not executed until
the speculative store buffer is allowed to commit, so the Guard is
oblivious to the out-of-order execution and will not require any addi-
tional logic. However, OS modifications will be necessary for multi-
threaded (and multiprocessing) environments, to interface with the
Guard to allow for some secure administrative tasks, particularly to
maintain context for the RA stack. Such an interface may require
some changes to the timing mechanism in notify_guard to cor-
rect for OS overhead during context switches.

6 Related Work

A wide range of software-only approaches exist for buffer overflow
prevention and detection that can be divided into static analysis tools
and code instrumentation techniques. Some solutions in the first cat-
egory are FlawFinder [14], RATS [15], PScan [16], BOON [17],
ITS4 [18], MOPS [19], StackOFFence [20, 21], and PFD [22]. These
approaches use source code analysis to detect potential vulnerabili-
ties in the code before execution. The two main advantages of source
code analysis are zero performance overhead at runtime and offline
vulnerability detection. However, static methods do not protect from
runtime attacks, and are prone to producing false positives. In the
second category of software solutions, the best known are Stack-
Guard [23] and ProPolice [24]. These approaches rely on the inabil-
ity of an attacker to guess the value of a randomly generated “canary”
value placed just before the return address on the stack. Unfortu-
nately, more complex overflow attacks and format string attacks can
reveal the value of the canary or change the return address without
altering the canary.

Two code instrumentation techniques do support runtime detec-
tion of attacks and are particularly relevant because they both use a
shadow stack protection mechanism similar to our RA stack. The

N
(&)}

M FPGA processing
[Extra instr.executed |-

N
o

N
(9]

%penalty

N
o

511
0 - m- . I . = . . [— [— ! -
< o @© & = © © = = (0] n e} S o ()
s 5§ § ¥ g 5 § ¢ 83 2 3 @ 2 *° %
e} @ = = ® c = = °
3 X< F & 3 2 @ £ 5 2
= = @ * Q a S
a © Q S @ o
£
@
Figure 6: Performance penalty (%) per benchmark

first approach, the Return Address Defender (RAD) [25], performs
source modification of each function’s prologue and epilogue to in-
clude special instructions to store a copy of the return address in a
particular area of the data segment. Protection of the shadow stack
memory region is handled by the operating system. The second ap-
proach uses dynamic instruction stream editing (DISE) to perform
the same modifications only using binary instrumentation [26]. The
advantage of a scheme based on binary instrumentation is that source
code does not need to be exposed to the protection mechanism. How-
ever, in order to make the RA stack read-only these schemes rely on
OS primitives to manage page-table permissions which incurs high
performance overhead. In some environments the software-only so-
lution suffices, however, in the embedded world, the added overhead
is unacceptable. Even worse, the OS and memory protection mecha-
nisms might not even be available.

Hardware-assisted approaches to buffer overflow protection im-
prove upon accuracy and performance of software-only schemes for
dynamic attack detection by using a variety of techniques. The most
closely related to our solution include approaches that shadow the
return address in hardware by creating a return address stack or mon-
itoring the location of the return address for any unauthorized mod-
ifications [27, 28, 29, 30, 31, 32, 33]. We will briefly review these
closely related works. Other hardware-supported solutions tend to
focus on protecting control-data in the general sense, including all
branches and jumps, not just the return address [34, 35, 36, 37, 38].

Secure Return Address Stack (SRAS) [27] uses processor modifi-
cations, which includes ISA (Instruction Set Architecture) changes,
additional logic, and storage space, to implement a shadow stack in
hardware. Unlike the regular system stack, the shadow stack only
holds return addresses. On a function call (CALL), the return ad-
dress is pushed to the regular stack and the shadow stack. On a return
(RET), the return address is popped from both stacks and compared.
To handle function call nesting, the operating system is modified to
handle secure overflow storage. The spill-over of the secure stack is
stored in a special part of memory, which is accessible only to the
kernel. The kernel is responsible for managing a separate spill-over
secure stack for each process.

