
C H A P T E R

12
Hardware and Security:

Vulnerabilities and

Solutions

Gedare Bloom, Eugen Leontie, Bhagirath Narahari, Rahul Simha

12.1. INTRODUCTION

This chapter introduces the role that computer
hardware plays for attack and defense in cyber-
physical systems. Hardware security – whether
for attack or defense – differs from software, net-
work, and data security because of the nature of
hardware. Often, hardware design and manufac-
turing occur before or during software develop-
ment, and as a result, we must consider hardware
security early in product life cycles. Yet, hard-
ware executes the software that controls a cyber-
physical system, so hardware is the last line of
defense before damage is done – if an attacker
compromises hardware then software security
mechanisms may be useless. Hardware also has a
longer lifespan than most software because after
we deploy hardware we usually cannot update it,
short of wholesale replacement, whereas we can
update software by uploading new code, often
remotely. Even after hardware outlives its use-
fulness, we must dispose of it properly or risk
attacks such as theft of the data or software still
resident in the hardware. So, hardware security
concerns the entire lifespan of a cyber-physical
system, from before design until after retirement.

In this chapter, we consider two aspects
of hardware security: security in the processor

supply chain and hardware mechanisms that pro-
vide software with a secure execution environ-
ment. We start by exploring the security threats
that arise during the major phases of the pro-
cessor supply chain (Section 12.2). One such
threat is the Trojan circuit, an insidious attack
that involves planting a vulnerability in a pro-
cessor sometime between design and fabrication
that manifests as an exploit after the processor
has been integrated, tested, and deployed as part
of a system. We discuss ways to test for Tro-
jan circuits (Section 12.2.1), how design automa-
tion tools can improve the trustworthiness of
design and fabrication to reduce the likelihood of
successful supply chain attacks (Section 12.2.2),
defensive techniques that modify a computer pro-
cessor’s architecture to detect runtime deviations
(Section 12.2.3), and how software might check
the correctness of its execution by verifying the
underlying hardware (Section 12.2.4).

We begin the second aspect of hardware secu-
rity – how hardware can support software to
provide secure execution throughout a cyber-
physical system’s lifetime – by introducing how
hardware supports secure systems (Section 12.3).
One contribution of hardware is that it can
implement security mechanisms with smaller

Handbook on Securing Cyber-Physical Critical Infrastructure. DOI: 10.1016/B978-0-12-415815-3.00012-1 305
c© 2012 Elsevier Inc. All rights reserved.



306 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

performance penalties than software implemen-
tations. Memory isolation techniques rely on
hardware to enforce isolation primitives effi-
ciently (Section 12.3.1). Cryptographic accelera-
tors use hardware parallelism to provide speedup
to cryptography primitives and protocols (Sec-
tion 12.3.3). Another contribution of hardware
is that it can provide a trusted base for com-
puting: if the hardware is trustworthy or secure,
then we can build a secure system from trusted
hardware primitives. Granted if the hardware is
compromised by some of the attacks presented
in Section 12.2, then the trusted base is not
trustworthy and our system would be insecure.
Secure coprocessors can be a trusted base for
computing if they are manufactured properly,
protected from physical compromise, and pro-
vide an isolated platform that implements secu-
rity mechanisms – for example, cryptographic
primitives – for use by the rest of the system (Sec-
tion 12.3.4). Physical compromise of a computer
introduces sophisticated attacks that target oth-
erwise unobservable components like system bus
traffic and memory contents; one countermeasure
against physical attack is to place the processor in
a tamper-proof enclosure and encrypt (decrypt)
everything that exits (enters) the processor (Sec-
tion 12.3.5). Even with the above security mea-
sures, if an application contains an exploitable
security vulnerability, then malicious code can
enter the system. Hardware techniques can mit-
igate the potential that software vulnerabilities
are exploitable by protecting an application from
the software-based attacks (Section 12.3.2). We
conclude this chapter with some areas for future
work and exercises that demonstrate the concepts
of hardware security.

12.2. HARDWARE SUPPLY CHAIN

SECURITY

For years, Moore’s Law has predicted the suc-
cess of the semiconductor integrated circuit (IC
or chip) manufacturing business: a new IC can
be produced, which has twice as many transis-
tors as a similar IC made less than 2 years prior.

With each new generation of smaller transistor
sizes, IC fabrication plants, called foundries or
fabs, must update their tools to support the new
technology, an expensive cost to incur every other
year.

The increase in costs and demand for new
chips, coupled with decreased production costs
overseas, has led to the globalization of the
semiconductor design and fabrication industry,
which in turn raises concerns about the vulner-
ability of ICs to subversion. In particular, how
can chip manufacturers, who still design and
sell but no longer fabricate chips, verify that
the chips they sell are authentic to the designs?
Currently, this problem is solved by trust: end
users trust chip manufacturers, who trust chip
fabricators. But what if chip fabrication is not
trustworthy?

Concerns about IC fabrication seem to have
originated in the military sector, with DARPA
issuing a Broad Agency Announcement (BAA)
in 2006, and again in 2007, requesting propos-
als for the TRUST in Integrated Circuits (TIC)
program [1, 2]. Adee [3] gives an overview of
the TIC program and IC supply chain prob-
lems. Semiconductor Equipment and Materials
International (SEMI) also has acknowledged the
problems inherent in outsourced fabrication and
industry stratification [4].

Possible attacks on the IC supply chain include
maliciously modifying ICs, copying of ICs to
produce cloned devices, or stealing intellectual
property (IP). A malicious modification to an IC
is called a Trojan circuit or Hardware Trojan,
because the modification hides itself within the IC
and possibly even provides correct, useful func-
tionality before it attacks, much like its epony-
mous myth. Cloned or counterfeit ICs lead to lost
revenue and may be less reliable than the original,
potentially affecting the reputation of the origi-
nal device manufacturer and the security of the
end user. IP theft is similar to counterfeiting but
may be used to create competing devices without
incurring the research and development costs. All
of these attacks may cause financial harm to the
original designer or device manufacturer, while



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 307

Trusted Semi-trusted

(mixed trust)
Untrusted

Level of control of IC supply chain

FabricationSpecs Code TestDesign

HDL

libs

IP

cores
Tools

Std

cells

FIGURE 12-1 IC Supply Chain. End-users trust chip designers, whose name appears on the final product, but design
houses outsource much of their work to lesser known companies, hence introducing semitrusted and untrusted phases.
These phases introduce vulnerabilities that attackers can exploit before the designer incorporates its IC in a device destined
for end-users.

also introducing potential risks to end users due
to loss of reliability and security.

Supply chain attacks can happen during any of
the untrusted phases prior to deployment within
an electronic device. The primary phases of the IC
supply chain, shown in Figure 12-1, are design,
fabrication, and test. Categorical levels of trust
are assigned based on the end user point-of-
view, with the assumption that chip designers are
trusted.

The IC design phase consists of all the code
and other inputs to the tools that will gener-
ate the specification for the foundry processes.
Some of the design processes are observable and
auditable, and therefore trusted. However, third
party IP is increasingly used in a protected man-
ner such that designers and consumers cannot
verify the contents of the IP. Thus, the design
phase has mixed levels of trust, and IC design
is vulnerable to supply chain attacks. Fabrication
processes are similarly untrusted due to a lack of
verifiability and trust at offshore foundries. Only
the test phase is trusted in its entirety.

The test phase ensures each IC passes a set
of test procedures that check for manufacturing
faults based on the known design. Because the IC
may be modified in unknown ways that may acti-
vate malicious activity under rare circumstances,
the current test phase cannot detect Trojan cir-
cuits. Furthermore, IP theft and device cloning

occur before the test phase, so it is not sufficient
for detecting any of the above attacks, even if it
is trusted.

As designing circuits has become more
complicated, commercial pressures have driven
technologies that improve time-to-market. One
such technology is reconfigurable logic, for exam-
ple, the field programmable gate array (FPGA)
devices. A reconfigurable device can be repro-
grammed after it is deployed. Another technology
that has gained momentum is soft IP, which are
components of circuit design that are deployed
as source code, for example, as a library of
hardware description language (HDL) files. Both
reconfigurable logic and soft IP make IP theft and
cloning easier.

Reconfigurable logic is both a boon and a bur-
den for designing secure circuits. On the positive
side, reconfigurability decouples manufacturing
from design, in contrast to the sequential sup-
ply chain demonstrated in Figure 12-1. Thus, a
sensitive design does not need to be sent to the
foundry. On the negative side, the design and
deployed device can be more easily accessed by
an attacker than a fixed-logic design. For bit-
stream reconfigurable devices, such as FPGAs,
the security of the design depends on the secu-
rity of the bitstream. Trimberger [5] details some
of the security concerns and solutions for FPGA
designs of trusted devices.



308 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

The following sections discuss how research is
attempting to solve the problems of the modern
IC supply chain.

12.2.1. Testing for Trojan Circuits

One approach to Trojan circuit detection is to
look for additions and modifications to an IC in
a laboratory setting prior to deploying the final
product. Lab-based detection augments the test
phase of the supply chain with silicon design
authentication, which verifies that an IC con-
tains only the designer’s intended functionality
and nothing else [6]. Silicon design authentica-
tion is difficult due to increasing IC complex-
ity, shrinking feature sizes, rarity of conditions
for activating malicious logic, and lack of knowl-
edge about what functionality has been added to
the IC. Testing cannot capture the behavior of
added functionality, so an IC could contain all
of the intended functionality while having extra
malicious logic that might not be activated or
detected by tests. Detection by physical inspec-
tion is insufficient due to the complexity and
size of modern ICs. Destructive approaches are
too costly and cannot be applied to every IC.
Detection based on physical characteristics of the
IC are imprecise because fabrication introduces
physical variations that increase as ICs shrink.
Two promising directions that are active areas
for research in the area of Trojan circuit detec-
tion at the silicon design authentication step are
side-channel analysis and Trojan activation.