Several solutions for non-LIFO control flow are proposed for
SRAS. Because gotos are generally considered a bad programming
practice, they are not allowed. The set jmp () /longjmp () sit-
uation is handled in four ways. In the first case, non-LIFO flow is
prohibited altogether. Second, if non-LIFO is detected then SRAS is
disabled, allowing execution to continue without protection. Third,
setjmp () /longjmp () executes, but only if the return is already
somewhere on the secure stack; this requires the compiler to in-
sert sras_pus () and sras_pop () functions. The fourth solution

identifies the non-LIFO control flow situations dynamically and has
separate handling and dynamic stack adjustments; this last approach
works fine as long as all non-LIFO cases are known in advance (a
new non-LIFO methodology would not be detected on the fly).

SmashGuard [28], like SRAS, uses a processor and operating sys-
tem modification technique. The semantics of CALL and RET in-
structions are modified to store a function return address inside a spe-
cial memory-mapped hardware stack and compared upon the func-
tion’s return. All context switching and spill-over stack growth is
handled by modifying the operating system to include additional se-
curity kernel functions.

The non-LIFO (setjmp()/longjmp ()) situations are
handled in SmashGuard through library rewriting, so that
setjmp () /longjmp () is handled by a “jump-through-register”
rather than regular jump. This creates stack inconsistencies upon
return address verification, which are handled by popping addresses
off the stack until reaching the correct address. If the end of the
stack is reached, then an error or attack has occurred (i.e., the
return address verification has failed), so the execution is halted.
The drawback of this approach is that an attack, which forces a
jump on an executable stack would succeed. Also, if a function is
called multiple times in a loop, in order to pop the correct version
of the function’s return address off the stack—not just the first
occurrence—SmashGuard also stores the corresponding value of the
stack pointer.

Xu et al. [29] present a scheme that splits the stack into two pieces:
the control stack, which holds the return addresses, and the data
stack, which holds everything else. They propose a software solu-
tion, which involves compiler modification, and a hardware solution,
which modifies the processor and semantics of CALL and RET. In
the software-only solution, the compiler allocates and manages the
additional control stack. During each function prologue, the com-
piler saves the return address to the control stack, which resides in
memory securely managed by the operating system. The compiler
restores the return address from the control stack onto the system
stack in the function epilogue. Simulation yielded significant perfor-
mance overheads, which led the researchers to a hardware solution.

The hardware redesign is very similar to SmashGuard and SRAS,
although there are additional operating system changes to handle the
two stacks. The processor is modified to change CALL and RET
instructions to store and verify the function return addresses. How-
ever, even though an extra jump_buf structure is mentioned for
setjmp () /longjmp () cases, the non-LIFO problem is currently
not addressed, and neither is stack spill-over. Thus the authors claim
no performance penalty for the hardware solution.

Secure Cache (SCache) [30, 31] uses cache memory to protect the

return address, by providing replica cache lines in which the return
address is shadowed. This way, a corrupted return address will have
a different value in cache than its replica. By preventing the eviction
of replica cache lines, the detection technique improves. In addition,
the non-lifo cases do not cause a problem for SCache, because the
return address is not explicitly checked against a known value. A
drawback to using cache space for storing the return address is that
the SCache approach is sensitive to cache parameters and behavior.

Kao and Wu [32] present a scheme to detect if the return address
is modified without explicitly storing the good return address for ver-
ification. Two registers are added to store the current return address
and the previous frame pointer. A valid bit that acts as an exception
flag is also added. If a memory store is issued to either a return ad-
dress on the stack or to the frame pointer, then the flag is raised to
signal a violation. When the function returns, if the return address
is to the local stack or to the current return address, then execution
is halted. The authors claim that only two levels of function calls
need monitoring. As with SCache, the non-lifo situations are not
a problem in this scheme, because the return address is not explic-
itly checked; however, if non-lifo control flow is not detected, then a
longjmp to a function that is exploited by a buffer overflow might
remain undetected.

The existing hardware solutions for runtime return address pro-
tection naturally yield much smaller performance penalties than
software-only approaches. To accomplish such improvement, pro-
cessor modifications are made to include a hardware stack (or sup-
port for software shadow stack) and some additional processing
logic. Our work avoids changing the processor and still exhibits low
performance overhead.