Side-channel analysis relies on variations in
signals, usually in the analog domain, that an IC
emits and a Trojan circuit would affect – changes
to the behavior or physical characteristics of an
IC may change non-behavioral traits when the
IC is tested. For example, the presence of a Tro-
jan circuit may cause deviations in a chip’s power
dissipation, current, temperature, or timing. Sem-
inal work by Agrawal et al. [7] uses power anal-
ysis for detection of Trojan circuits; they also
suggest some other side-channels to investigate.
Other research expands on side-channel analysis
by refining power-based approaches for Trojan

detection [8–10], investigating other side-channel
detection techniques [11, 12], and characterizing
the gate-level behaviors of an IC [13, 14].

Trojan activation techniques attempt to trigger
a Trojan circuit during silicon design authentica-
tion to make the malicious behavior observable
or to improve side-channel analysis techniques. A
motivating assumption is that attackers are likely
to target the least-activated circuitry in an IC, so
researchers have explored methods for generating
inputs that activate an IC where Trojan circuits
are likely to be hidden [15–17]. Other techniques
attempt to explore the state space of the circuit in
new ways, for example, via randomization [18]
or by partitioning the IC into regions [9, 19] in
which areas of the IC are isolated and then tested
for Trojan activity.

The silicon design authentication techniques
are useful for detecting the presence of malicious
circuitry prior to deploying devices. Physical
measures, such as leakage current or path delay,
characterize chips and can expose anomalies that
may indicate malicious logic. Usually, the char-
acteristics under measurement must be known
for a “golden” chip that is fabricated securely or
modeled based on the IC specifications and man-
ufacturing processes. Physical variations in the
manufacturing process makes side-channel anal-
ysis probabilistic, and IC complexity hinders acti-
vation techniques. Approaches that combine the
two techniques appear to offer good tradeoffs in
terms of accuracy and cost. In the following sec-
tion, techniques for circuit design are reviewed
that may assist in silicon design authentication
by improving the initial design phase of the IC
supply chain.

12.2.2. Design for Hardware Trust

Computer-aided design (CAD) and electronic
design automation (EDA) tools are crucial to the
efficiency and success of circuit design. These
tools, however, neglect IC supply chain problems.
This section describes ways to improve design
tools and processes to defend against IC supply
chain attacks.



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 309

Design tools focus mainly on design for test
(DFT) or design for manufacturability (DFM).
Researchers have proposed that the design phase
be augmented to improve hardware trust, intro-
ducing the notion of design for hardware trust
(DFHT). DFHT seeks to prevent Trojan circuits
from being introduced during design or fabri-
cation. An example of a DFHT technique is to
modify the design tools such that low probabil-
ity transitions in a circuit are increased [20, 21],
which presumably frustrates an attacker’s job of
finding an input that can trigger a Trojan circuit
yet is unlikely to occur in testing.
Watermarking. Watermarking is an established
technique for marking property such that coun-
terfeit goods are detectable; the next chapter
discusses digital watermarks for detecting soft-
ware piracy at greater length. IC watermark-
ing [22] helps to detect counterfeit devices and
IP theft. Metadata are embedded within the IC
design, so the manufactured product contains
an identifiable watermark that does not affect
the circuit’s functionality. Effective watermarking
requires that the watermark is not easy to copy. A
downside to watermarking is that pirated devices
must be re-acquired and verified by checking the
watermark.

Lach et al. [23, 24] propose watermarks
for FPGA design components with the intent
of identifying a component’s vendor and con-
sumer. FPGA designs are challenging to water-
mark because of the flexibility of the architecture.
Distributing the output of cryptographic hash
functions across the design will raise the barrier
to attacks that attempt to reconfigure the FPGA
to copy or remove watermarks.

Soft IP cores ease the design process, but they
also reveal the hardware design of a compo-
nent in its entirety. A challenge is to watermark
soft IP without losing the benefit of IP blocks.
Yuan et al. [25] describe this problem and evalu-
ate practical solutions at the Verilog HDL level,
demonstrating that watermarks can be embed-
ded in soft IP that is recoverable in the synthe-
sized design. Lin et al. [26] address the challenge
of combining FPGA and soft IP designs. Castillo
et al. [27] consider a signature-based approach

that can protect against IP theft of both soft and
hard IP cores.
Fingerprints, PUFs, and Metering. Building on
the notion of watermarking, a device fingerprint
is a unique feature of a design applied to a
device. Fingerprinting improves on watermark-
ing by enabling tracing of stolen property so
that after discovering a counterfeit device puni-
tive measures may be taken. Caldwell et al. [28]
show how to generate versions of IP cores that
synthesize with identical functionality but have
some other measurably unique properties, a key
to good fingerprinting.

Variations inherent in the IC manufacturing
processes give rise to techniques for device finger-
printing. Physical device fingerprinting via man-
ufacturing variability [29, 30] and physically
unclonable functions (PUFs) [31, 32] can provide
IC authentication. A PUF can act in a challenge-
response protocol to provide IC authentica-
tion based on unclonable physical characteristics
resulting from the variation inherent in manufac-
turing processes. Suh and Devadas [33] demon-
strate that PUFs are also useful as a secure source
of a random secret, which can be used to gener-
ate cryptographic keying material, in addition to
IC authentication. Simpson and Schaumont [34]
show how to use PUFs to authenticate FPGA-
based systems without an online verifier.

IC metering extends device fingerprinting to
restrict production and distribution of ICs. The
goal of metering is to prevent attackers from
copying a design and creating cloned devices.
Metering information is extracted from the IC
via manufacturing variability or PUFs and reg-
istered with the design company. When an IC is
recovered and suspected of being pirated, it can
be checked against the registered ICs.

Metering can be either passive or active.
Effective passive IC metering was proposed by
Koushanfar et al. [35] and is sufficient to state
whether or not a device is pirated. Active IC
metering is proposed by Lee et al. [36], mak-
ing use of wire delay characteristics to generate
a secret key unique to the circuit.

Active IC metering techniques improve on
passive metering by preventing pirated devices



310 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

from functioning. Activation logic is embedded
in the metered IC that requires keying material
not included in the manufactured device. The
intent of active IC metering is to prevent cloned
devices from operating without receiving the key-
ing material from the designer. For ASIC designs,
the EPIC technique [37] is a comprehensive solu-
tion for active metering that combines chip lock-
ing and activation using public-key cryptography.
For FPGAs, the work of Couture and Kent [38]
makes a first step by supporting IP licensing with
expirations. Baumgarten et al. [39] demonstrate
how to prevent IC piracy by introducing barriers
in the reconfigurable logic with small overhead.
The main advantage of active metering combined
with FPGA technology is that the IC design need
not be shared with the foundry.
Verifying Design and Fabrication. Much of
the research in security for the IC supply chain
focuses on the foundry as untrusted and therefore
the main source of IC supply chain attacks. Two
directions push back on this assumption by sup-
posing either (1) the design phase is also suscep-
tible to attack or (2) the foundry is semi-trusted.

As an example of (1), Di and Smith [40, 41]
consider attacks on the design side of the supply
chain and introduce tools that work together to
detect malicious circuitry that is added at design
time. The goal of these tools is to protect from
viruses in design software and from flawed third
party IP.

Bloom et al. [42] consider how the foundry
can add forensic information to its processes,
similar to IC metering techniques, but with addi-
tional information to assist in auditing occur-
rences of piracy. Forensic information is gathered
during fabrication and is embedded on the IC
so that forensic recovery tools can extract infor-
mation about counterfeit ICs that are recovered.
This approach is not able to prevent piracy, much
like watermarking and passive IC metering.

12.2.3. Architectural Techniques

In contrast to the design and verification tech-
niques of the previous two sections, architec-
tural support for silicon design authentication

attempts to prevent or detect the malicious
behavior of a Trojan circuit at run-time. One
straightforward architectural solution is to mea-
sure the IC’s physical characteristics, much like
in side-channel analysis, and then use those
measurements on-line by designing circuits that
report the measurements [43]. Similarly, the
well-studied fault-tolerant technique of repli-
cating entire processing elements can help to
detect some types of Trojan circuit attacks [44].
Researchers have also proposed some specific
architectural techniques to detect Trojan circuits.

BlueChip [45] is a hybrid design-time and run-
time system that introduces unused circuit iden-
tification to detect suspect circuitry and replaces
suspect circuits with exception generation hard-
ware. An exception handler emulates the elided
circuit’s functionality, thus avoiding the untested
components of an IC in which Trojan circuits are
likely to be hidden.

SHADE [46] is a hardware–software approach
that uses multiple ICs as guards in a single board
with the assumption at least two ICs come from
different foundries, so malicious circuitry would
not collude between two or more ICs. Hardware
and software protocols use the two-guard archi-
tecture to protect applications with pseudoran-
dom heartbeats and two layers of encryption.
These techniques are meant to prevent data exfil-
tration and detect denial-of-service attacks.