7 Conclusions and Future Work

We designed and evaluated a scheme for guarding against buffer
overflows that overwrite the return address on the stack. By using
a small amount of unobtrusive hardware, we are able to achieve a
number of advantages over prior solutions:

e No CPU or ISA modifications.

e Minimal OS modifications needed (only for context-switching
support).

e Legacy and binary support via binary instrumentation.
e Support for non-LIFO control flow.

As hardware and software schemes become progressively more
effective at protecting the return address, attackers are motivated to
find other methods for diverting control flow. One method related
to stack overflows is pointer subterfuge, which can be used multiple
times to construct a complex attack that overwrites multiple pointer
values to create corruption of function pointers or the jump table [40].
Future work will extend protection to attacks other than stack smash-
ing and to general-purpose computing platforms, resulting in a more
thorough and general protection mechanism.

Acknowledgment

This research is partially supported by NSF grants ITR-025207 and
CNS-0934725, as well as FOSR grant FA9550-09-1-0194.

References

[1] CERT Coordination Center. http://www.cert.org.

[2] A.Das, D. Nguyen, J. Zambreno, G. Memik, A. Choudhary, “An
FPGA-based intrusion detection architecture”, in IEEE Trans.

Information Forensics and Security, vol.3, no.1, pp 118-132,
2008.

[3] Xilinx, inc. http://www.xilinx.com.

[4] Jonathan Pincus and Brandon Baker, “Beyond Stack Smashing:
Recent Advances in Exploiting Buffer Overruns”,/IEEE Security
and Privacy, pp. 20-27, Jul 2004.

[5] Alephl, “Smashing the Stack for Fun and Profit,” in Phrack
Magazine, vol. 7, issue 49-14, 1996.

[6] Benjamin A. Kuperman and Carla E. Brodley and Hilmi Oz-
doganoglu and T. N. Vijaykumar and Ankit Jalote, “Detection
and prevention of stack buffer overflow attacks”, Communica-
tions of the ACM, pp. 50-56, Nov 2005.

[71 H. Shacham, “The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86)”, In Proceed-
ings of the 14th ACM Conference on Computer and Communi-
cations Security,ACM, pp. 552-561, Oct 2007.

[8] Erik Buchanan, Ryan Roemer, Hovav Shacham and Stefan
Savage ,“When good instructions go bad: generalizing return-
oriented programming to RISC”,CCS ’08: Proceedings of the
15th ACM conference on Computer and communications secu-
rity, ACM, pp. 27-38, 2008.

[9] Technical Reference, “On-Chip Peripheral Bus V2.0 w/OPB Ar-
biter Data Sheet”, available: http://www.xilinx.com.

[10] Hyper Transport Consortium, “The future of High-
Performance Computing: Direct Low Latency CPU-to-
Subsystem Interconnect”. Whitepaper.

[11] T. Austin, E. Larson, D. Ernst, “SimpleScalar: An Infrastruc-
ture for Computer System Modelling”, IEEE Computer, pp. 59-
67, Feb 2001.

[12] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T.
Mudge, R.B. Brown, “MiBench: A free, commercially represen-
tative embedded benchmark suite”, Proceedings of the 4'" IEEE
Workshop Workload Characterization, pp. 10-22, Dec 2001.

[13] J. Manke and J. Wu. Data-intensive system benchmark suite
analysis and specification. Atlantic Aerospace Electronics Corp,
1999.

[14] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David
Wagner, “Detecting Format-String Vulnerabilities with Type
Qualifiers”, In 10th USENIX Security Symposium, Aug 2001.

[15] Rough Auditing Tool for Security (RATS), “Secure Soft-
ware: Safer Source from Start to Finish”, available:
http://www.fortifysoftware.com/security-resources/rats.jsp

[16] “PScan: A Limited Problem Scanner for C Source Files”, avail-
able: http://deployingradius.com/pscan/

[17] D. Wagner, J.S. Foster, E.A. Brewer, A. Aiken, “A First Step
Towards Automated Detection of Buffer Overrun Vulnerabili-
ties”, Network and Distributed System Buffer Overflow Sympo-
sium, 2000.

[18] J. Viega, J.T. Bloch, T. Kohno, G. McGraw, “Token-based
Scanning of Source Code for Security Problems”, ACM Trans-
actions on Information and System Security, Vol. 5, No. 3, pp.
238-261, Aug 2002.

[19] D. Wagner, H. Chen, “MOPS: An Infrastructure for Examin-
ing Security Properties of Software”, Proceedings of the 9t"
ACM Conference on Computer and Communications Security,
pp- 235-244, 2002.

[20] B. B. Madan, S. Phoha and K. S. Trivedi, “StackOFFence: A
Technique for Defending Against Buffer Overflow Attacks”, In-
ternational Conference on Information Technology: Coding and
Computing, 2005. (ITCC 2005), vol. 1, pp. 656-661, Apr 2005.

[21] Bharat B. Madan, Shashi Phoha and Kishor S. Trivedi, “Stack
Overflow Fence: A Technique for Defending Against Buffer
Overflow Attacks”, Journal of Information Assurance and Se-
curity (JIAS), vol. 1, issue 2, pp. 129-136, 2006.

[22] Prattana Deeprasertkul, Pattarasinee Bhattarakosol, Fergus
O’Brien, “Automatic detection and correction of programming
faults for software applications”, Journal of Systems and Soft-
ware, vol. 78, issue 2, pp. 101-110, Nov 2005.

[23] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang, “StackGuard: au-
tomatic adaptive detection and prevention of buffer-overflow at-
tacks”, Proceedings of the 7th Conference on USENIX Security
Symposium, 1998.

[24] Eto Hiroaki, Yoda Kunikazu, ProPolice,Transactions of Infor-
mation Processing Society of Japan, vol.43, no.12, pp 4034-
4041, 2002.

[25] T. Chiueh and F. Hsu, “RAD: A Compile-Time Solution to
Buffer Overflow Attacks”, Proceedings of the 21%% Interna-
tional Conference on Distributed Computing Systems (ICDCS),
Phoenix, Arizona, USA, Apr 2001.

[26] M. L. Corliss, E. C. Lewis, and A. Roth, “Using DISE to pro-
tect return addresses from attack™ in SIGARCH Comput. Archit.
News 33,pp 65-72, Mar 2005.

[27] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi, “Enlist-
ing Hardware Architecture to Thwart Malicious Code Injection”,
Proceedings of the International Conference on Security in Per-
vasive Computing, Boppard, Germany, pp. 237-252, 2003.

[28] H. Ozdoganoglu, T. Vijaykumar, C. Brodley, B. Kuperman, and
A. Jalote, “SmashGuard: A Hardware Solution to Prevent Secu-
rity Attacks on the Function Return Address,” Computers, IEEE
Transactions on, vol. 55, pp. 1271-1285, 2006.

[29] J. Xu, Z. Kalbarczyk, S. Patel, and R.K. Iyer, “Architecture
Support for Defending against Buffer Overflow Attacks”, Pro-
ceedings of the 2% Workshop Evaluating and Architecting Sys-
tem Dependability (EASY-2002), Oct 2002.

[30] K. Inoue, “Energy-security tradeoff in a secure cache architec-
ture against buffer overflow attacks”, SIGARCH Comput. Archit.
News, vol. 33, Issue 1, pp. 81-89, Mar 2005.

[31] K. Inoue, “Lock and Unlock: A Data Management Algorithm
for A Security-Aware Cache”, IEEE International Conference
on Electronics, Circuits and Systems (ICECS’06), pp. 1093-
1096, 2006.

[32] Wen-Fu Kao, S. Felix Wu,“Light-weight Hardware Return Ad-
dress and Stack Frame Tracking to Prevent Function Return Ad-
dress Attack™, The 2009 IEEE/IFIP International Symposium on
Trusted Computing and Communications (TrustCom-09), 2009.