Similar concern for sharing information is
explored in the context of FPGA technology by
Huffmire et al. [47]. They describe a simple iso-
lation primitive (moat) that can ensure separa-
tion of cores after the place-and-route stage of
chip manufacturing. Moats can isolate function-
ally independent chip components and provide a
framework for designing secure systems out of
untrusted components. To enable communication
between the disparate cores, the authors present
a shared memory bus (drawbridge).

Architectural techniques are complementary
to design and verification techniques. Indeed, the
use of multiple techniques may improve over-
all Trojan circuit detection. Side-channel anal-
ysis performs well against large modifications,
but small Trojan circuits can hide in the noise



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 311

of the side-channel. Thus, applying side-channel
analysis can bound the size of undetected Tro-
jan circuits and assist architectural techniques by
imposing realistic assumptions on the possible
functionality of the Trojan circuit.

12.2.4. Can Software Check
Hardware?

Let us now consider how software might check
the validity of the hardware on which it executes.
A challenge in this direction is that, if the hard-
ware is incorrect, software has difficulty in veri-
fying the results of such checks.

For detecting Trojan circuits, Bloom et al. [48]
propose adding some OS routines that cause off-
chip accesses or checks. A secondary chip pro-
cesses these checks to verify the primary CPU.
Checks are an OS mechanism to challenge the
CPU in collaboration with an on-board verifier.

Software can also check other aspects of the
hardware. SoftWare-based attestation (SWATT)
[49] is a technique for verifying the integrity of
memory and establishing the absence of mali-
cious changes to memory. SWATT relies on an
external verifier in a challenge-response proto-
col. The verifier issues a challenge to an embed-
ded device, which must compute and return the
correct response. The correctness of the response
depends on the device’s clock speed, memory size
and architecture, and the instruction set archi-
tecture (ISA). A limitation of SWATT’s threat
model is that physical attacks are not considered.
In particular, an assumption is that an attacker
is unable to modify the device’s hardware. If
the hardware itself is compromised or replaced
wholesale, for example by a faster CPU or mem-
ory, then SWATT might verify the platform incor-
rectly. The problem is that SWATT relies on the
timing of the hardware for its verification, but if
the timing is different then the approach to veri-
fication may fail.

Deng et al. [50] propose a method for authen-
ticating hardware by establishing tight perfor-
mance bounds of real hardware and ensuring
that the runtime characteristics of the hard-
ware are at those bounds. Thus, a processor

design is authenticated (and not emulated) if its
performance matches the imposed constraints.
This approach depends on the details of the
hardware’s microarchitecture and supposes that
emulating the ISA with precise timing of the
microarchitecture is difficult.

Software-based checks can measure hardware
for correctness. A limiting assumption to all such
approaches is that the correct measurements are
known. Developing a predictive model for the
measurement would be a positive step forward in
this line of research. Integrating software-based
measurements with trusted hardware designs
can also improve platform security for high-
assurance applications.

12.3. HARDWARE SUPPORT FOR

SOFTWARE SECURITY

In Section 12.2, we saw that a determined and
resourceful attacker can compromise hardware.
Software is an easier target to attack. Compro-
mised software has but one goal: to abuse com-
puting resources. Such abuse can take multiple
forms, including corruption of critical code or
data, theft of sensitive data, and eavesdropping
or participating in system activities. Despite the
presence of malicious attacks, cyber-physical sys-
tems should be resilient and continue to operate
correctly. In the following sections, we inves-
tigate how computer hardware can help to
prevent malicious attacks from compromising
software. We start with software-based attacks
and defenses, then we discuss how hardware
improves the performance and security of cryp-
tography, and we finish with countermeasures to
physical attacks that rely on hardware access.

A simple attack is to access an application’s
memory from another application. Code and
data vulnerabilities entice attackers to try gain-
ing unfettered access to execute malicious soft-
ware or to steal sensitive information. Traditional
defenses against memory-based attacks isolate
execution contexts – for example, processes and
virtual memory address spaces – to prevent
one context from accessing another’s code and
data without permission. In Section 12.3.1, we



312 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

discuss established and new techniques for isolat-
ing memory with hardware support.

Even if we isolate every application in a system
and follow good security practices (strong pass-
words, good cryptography, physically secured
hardware), attacks might still compromise sys-
tem security by exploiting vulnerabilities within
the applications. An exploitable security vulnera-
bility in a software application is program behav-
ior that an attacker can trigger to circumvent the
system’s security policies. One such vulnerabil-
ity, the buffer overflow, is widely regarded as the
most commonly exploited vulnerability (on par
with database injections and cross-site scripting).
Good programming practices – bounds checking,
input validation – can prevent exploitable vul-
nerabilities, but enforcing such practices is not
always easy. Software solutions for buffer over-
flow detection – for example, StackGuard [51] –
provide decent protection with little overhead.
Buffer overflow prevention, however, incurs non-
negligible overheads with software-only solutions
– for example, Return Address Defender [52] and
dynamic instruction stream editing [53] – because
protection relies on page tables and virtual mem-
ory protection. Saving return addresses to read-
only memory pages can prevent a buffer overflow
from subverting the control flow, but the calls to
change page permissions incur a high overhead.
When protecting the return address, permission
changes twice for every function call, once to
allow writing the return address and then back to
read-only for the duration of function execution.
Hardware can improve the speed and reduce the
overhead of buffer overflow prevention. In Sec-
tion 12.3.2, we analyze hardware techniques to
mitigate buffer overflow attacks; we also exam-
ine hardware-based information flow tracking,
which prevents untrusted (low-integrity) inputs
from propagating to trusted (high-integrity) out-
puts thereby preventing unsanitized input from
affecting program behavior.

After we secure our systems from software
attacks, our next concern is the security of
sensitive data in networked systems. Data
communication networks have a wide attack
surface that requires encryption for securing

sensitive data. Transmission mediums do little to
deter attacks: wireless communication is a broad-
cast medium and cables can be tapped with little
effort. With cryptography, we can create end-to-
end secure channels across an unsecured physical
environment. Unfortunately, software implemen-
tations of cryptographic primitives come at
a high cost, especially in resource-constrained
devices. Perhaps worse than the performance cost
is the possibility of side-channel vulnerabilities –
see Section 12.2.1 – that arise due to power and
timing variations outside the control of software.
A dedicated hardware accelerator for crypto-
graphic primitives can outperform most software
implementations and can reduce the likelihood
of side-channel vulnerabilities. We describe the
advantages and challenges – maximize through-
put and minimize latency while keeping resource
utilization (size, weight, and power) small –
of cryptographic accelerators further in Sec-
tion 12.3.3.

Although cryptographic accelerators improve
the performance of cryptography and help to
prevent side-channel attacks, the danger that
the device might fall into the attacker’s posses-
sion still remains. Even with moderately sophis-
ticated equipment, an attacker with physical
access to hardware can steal data or subvert
security measures. One solution for defending
against physical attack is secure coprocessing.
General requirements for a secure coprocessor
are (1) to protect secret information such as
cryptographic keys from physical attack, (2)
to provide a host system with cryptographic
operations that resist side-channel analysis, and
(3) to provide a safe execution environment for
applications. The first requirement is typically
achieved with physical protection techniques:
fuses, temperature sensors, and other tamper
detection techniques that can trigger destruc-
tion of all secrets. Built-in cryptographic prim-
itives, the second requirement, are needed so
that secret keys need not leave the coproces-
sor, since it implements the cryptography using
those keys. The third requirement, a secure and
authenticated execution environment, refines a
secure coprocessor’s architecture as a computing



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 313

device with private memory, processor, and soft-
ware that can execute a wide range of applica-
tions. Section 12.3.4 further explores the algo-
rithms and example implementations of secure
coprocessors and briefly discusses less complex
alternatives.

Related to secure coprocessing are encrypted
execution and data (EED) platforms, which
encrypt all storage (including memory) and only
decrypt within the CPU boundary. EED plat-
forms counter attacks that probe or control
system buses, control memory content [54], or
attempt to reconstruct an application’s control
flow. Section 12.3.5 describes attacks on EED
platforms and their countermeasures.

12.3.1. Memory Protection

Security policies define how users of a comput-
ing system are allowed to use, modify, or share
its resources. Traditionally, an operating system
(OS) defines the security policies and relies on
hardware to assist in enforcing them. This sec-
tion reviews the role of hardware in supporting
system security through isolation and control of
resources.
Memory Protection in Commodity Systems.
Consider an abstract computing device compris-
ing two major components—the processor and
memory. The processor fetches code and data
from memory to execute programs. If both com-
ponents are shared by all programs then a pro-
gram might corrupt or steal another’s data in
memory, accidentally or maliciously, or prevent
any other program from accessing the proces-
sor (denial-of-service). To avoid such scenarios,
a privileged entity must control the allocation
(time and space) of compute resources (pro-
cessor and memory). Traditionally, the OS ker-
nel is responsible for deciding how to allocate
resources, and hardware enforces the kernel’s
decisions by supporting different privilege rings
or levels (Figure 12-2).