[33] Zili Shao, Jiannong Cao, Keith C.C. Chan, Chun Xue, Edwin
H.-M. Sha, “Hardware/software optimization for array & pointer
boundary checking against buffer overflow attacks”, Journal of
Parallel and Distributed Computing, Volume 66, Issue 9, Secu-
rity in grid and distributed systems, pp 1129-1136, Sep 2006.

[34] J. R. Crandall and F. T. Chong. “Minos: Control data attack
prevention orthogonal to memory model”, In Proceedings of the
37th Annual IEEE/ACM International Symposium on Microar-
chitecture (Portland, Oregon). pp 221-232, Dec 2004.

[35] A. Smirnov and T. Chiueh. “DIRA: Automatic detection, iden-
tification and repair of control-data attacks”, In Proceedings of
the 12th Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb 2005.

[36] G. Suh, J. Lee, and S. Devadas. “Secure program execution
via dynamic information flow tracking”, In Proceedings of the
11th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. Boston, MA., Oct
2004.

[37] J.Zambreno, A. Choudhary, R. Simha, B. Narahari, N. Memon.
“SAFE-OPS: An approach to embedded software security”.
ACM Transactions in Embedded Computer Systems, vol. 4, is-
sue 1, pp 189-210, Feb 2005.

[38] M. Budiu, U. Erlingsson, M. Abadi. “Architectural support for
software-based protection”, In Proceedings of the 1st Workshop

on Architectural and System Support For Improving Software
Dependability (San Jose, California). ASID *06. ACM, New
York, NY, pp 42-51, Oct 2006.

[39] A. Francillon and C. Castelluccia, “Code injection attacks on
harvard-architecture devices” In Proceedings of the 15th ACM
Conference on Computer and Communications Security, pp 15-
26, Oct 2008.

[40] K. Piromsopa, and R.J. Enbody, “Defeating buffer-overflow
prevention hardware”, In 5th Annual Workshop on Duplicating,
Deconstructing, and Debunking, WDDD 2006.

Authors Biographies

Eugen Leontie received his M.S in 2005, focusing in Advanced
Computer Architectures, from Politehnica University of Bucharest,
Romania, where he also obtained his B.S in 2004. He is currently
working towards his PhD degree at George Washington University,
Washington, DC. His research interests include embedded system
designs, secure hardware architecture, cryptography and software
and information protection.

Gedare Bloom received the B.S. degree in computer science from
Michigan Technological University, Houghton, MI in 2005, and is
currently pursuing the Ph.D. degree in computer science at The
George Washington University. His research interests include soft-
ware security, system security, operating systems, computer archi-
tecture, and distributed systems.

Olga Gelbart (D.Sc.08) received her B.S. degree magna cum
laude in 1997, ML.S. degree in 1999 and D.Sc. degree in 2008 (all in
Computer Science) from the George Washington University, Wash-
ington, DC. Her research interests include computer security and
cryptography with the focus on compiler techniques and hardware-
software techniques for software protection. She currently holds a
position of Computer Scientist at the US Naval Research Labora-
tory, Washington, DC, where her latest work also includes security
data visualization. Dr. Gelbart has been the recipient of several hon-
ors and awards, including membership in the Tau Beta Pi engineer-
ing honors society. She is a professional member of the ACM and
the IEEE.

Bhagirath Narahari is a Professor of Computer Science at The
George Washington University. He received the B.E. degree in elec-
trical engineering from the Birla Institute of Technology and Science,
Pilani, India in 1982, and the Masters and Ph.D. degrees in Com-
puter Science from the University of Pennsylvania, Philadelphia, in
1984 and 1987 respectively. He is currently a Professor of Com-
puter Science at The George Washington University, where he was
the Department Chairman from 1999-2002. His research interests lie
in the areas of embedded systems, computer architecture, software
security, and parallel computing.

Rahul Simha is Professor of Computer Science at The George
Washington University. He received his PhD in Computer Science
from the University of Massachusetts in 1990. His research inter-
ests include embedded systems, compilers, languages, architecture,
security and complex systems.