By occupying the highest privilege ring, the
kernel controls all compute resources. It can
read and write from any memory location,

Ring 1

Ring 2

Ring n

Ring 0

FIGURE 12-2 Privilege rings (Levels). The innermost ring
is the highest privilege at which software can execute, nor-
mally used by the OS or hypervisor. The outermost ring is
the lowest privilege, normally used by application software.
The middle rings (if they exist) are architecture-specific and
are often unused in practice.

execute any instruction supported by the pro-
cessor, receive all hardware events, and operate
all peripherals. User applications – residing in
the lowest privilege level – have limited access
to memory (nowadays enforced through virtual
memory), cannot execute privileged instructions,
and can only access peripherals by invoking
OS services. A processor differentiates between
kernel and user with bits in a special register,
generically called the program status word and
specifically called the Program Status Register in
ARM architectures, Hypervisor State Bit in Pow-
erPC architectures, Privileged Mode in the Pro-
cessor State Register in SPARC architectures, or
Current Privilege Level in the Code Segment Reg-
ister in Intel architectures.

A hierarchy of control from the most to least
privilege, combined with memory access con-
trols, prevents user programs from performing
any action outside a carefully sandboxed envi-
ronment without invoking services (code) in a
more privileged level. Control transfer between
different privilege rings usually is done with
interrupts or specialized control instructions; on



314 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

more recent Intel architectures, the sysenter and
sysexit instructions allow fast switching during
system calls. The OS controls the data structures
and policies that control high-level security con-
cepts like users and files, and code running out-
side the highest privileged ring cannot manipulate
them directly. A critical aspect of securing high-
level code and data is memory protection.

In simple architectures, the privileged state
also defines memory separation. An example of
a simple policy could be that user code can
only access memory in a specified range such
as 0xF000 to 0xFFFF, whereas privileged code
can access the full memory range. With one or
more fixed memory partitions, privileged code
can manage both the allocation and separation
of memory among application tasks. Except for
embedded and highly customized applications,
static memory partitioning is impractical.

A multiprocessing system comprising dynamic
tasks, each with distinct (often statically un-
known) memory and execution demands, require
dynamic memory management to limit memory
fragmentation and balance resource utilization.
Two practical solutions for dynamic memory
management are to use fixed sized blocks (pages)
or variable length segments. With either solu-
tion, memory accesses must be translated to
a physical address and verified for correct
access rights. Modern architectures usually pro-
vide some support for translation and verifica-
tion of memory accesses, whether for pages or
segments.

Virtual memory with paging is the norm in
dynamic memory management. Paging provides
each application (process) with a linear contigu-
ous virtual address space. The physical loca-
tion of data referenced by such an address is
computed based on a translation table that the
OS maintains. The memory management unit
(MMU) is a special hardware unit that helps to
translate from virtual to physical addresses, with
acceleration in the form of a hardware lookup
table called the translation look aside buffer
(TLB) and assist in checking access permissions.

The OS maintains a page table for each
virtual address space that contains entries of

virtual-to-physical pages. Each page table entry
contains a couple of protection bits, which are
architecture-dependent and either one bit to
distinguish between read/write permissions or
two encoded bits (three independent bits) for
read/write/execute permissions. A process gains
access to individual pages based on the permis-
sion bits. Because each process has a different
page table, the OS can control how processes
access memory by setting (clearing) permission
bits or by not loading a mapping into the MMU.
During a process context switch, however, the
OS must flush (invalidate) the hardware that
accelerates translation (the translation lookaside
buffer or TLB). So, hardware supports paging
with protection bits, which generate an exception
on invalid accesses and with the TLB for acceler-
ating translations.

Although paged-based virtual memory sys-
tems allow for process isolation and controlled
sharing, the granularity of permission is coarse –
permissions can only be assigned to full pages,
typically 4 KB. An application that needs to iso-
late small chunks of memory must place each
chunk in its own page, leading to excessive inter-
nal fragmentation.

With segmentation, instead of one contigu-
ous virtual address space per process, we can
have multiple variable sized virtual spaces, each
mapped, managed, and shared independently.
Segmentation-based addressing is a two step pro-
cess involving application code and processor
hardware: code loads a segment selector into a
register and issues memory accesses, then, for
each memory access, the processor uses the selec-
tor as an index in a segment table, obtains
a segment descriptor, and computes the access
relative to the base address present in the seg-
ment descriptor. Access to the segment descriptor
is restricted to high-privilege code.

Consider the Intel architecture as an exam-
ple of segmentation. It uses the code segment
(CS) register as a segment selector and stores
the current privilege level (CPL) as its two lower
bits. When the executing code tries to access a
data segment, the descriptor privilege level (DPL)
is checked. Depending on whether the loaded



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 315

segment is data, code, or a system call, the
check ensures the CPL allows loading the seg-
ment descriptor based on the DPL. For example,
a data segment DPL specifies the highest privi-
lege level (CPL) that a task can have in order
to be allowed access, so if DPL is 2 then access
is granted only to tasks with CPL of 0, 1, or
2. A third privilege level, the requested privilege
level (RPL), is used when invoking OS services
through call gates and prevents less privileged
applications from elevating privileges and gain-
ing access to restricted system segments.

Most open or commercial OSs ignore or make
limited use of segmentation. OS/2 [55] is a mod-
ern commercial OS that uses the full features
of segmentation. Some virtualization techniques
(such as the VMWare ESX hypervisor) do reserve
a segment for a resident memory area and rely on
segment limit checks to catch illegal accesses.
Research Directions in Memory Protection.
State-of-the-art research in memory protection
generally takes one of two directions. The
first builds security applications on top of the
popular paging mechanisms. One way to build
secure high-level applications with commodity
hardware is to use inter-process communication
(IPC) mechanisms that rely on process isolation
primitives. The Chromium project [56] splits a
monolithic user application – a web browser –
into isolated processes that can only communi-
cate using OS moderated IPC. The main browser
process interfaces most system interactions such
as drawing the GUI, storing cookies and history,
and accessing the network. Web page rendering
executes in a separate process so that any vul-
nerability or injection attack will not have direct
access to the main browser memory space.

The second general research direction aims to
address limitations of current architectural sup-
port, such as the granularity of protection in pag-
ing or the poor performance from the two-step
addressing of segmentation. Most work in this
direction considers how to support efficient fine-
grained data and task security controls.

InfoShield [57] makes a significant step to
ensure that only legitimate code can gain access
to protected memory regions at a word-level

granularity. A hardware reference monitor holds
access permissions for a limited number of
memory locations. New instructions manage the
permissions and allow for creating, verifying,
clearing, and securely moving them. InfoShield
assumes that only a few security-critical memory
locations exist during a process’s execution. In
typical use cases, InfoShield protects secret keys,
passwords, and application-specified secret data
from improper access.

A hardware-based table of permissions moti-
vates work to improve how the table is created,
stored, and manipulated in memory without
degrading performance of permission verifica-
tion. A data-centric approach designates permis-
sions for every address range representing each
memory object. On a memory reference, the cor-
responding permission is fetched with the content
of the referenced memory and hardware checks
the access permissions. Permissions can be cached
by using the existing hardware [58] or by using a
separate caching structure [59, 60].

Mondrian Memory Protection [59] uses a hier-
archical trie structure that provides word-level
permission granularity. Hardware traverses the
trie to check permissions. A TLB-like caching
structure accelerates permission checks based on
locality. Permissions are encoded compactly, thus
minimizing the amount of memory reserved for
permission storage. Unfortunately, compaction
complicates permission changes and frequent
changes to permissions results in frequent trie
node insertions and deletions that are hard to
support in hardware and slow to run in soft-
ware. Mondrian aims to protect large code mod-
ules whose interaction is mediated by an OS. As
such, the OS is invoked every time a security con-
text switch occurs.

Hardware containers [61, 62] are a memory
protection mechanism for fine-grained separa-
tion of code that maintains word-level data per-
missions. Containers isolate code regions at the
granularity of functions and offer a strict sand-
box for faulty code that aids in a controlled
recovery from failure. With the aid of com-
piler tools and runtime instrumentation, a secu-
rity manifest that dictates permissions for each



316 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

code region is enforced by a hardware reference
monitor. The hardware detects improper use of
system resources (unauthorized memory accesses
or denial-of-service) and enables applications to
undertake a hardware-supervised recovery pro-
cedure. Caching and architectural optimizations
help to reduce the performance overhead of secu-
rity enforcement.

Arora et al. [58] show a solution for enforc-
ing application-specified data properties at run-
time by tagging data addresses with an additional
security tag. For example, using a single bit SEC-
TAG can mark fine grained read-only memory
regions. The checker (reference monitor) can be
set to interpret and enforce the value of the secu-
rity tag as specified by a program-wide security
policy. One policy example is to label code zones
with specific security attributes. All zones with
the same label share the access on all data regions
with the SECTAG equal or less in value. Caching
the security tags changes the cache hierarchy in
two ways. First, the L2 cache automatically loads
security tags when a cache line is stored. The
L1 cache controller expands the cache line with
the security attributes for faster checking. The
checker directly uses the L1 security tag infor-
mation for enforcing the policy. Even though the
SECTAG length can vary based on the security
policy, the length is fixed by the processor archi-
tecture: any changes in SECTAG length means
changing the internal cache layout and size.

Reconfigurable hardware, like the FPGA,
poses a similar challenge to protecting the mem-
ory space. While processor-based systems often
have some separation mechanisms for protecting
processes in sharing the memory space, current
systems built based on reconfigurable hardware
have a flat memory addressing scheme. Since soft
cores are synthesized from a wide source of IP
providers, vulnerabilities or malicious cores can
issue unauthorized memory requests, corrupting,
or revealing sensitive data. One solution is to
compile an access policy directly to a synthesized
circuit that can act as an execution monitor and
enforce a memory access policy [63]. The special-
ized compiler transforms the access policy from
a formal specification to hardware description

language that represents the hardware reference
monitor.

An area of work related to memory protec-
tion is capability-based systems, out of which
many modern notions of protection arise. Capa-
bilities in their full form have had limited com-
mercial success, however, so they are not a very
active research area. We refer interested readers
to Levy’s book on the subject [64] for a thorough
introduction and history of the topic.

12.3.2. Architectural Support for
Control Flow Security

Vulnerabilities in software applications continue
to be targets for memory-based attacks – for
example buffer overflows – that attempt to gain
illegitimate access to code and data. In the follow-
ing, we examine how hardware helps to prevent
buffer overflows. Then, we explain information
flow tracking, a general technique for detecting
and preventing memory-based attacks.
Architectural Support for Buffer Overflow
Defense. Hardware-assisted approaches to
buffer overflow protection improve upon accu-
racy and performance of software-only schemes
for dynamic attack detection by using a variety of
techniques. One common solution is to maintain
a shadow of the return address in hardware
(Figure 12-3) by creating a return address stack
or monitoring the location of the return address
for any unauthorized modifications [65–70].
Other hardware-supported solutions protect all
control flow in general, including branches and
jumps [71–75].

Secure Return Address Stack (SRAS) [65]
implements a shadow stack in hardware with
processor modifications including: ISA (Instruc-
tion Set Architecture) changes, additional logic,
and protected storage. Unlike the usual call stack,
the shadow stack only holds return addresses.
On a function call (CALL), the return address is
pushed to the regular stack and the shadow stack.
On a return (RET), SRAS pops and compares
the return address from both stacks. To handle
function call nesting, the OS is modified to han-
dle secure overflow storage. The spill-over of the



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 317

push

pop

Low

SP

FP
Guard

Hi
Protected stack

a

&pop

caller stack

frame

caller FP

buf[99]
buf[98]

buf[0]
caller RA

main RA

RA stack

FIGURE 12-3 Stack memory protection moves (stores)
the return address to protected storage when a function
starts and then restores (checks) the return address before
the function returns.

secure stack is stored in a special part of memory
that is accessible only to the kernel. The kernel is
responsible for managing a secure spill-over stack
for each process.

SmashGuard [66], like SRAS, modifies the
processor and OS. The new semantics of CALL
and RET instructions store a return address
inside a memory-mapped hardware stack that is
checked on the function’s return. The OS includes
security functions during context switching and
to handle spill-over stack growth.

Xu et al. [67] present a scheme that splits
the stack into two pieces: the control stack to
store the return addresses, and the data stack
to store the rest. They propose a software solu-
tion involving compiler modification, and a hard-
ware solution that modifies the processor and
semantics of CALL and RET. In the software-
only solution, the compiler allocates and manages
the additional control stack. During each function
prologue, the compiler saves the return address
to the control stack, which resides in memory that
the OS securely manages. The compiler restores
the return address from the control stack onto the
system stack in the function epilog. Simulation
yielded significant performance overheads, which
led the researchers to a hardware solution.

Secure Cache (SCache) [68] uses cache mem-
ory to protect the return address by provid-
ing replica cache lines that shadow the return
address. A corrupted return address will have a
different value in cache than its replica. A draw-
back to using cache space for storing the return
address is that performance is sensitive to cache
parameters and behavior.

Kao and Wu [69] present a scheme to detect
return address modifications without explicitly
storing the good return address for verification.
Two registers are added to store the current
return address and the previous frame pointer.
A valid bit that acts as an exception flag is also
added. If a memory store is issued to either
a return address on the stack or to the frame
pointer, then the flag is raised to signal a vio-
lation. When the function returns, if the return
address is to the local stack or to the current
return address then execution is halted. The
authors claim that only two levels of function
calls need monitoring.

Using reconfigurable logic such as an FPGA
to implement a hardware guard, Leontie et al.
[76] provide a secure stack with little change
to the processor microarchitecture. The return
address is copied to a memory region in a hard-
ware guard that is inaccessible through any direct
memory calls. This memory region is called the
return address (RA) stack, and it is automat-
ically managed by a modified compiler. The
compiler-inserted instructions to manage the RA
stack synchronize the state of the RA stack with
the program stack independent of code local-
ity and caching policies. On each CALL, the
return address is stored in the RA stack, and at
each RET, the guard checks if an overflow has
occurred and ensures that the correct address
is returned to the processor. Thus, the guard
maintains a copy of the valid return address
and ensures that the correct address is always
returned regardless of any buffer overflows.

Heap overflows are as dangerous as – if less
common than – stack buffer overflows. Dynam-
ically allocated data is stored in memory inter-
leaved with management control data structures



318 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

and metadata. Heap allocation functions (mal-
loc, free, and new) maintain these structures to
track available and occupied memory regions.
A heap overflow might just destroy these struc-
tures and crash the program, but some allocators
are vulnerable to more powerful attacks [77].
When the allocator primitive tries to consolidate
freed memory using corrupted heap metadata, an
adversary might trick the allocator to write to
arbitrary locations in memory. Then, the attacker
can override pointers used in indirect jumps
to redirect a program’s control flow. Solutions
to the problems involving heap overflows in-
clude fine-grained memory protection, discussed
in Subsection 12.3.1, software mechanisms dis-
cussed in the next chapter, hardware-assisted
bounds checking [78], and hardware-supported
programmatic debugging [79].
Information Flow Tracking. Vulnerabilities in
software can be hard to find. Since attacks
usually enter a system through input channels,
researchers propose that instead of verifying
code, systems should verify data. Information
flow tracking techniques monitor data as it enters
a system and prevents any potentially damaging
activity that uses untrusted input. Based on the
source of data, trust levels are associated with
the data. Simply put, data comes from either
“trusted” or “untrusted” sources. Depending on
program semantics, the information channels are
tracked in order to determine if untrusted data
affects (taints) the trusted information, or the
reverse, if trusted – sensitive or secure – data
leaks into untrusted information that can divulge
secrets to the insecure channels. Preventing sen-
sitive data from leaking means identifying the
communication channels, whether explicit (direct
variable assignments) or implicit (control flow,
timing, cache content, power etc.), which the
data can influence.

Traditional approaches to track informa-
tion flow through static and dynamic track-
ing [80–82] have the disadvantage that just a
few untrusted sources can taint trusted data
and cause almost all computations to become
untrusted. Maintaining trusted execution in real
systems that track taint with many input channels
becomes extremely difficult.

Gate level information flow tracking (GLIFT)
[83] achieves full control over the information
leakage although with limitations on the compu-
tation model and increased resource utilization.
GLIFT shadows traditional gates with logic to
track trust. AND, OR, and MUX gates are aug-
mented to compute the trust level of their out-
put. Higher-level logic is built using these basic
gates. Much of the architectural changes and lim-
itations of GLIFT deal with program counter
(PC) manipulations. The resulting processor is a
slower, larger, and limited core, but one that can
guarantee complete information flow tracking.

Flexible (limited programmability) policies for
the propagation of taint is possible through archi-
tectural modifications [84]. Taint information is
associated with each memory word not by widen-
ing the width of memory cells but by keeping
a compact flat data structure (array of bits) in
a separate memory segment. Hardware support
includes new pipeline stages and modifications
to handle taint. Because the taint algorithm can
degrade performance, common operations are
cached using a custom unit.

12.3.3. Cryptographic Accelerators

Cryptographic primitives are demanding in
terms of computation resources: public key
cryptography requires expensive exponentia-
tions; symmetric ciphers use multiple itera-
tions of dictionary lookups and permutations
that are sequentially ordered; secure hashes
repeat iterative rounds of shifts and permuta-
tions. With more consumer applications requir-
ing cryptographic operations in their algorithms
for security and privacy, hardware manufacturers
propose hardware implementations of these pop-
ular primitives. The advantages of using hard-
ware are lower latency for operations, higher
throughput for high volume transactions, and
lower overall power consumption. As with most
hardware implementations, the cost is higher
complexity and cost of the hardware, and
less flexibility, as silicon space is reserved for
the fixed operations. Because hardware design
issues are considered when cryptographic stan-
dards are chosen, academic and commercial



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 319

Crypto

units

(a)

(c)

(b)

(d)

Crypto

unit

Crypto

unit
External bus

Crypto

units

CPU

core

Inst.

cache

FPGA

CPU

core

Data

cache

CPU

core

01100

10011

1110
10011

1110

01100
01100

10011

1110

01100

10011

1110

01100

10011

1110
10011

1110

01100
01100

10011

1110

01100

10011

1110

Crypto

units
CPU

core

CPU

core

CPU

core

FIGURE 12-4 Configurations for connecting a cryptographic accelerator to a CPU: (a) tightly coupled to the pipeline,
(b) attached over internal interconnect, (c) synthesized in specialized reconfigurable logic, and (d) attached as a coprocessor.

implementations of cryptographic protocols are
common [85–87].

The challenge and multitude of approaches
and solutions are in implementing units that are
optimized to offer a maximum throughput and
minimum size, latency, and power. Figure 12-4
shows a couple of integration options for con-
necting a cryptographic accelerator with a CPU,
from tightly coupled execution units in the pro-
cessor pipeline to bus-connected coprocessors.

Some processors are optimized for crypto-
graphic operations [88]. Their execution units
have dedicated resources to handle key storage
and specific arithmetic operations such as expo-
nentiation or modulus arithmetic. The instruc-
tion set supports the cryptographic operations
directly. As these are not standalone implemen-
tations of cryptographic algorithms, they require
support from the compiler to generate opti-
mized code [89]. The main advantage of such
an approach is that it is generic to a large set
of algorithms and not only cryptography. The
disadvantage is cryptographic operations will
still exert pressure on the processor pipeline.

Other implementation options for cryptographic
accelerators include small cores that implement
a dedicated function, a generic cryptographic
coprocessor that can handle different types of
operations, or a general purpose core that is
reserved for certain cryptographic algorithms.

One popular integration solution is for the
cryptographic engine to work as a coproces-
sor. Typically connected on standard interfaces
with the rest of the system, the processor can
off-load specific operations to the coprocessor.
Direct memory access (DMA) enables the copro-
cessor to make data accesses to memory. In
contrast to the secure coprocessors described in
Section 12.3.4, cryptographic accelerators do not
offer guarantees on the physical security of the
keying material used and may not even have
manufacturer-installed keys.

As with most hardware-implemented algo-
rithms, cryptographic accelerators are exposed
to the following problems: bugs in the imple-
mentation can cause expensive recalls, changes
in standards render old hardware obsolete, and
the development cost and time to market are



320 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

significant. FPGA technology is appealing for
implementing cryptographic primitives for sev-
eral reasons [90–94]. First, although generally
slower than application-specific integrated cir-
cuit (ASIC) implementations, FPGAs outperform
software implementations. Second, the design
and deployment cycle is short and cost-effective
at small scale. Third, the reconfigurability prop-
erty of FPGAs allows post-deployment patches
for protocol modifications, optimizations, and
bug fixes.

12.3.4. Secure Coprocessing

How can sensitive computations be executed in
remote devices such that the results obtained are
trustworthy? Programs can be altered, data can
be modified, records and logs deleted, or secrets
revealed. Simulators and debuggers offer mecha-
nisms for observing memory content and execu-
tion patterns; memory can be frozen and read;
operating systems and compilers may be altered;
and even the hardware might harbor a Trojan cir-
cuit.

Designers of secure coprocessors argue that
a system’s root of trust has to be a computa-
tional device that can execute its tasks correctly
and without disclosing secrets despite any attack
(physical or programmatic) [95]. A fast, gen-
eral purpose computer in a tamper-proof physi-
cal enclosure would suffice, but that is hard to
achieve. High-end processors consume a lot of
power and generate a lot of heat that is difficult
to dissipate in a tamper-proof enclosure. Thus,
secure coprocessors are limited to low power,
limited bandwidth devices incapable of process-
ing at high throughput. Figure 12-5 shows a
secure coprocessor as a peripheral to a host com-
puter. The services that the coprocessor offers
include safekeeping of cryptographic keys, cryp-
tographic operations, a secure execution envi-
ronment, and attestation of the host’s execution
state. A secure coprocessor ensures that a remote
device produces trustworthy results.

The enclosure of a secure coprocessor must
deter a sophisticated attacker from obtaining
any of the internal memory content. Fuses and

sensors help to determine whether the physi-
cal enclosure has been breached [96]. The usual
response to an attack is to erase all memory con-
tent. Since extreme temperatures could poten-
tially disable the erasure mechanisms and freeze
memory content, designers add thermal sensors
to detect such conditions. Other side channels
may reveal the secure coprocessor’s internal state.
Electromagnetic radiation is detected or pre-
vented by the enclosure, but power and heat dis-
sipation remain a concern. Although a limited
internal power exists to ensure the erasure proce-
dures, operational power is drawn from the host.
To minimize the opportunity for power analysis
attacks [97], the coprocessor is equipped with fil-
ters on the power supply. Well-designed shielding
on the enclosure obfuscates the heat signature.

Having a secure physical enclosure is insuffi-
cient to guarantee a unique, unclonable device.
At the least, the manufacturer initializes the
device with a uniquely certified root key-pair. All
other keying material can be derived from this
root key and stored in the device memory for
application use. Other cryptographic primitives
in a secure coprocessor may include a secure ran-
dom number generator [98], one-way counters,
software or hardware implementations of hash
functions, or symmetric and asymmetric ciphers
[99, 100].

The operational requirements of the secure
coprocessors are key management, communi-
cation, encryption services, internal resource
management, and programmability. These
requirements are difficult to implement with
dedicated hardware alone. Most solutions come
with a complex software stack composed of
a secure kernel, hardware assisted protection,
resource partitioning, layers of operational ser-
vices, and user applications. The IBM 4758 [101]
is built using a general purpose (x86-compatible)
processor, a secure boot mechanism, and a
high-level OS. As a complex software stack is
hard to validate for correctness, the designers
tried to create an architecture that would resist
attacks from malicious software executed on
the device. They implemented hardware locks
that are used to create partitions of memory and



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 321

Cryptographic

primitives

Volatile

storage

Persistent

storage

Reference

monitor

Secure coprocessor

Untrusted host

(CPU, RAM)

Attacker

System bus

FIGURE 12-5 Secure coprocessing relies on a tamper-proof coprocessor to provide security services to a host system. An
attacker is unable to examine the internals of the coprocessor, so secrets stored within are safe.

resources that untrusted software – including
privileged OS services in the highest-privilege
ring 0 – cannot break [102].

The power of secure coprocessors shows
in their application use cases: host integrity
validation, secure logs, audit trails, digital
rights management (DRM), electronic currency,
sandboxing, and attestation for remote agents.
We briefly review some of these examples in the
following.

Host integrity. Trust in a computing system
requires both tamper-proof hardware and priv-
ileged software. With viruses, trojans, and mal-
ware masquerading in a system, software cannot
easily prove itself authentic. If trust in the secure
coprocessor is established, then that trust enables
authenticating the host. The secure coprocessor
must control or verify the initial boot process
of the host and take snapshots of the memory
state. With this ability, the coprocessor can com-
pute secure hashes of the boot and kernel images,
as well as memory states at different milestones
in the host execution. By comparing the secure
hashes with known-good values, the secure copro-
cessor can detect memory corruptions.

Secure logs. Logs are an important target
for attackers. Forging entries to eliminate intru-
sion traces is essential for a stealth attack.
With the aid of a trusted coprocessor, logs can
be made tamper-evident. Cryptographic check-
sums are the main mechanism, but for sensitive
information, such as financial logs, encryption
primitives can be used for secrecy.

DRM. Two key properties make secure copro-
cessors appealing in copyright protection appli-
cations. The first is the ability to attest that
a host software system is tamper-free, includ-
ing the operating system and licensed applica-
tions. If an attacker (user) cannot circumvent
the license validations, then commercial software
can reliably check for correct registration proce-
dures. Second are the trustworthy cryptographic
primitives, including unique unforgeable identi-
fiers. With these primitives, content providers can
deliver encrypted content to the host, limiting
the attacker’s (including the end user) ability to
obtain access to original digital content.

Despite the usefulness of secure coprocessors,
their cost and limitations prevent widespread
deployment and motivate lighter mechanisms,
such as the smartcard and the trusted platform
module (TPM). Smartcards have as their main
role the safekeeping of a private key. With only
a small amount of memory and limited com-
putational power, smartcards store one or more
manufacturer-provided cryptographic key pairs
and perform basic cryptographic operations. In
this regard, they are similar to TPMs. Smartcards
connect via standard plug-and-play protocols
(USB, infra-red, and short distance radio waves)
with the host and offer their services on-demand
to the host for authentication, signatures, and
other protocols. This is where they differ from
TPMs. A typical TPM is closely integrated with
its host, plugged into the system buses, and may
be able to pause the host execution and take



322 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

memory snapshots. Smartcards are intended to
travel with a person and help authenticate the
owner, whereas the TPM remains with the host
device and helps to verify its authenticity. Both
smartcards and TPMs are cheap because they
lack tamper-proof mechanisms, but by the same
token they are not secure from an adversary that
can mount a physical attack.

12.3.5. Encrypted Execution and
Data (EED) Platforms

A physical attack assumes that the attacker has
direct physical access to the hardware and is
sophisticated and resourceful enough to exam-
ine and manipulate instruction and data buses.
A simple countermeasure is to encrypt data while
it is in memory or storage and only decrypt data
as it is fetched by the processor. A platform that
encrypts all data entering and exiting the CPU
boundary is called an encrypted execution and
data (EED) platform.

Figure 12-6 shows a typical layout for an
EED platform with an encryption/decryption
unit interposing on off-chip interfaces. Since the
communication protocol between the processors
and external memory does not necessarily align
with the typical use of standard cryptographic
primitives, adaptations typically are needed for
encrypted execution. We motivate the additional
data integrity, control flow validation, and autho-
rization mechanisms in the following.

We begin by describing an unauthenticated
EED platform that simply encrypts cache blocks
and shows why such a mechanism is insuffi-
cient against a determined attacker. Since mem-
ory chips are external from the CPU, the attacker
can supply the processor with arbitrary blocks
of data. The most effective form of attack
tries to supply the processor with an unex-
pected block; in doing so, an attacker might
then observe the outcome and use that advanta-
geously. For example, an attacker might notice
that skipping a certain block leads to skip-
ping a license check. A detailed description
of known attacks against this unauthenticated
EED platform follows, after which we introduce

scholarly work that mitigates such attacks and
describe architectural techniques to alleviate per-
formance overheads caused by encryption and
authentication.

Code Injection/Execution Disruptions. An
attacker may try to modify or replace a portion of
an encrypted block of instructions. If the key has
not been broken, this attack merely places ran-
dom bits into a cache block. Nonetheless, these
random bits will be decrypted into possibly valid
instructions, whose outcome can be observed by
a sophisticated attacker. If the instruction set uses
n bits for each opcode, there are a total of 2n

possible instructions. If, among these, v is the
number of valid instructions, and if the encryp-
tion block contains k instructions, then the prob-
ability that the decryption will result in at least
one invalid instruction in the block is 1− (v/2n)k .
Since a good processor architecture avoids wast-
ing opcode space with unused instructions, it is
highly probable that the attacker can supply a
random block that will be decrypted and exe-
cuted without detection. For example, if we con-
sider an encryption block size of 16 bytes and
if 90% of the opcode space is used for valid
instructions, the probability of an undetected dis-
rupted execution is 19%. We term this type of
attack execution disruption through instruction/
code injection. The attacker will not be able to
execute arbitrary code, but by observing the pro-
gram’s behavior, the attacker can deduce infor-
mation about the program’s execution. Such code
injection attacks suggest the need for run-time
code integrity checking in EED platforms, for
example by the use of signatures embedded into
the executable.

Instruction Replay. An attacker may re-issue
a block of encrypted instructions from mem-
ory. This can be accomplished either by freez-
ing the bus and replacing the memory read value
with an old one, overriding the address bus with
a different memory location than the one the
processor requested, or simply overwriting the
memory at the targeted address. This is illus-
trated in Figure 12-7(a). In this example, the pro-
cessor requests blocks A ,B ,and C from addresses
0x100, 0x200, and 0x300, respectively.



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 323

Data integrity

Privacy

(crypto)

Control flow

validation

Chip boundary (trusted)

Authorization

CPU

core

Inst.

cache

Data

cache

Untrusted

External

memory

FIGURE 12-6 Encrypted execution and data (EED) platform. Everything that leaves the chip boundary is encrypted, and
everything that enters it is decrypted. Control flow validation and data integrity checking, together with proper authoriza-
tion policies, defend against physical attacks that compromise encryption-only EED platforms.

(a)

Block C

Block B

Block B

0x200

0x100

0x300
0x200

Block A

Block C Block B

Block D

Block B
0x200

0x100

x ≤ 0 x > 0

0x400

0x300
0x200

Block A

(b)

FIGURE 12-7 Example of (a) instruction replay and (b) control flow attacks.

However, when the processor requests block
from address 0x300, the attacker injects block B ,
which will be correctly decrypted and executed.
The incorrect block is decrypted into valid exe-
cutable code. If the replayed block has an imme-
diate observable result, the attacker can store the
block and replay it at any time during program
execution. Also, by observing the results of a mul-
titude of replay attacks, the attacker can catalog
information about the results of individual replay
attacks and use such attacks in tandem for greater
disruption or to get a better understanding of

the application code. The vulnerability of EED
platforms to such replay attacks suggests the need
to validate that the contents are indeed from the
memory location requested by the processor. We
note that simply storing the signature inside the
code block does not prevent such attacks, since
the code block is unaltered.

Control Flow attacks. An attacker can deter-
mine the control-flow structure of a program
by watching memory accesses. This control-flow
information can lead to both information leakage
as well as attacks on the application. As described



324 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

in Refs. [103, 104], obtaining the block level
control flow graph (CFG) can lead to information
leakage since CFGs can serve as unique finger-
prints of the code and can detect code reuse. By
watching the interaction and calling sequences,
the attacker can learn more about the application
code. Additionally, knowledge of the CFG can
also compromise a secret key and leak sensitive
data. Since branches compare values, the attacker
could force which path to take in the applica-
tion code. To disrupt the execution or steer the
execution in the desired direction, the attacker
can transfer control out of a loop, transfer con-
trol to a distant part of the executable, or force
the executable to follow an existing execution
path. For example, consider Figure 12-7(b). Dur-
ing normal execution, block A (at address 0x100)
can transfer control to either block B (address
0x200) or block C (address 0x300) depending on
the value of some variable x . An attacker who
has observed this control flow property can sub-
stitute block C when B is requested and observe
the outcome as a prelude to further attack. Thus,
they can successfully bypass any check condi-
tion that may be present in block A . Addition-
ally, another type of attack is when blocks A and
B together form a loop. Then, upon observing
this once without interference and recording the
blocks, the attacker can substitute blocks from an
earlier execution to prevent the loop from being
completely executed. To protect against control
flow attacks requires a mechanism by which the
correct control flow, as specified by the applica-
tion, can be embedded and validated at run-time.

Data injection/modification. By examining the
pattern of data write-backs to RAM, an attacker
can guess the location of the runtime stack, as
commonly used software stack structures are
usually simple. Since the attacker has physical
access to the device, stack data can be injected
and, even though the data will be decrypted into
a random stream, the effect on program behavior
can be observed. The attacker may still be able
to disrupt the execution or learn about the exe-
cutable.

Data substitution. The attacker can substi-
tute a requested data block for another block,

which is also currently valid, and observe the
program’s behavior. Unlike instructions which
are limited to the valid opcodes in the instruc-
tion set, any data injected by the attacker will
be correctly decrypted and passed to the pro-
cessor. Thus, encryption in this case provides
no protection other than privacy of the appli-
cation’s data. To address this issue, EED plat-
forms typically include a location label (typi-
cally a memory address) as part of the validation
information.

Stale data replay. An attacker that sniffs the
bus can keep snapshots of data and replay old
versions of data blocks when newer versions are
requested. Data is even more sensitive to replays
than code is, as its content changes in time. Any
change in the content of the block creates a new
valid encryption of that block in memory. To
address stale data replay, a time-stamp mecha-
nism records data “freshness” and the validation
rejects any old data blocks that are no longer
valid.

As described above, these EED attacks point
out that encryption is not sufficient to guarantee
security against physical attacks, and these types
of attacks can go undetected without explicit
countermeasures. There are several projects that
address the design of EED platforms and provide
both data and code integrity against physical
attacks. Examples include the XOM architec-
ture [105] and several other tamper-resistant
processors [106, 107]; these techniques require
re-design of the processor. Under a physical
threat model, these systems are still vulnerable to
attack.

Others minimize processor changes by using
reconfigurable logic [108, 109]. The AEGIS [110]
architecture greatly improves on XOM, its prede-
cessor, and presents techniques for control-flow
protection, privacy, and prevention of data tam-
pering. AEGIS also includes an optional secure
OS that is responsible for interfacing with the
secure hardware. The code and memory protec-
tion schemes use cached hash trees, and a log-
hash integrity verification mechanism is used to
verify integrity of memory accesses. The level
of confidentiality and integrity protection further



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 325

improves by merging encrypted execution with
access control validation [60].

An attacker can extract patterns of access in an
EED platform and match those patterns against
a database of known patterns extracted from
open-source software or from unencrypted exe-
cutables run inside a debugger. Algorithms can
be identified by observing memory access pat-
terns, and this signature pattern can itself lead
to both information leakage as well as addi-
tional types of attacks. Address randomization
can foil such attacks, and specific architectures
for address randomization have been proposed to
address this problem [103, 104].

Physical probing of devices is also investi-
gated by a strong community that focuses its
research on differential fault (power) analysis
(DFA) [97]. Although the attacks target encryp-
tion keys of common encryption algorithms [111,
112], other control flow or algorithm designs
can be revealed by this approach. EED platforms
are still vulnerable to power analysis and bene-
fit from countermeasures such as the DFA resis-
tant implementations of DES and AES [113] or
secure IC design [114]. Specific techniques to pro-
tect FPGA circuits from DFA also exist [115].

12.4. CONCLUSIONS AND FUTURE

WORK

We have described two aspects of computer
hardware security: the security of the hardware
itself and how hardware enables secure software.
Threats to the processor supply chain, such as
the Trojan circuit, are emerging as a fundamen-
tal problem that faces security practitioners. How
do we ensure that attacks do not succeed in
the supply chain before our systems are even
deployed? How might we create a trustworthy
system comprising untrusted components? Tra-
ditionally, computer security has relied on hard-
ware as a trusted base for security. We have
reviewed how hardware can provide such secu-
rity even in the face of determined attackers that
capture the protected computing devices.

Directions for future work in hardware secu-
rity abound: the problems are far from solved.

Instead of trying to rank future work directions,
we discuss possible improvements and paths for-
ward in the order that we presented the topics in
this chapter.

Some possible areas to improve security
against supply chain attacks include developing
Trojan circuit detectors that do not need a ref-
erence implementation, improving side-channel
analysis so it detects inclusions that try to hide
in the noise, incentives for vendors to include
DFHT in EDA tool chains, and changing the trust
assumptions that software makes about the secu-
rity of the underlying hardware.

Research in memory protection seems to take
one of two directions: use the existing hardware
(paging) to build secure systems or improve the
existing hardware to support stronger security
primitives; in spite of years of research and devel-
opment, paging dominates commercial systems.
Whether fine-grained memory protection can be
made efficient, cost-effective, and commercially
viable (for both hardware and software vendors)
is an open problem. Although we did not discuss
capabilities at length, they are well-matched to
object-oriented concepts and may prove useful
in developing systems-of-systems that integrate
multiple object models – related to multiple phys-
ical entities – in large-scale deployments. Unfor-
tunately, the history of capabilities indicates that
research in them is a dead end short of funda-
mental breakthroughs.

Although buffer overflows are still preva-
lent in the wild, network-oriented attacks
like cross-site scripting and database injection
are the new memory-based attacks of choice.
Hardware can efficiently defend against buffer
overflows, so naturally we should consider
hardware approaches to defend against these
other memory-based attacks. Information flow
tracking seems to be a good approach, but solv-
ing its inherent problems, namely the unbounded
propagation of taint, drives ongoing research.
Fine-grained permission checking also may help,
but managing fine-grained permissions well is
also an open problem.

Room for improvement exists in better secur-
ing and integrating cryptographic accelerators,



326 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

secure coprocessors, and EED platforms. Espe-
cially important is considering how multicore
multiprocessing affects hardware-based security
primitives. One of the exercises asks you to con-
sider some of the ramifications of multiprocessing
with EED cores. Performance of the tamper-
proof components is low compared with what
unsecured hardware can achieve; mostly to blame
is that tamper-proof enclosures dissipate heat
slowly, and to prevent burning, the enclosed pro-
cessor must execute at lower frequencies than if
unenclosed.

Low-cost, highly secure hardware remains
a lofty yet important goal that may involve
multiple fields of science, engineering, and math-
ematics. Importantly, we should think about how
software and hardware can together play a role in
securing the systems of tomorrow.

EXERCISES

1. Explain the relationship between the terms
trusted, untrusted, trustworthy, and untrust-
worthy in the context of secure computing.
Give a hardware example for each term.

2. An attacker determines how to get a Trojan
circuit past every detection technique and into
a processor such that it will accept arbitrary
commands remotely from the attacker. Sup-
pose an armed military UAV has been com-
promised by this Trojan circuit in its main
processor. As an attacker, what is a good
strategy to use to gain an advantage from the
Trojan circuit: would you wait for a critical
moment to strike or perhaps try to slowly
sabotage the UAV? As a defender, how might
the military prevent the compromise of the
processor from compromising the UAV? How
might your defensive solution affect the per-
formance of the UAV? Does the UAV still pro-
vide services in spite of an active cyber-attack?

3. Explain how a hardware Trojan circuit com-
pares with software malware. What are the
advantages and disadvantages that each has
from the perspective of an attacker? What
are techniques for protecting systems against
each?

4. Some manufacturers ship integrated circuits
with reconfigurable logic attached directly to
a processor core. Explain how the reconfig-
urable logic might be used to improve the per-
formance and effectiveness of system security.

5. Take an example for each of the ARM,
Intel, PowerPC, and SPARC architectures and
identify how many privilege rings (levels) it
supports and how it encodes a privileged
processor state in a control structure. In prac-
tice, only two privilege rings really matter:
high and low. State some reasons why the rest
are ignored.

6. Suppose you are developing an application
for a limited resource embedded system. The
memory protection mechanism offered by
the architecture is only capable of protect-
ing four distinct statically defined memory
ranges. How would you partition your appli-
cation code and data among the four memory
ranges? What permissions would you set to
each range?

7. In critical systems where physical access
cannot be easily restricted, some form of
encrypted execution can protect data and
code on buses and memory. Consider such
a system that has multiple processors, each
with its own cache, and shared main mem-
ory. Identify some of the issues that can occur
in such a system. Discuss how sharing some
(but not all) data among some (but not all) of
the processors complicates system design.

8. Smartcards and TPMs have a similar internal
architecture, yet they are used in different
application domains. Discuss the differences
in how the two interface with another sys-
tem and describe two specific applications,
one that motivates the use of smartcards and
one that motivates TPMs.

REFERENCES

[1] DARPA. BAA 06-40 – solicitations – microsystems
technology office. http://www.darpa.mil/mto/
solicitations/baa06-40/, 2006.

[2] DARPA. BAA 07-24 – solicitations – microsystems
technology office. http://www.darpa.mil/MTO/
solicitations/baa07-24/index.html, 2007.



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 327

[3] S. Adee, The hunt for the kill switch, Spectr. IEEE
45 (5) May (2008) 34–39.

[4] Semiconductor Equipment and Materials Industry
(SEMI). Innovation at risk: Intellectual property
challenges and opportunities. http://www.semi.org/
en/Issues/IntellectualProperty/index.htm, 2008.

[5] S. Trimberger, Trusted design in FPGAs, in: Design
Automation Conference, 2007. DAC ’07. 44th
ACM/IEEE, ACM, New York, NY, USA, 2007,
pp. 5–8.

[6] M. Tehranipoor, F. Koushanfar, A survey of
hardware trojan taxonomy and detection, IEEE
Des. Test Comput. 27 (1) (2010) 10–25.

[7] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi,
B. Sunar, Trojan detection using IC fingerprinting,
IEEE Symposium on Security and Privacy, IEEE,
Berkeley, CA, 2007, pp. 296–310.

[8] R. Rad, J. Plusquellic, M. Tehranipoor, Sensitivity
analysis to hardware trojans using power supply
transient signals, in: IEEE International Workshop
on Hardware-Oriented Security and Trust, 2008,
HOST 2008, pp. 3–7.

[9] M. Banga, M. S. Hsiao, A region based approach
for the identification of hardware trojans, in:
Proceedings of the 2008 IEEE International
Workshop on Hardware-Oriented Security and
Trust, IEEE Computer Society, Anaheim, CA,
2008, pp. 40–47.

[10] S. Narasimhan, D. Du, R.S. Chakraborty, S. Paul,
F. Wolff, C. Papachristou, K. Roy, et al.,
Multiple-parameter side-channel analysis: A
non-invasive hardware trojan detection approach,
in: Hardware-Oriented Security and Trust
(HOST), 2010 IEEE International Symposium on,
IEEE, Anaheim, CA, 2010, pp. 13–18.

[11] J. Li, J. Lach, At-speed delay characterization for
IC authentication and trojan horse detection, in:
IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008,
HOST 2008, pp. 8–14.

[12] Y. Jin, Y. Makris, Hardware trojan detection using
path delay fingerprint, in: Proceedings of the 2008
IEEE International Workshop on
Hardware-Oriented Security and Trust, IEEE
Computer Society, Anaheim, CA, 2008,
pp. 51–57.

[13] M. Potkonjak, A. Nahapetian, M. Nelson,
T. Massey, Hardware trojan horse detection using
gate-level characterization, in: Proceedings of the
46th Annual Design Automation Conference,
ACM, San Francisco, CA, 2009, pp. 688–693.

[14] S. Wei, S. Meguerdichian, M. Potkonjak,
Gate-level characterization: foundations and
hardware security applications, in: Proceedings of
the 47th Design Automation Conference, ACM,
Anaheim, CA, 2010, pp. 222–227.

[15] F. Wolff, C. Papachristou, S. Bhunia,
R. S. Chakraborty, Towards trojan-free trusted
ICs: problem analysis and detection scheme, in:
Proceedings of the Conference on Design,
Automation and Test in Europe, ACM, Munich,
Germany, 2008, pp. 1362–1365.

[16] R. S. Chakraborty, S. Paul, S. Bhunia, On-demand
transparency for improving hardware trojan
detectability, in: IEEE International Workshop on
Hardware-Oriented Security and Trust, IEEE,
Anaheim, CA, 2008, HOST 2008, pp. 48–50.

[17] R. S. Chakraborty, F. Wolff, S. Paul,
C. Papachristou, S. Bhunia, MERO: a statistical
approach for hardware trojan detection, in:
Proceedings of the 11th International Workshop
on Cryptographic Hardware and Embedded
Systems, Springer-Verlag, Lausanne, Switzerland,
2009, pp. 396–410.

[18] S. Jha, S. K. Jha, Randomization based
probabilistic approach to detect trojan circuits, in:
Proceedings of the 2008 11th IEEE High
Assurance Systems Engineering Symposium, IEEE
Computer Society, Nanjing, China, 2008,
pp. 117–124.

[19] M. Banga, M. S. Hsiao, A novel sustained vector
technique for the detection of hardware trojans,
in: Proceedings of the 22nd International
Conference on VLSI Design. IEEE Computer
Society, Los Alamitos, CA, 2009, pp. 327–332.

[20] H. Salmani, M. Tehranipoor, J. Plusquellic, New
design strategy for improving hardware trojan
detection and reducing trojan activation time, in:
Proceedings of the 2009 IEEE International
Workshop on Hardware-Oriented Security and
Trust, IEEE Computer Society, Los Alamitos,
CA, 2009, pp. 66–73.

[21] M. Banga, M. S. Hsiao, VITAMIN: voltage
inversion technique to ascertain malicious
insertions in ICs, in: IEEE International Workshop
on Hardware-Oriented Security and Trust, IEEE
Computer Society, Los Alamitos, CA, 2009,
pp. 104–107.

[22] E. Charbon, I. Torunoglu, Watermarking
techniques for electronic circuit design, in: Digital
Watermarking, 2003, pp. 347–374.

[23] J. Lach, W. H. Mangione-Smith, M. Potkonjak,
FPGA fingerprinting techniques for protecting
intellectual property, in: Proceedings of the IEEE
Custom Integrated Circuits Conference, IEEE,
Santa Clara, CA, 1998, pp. 299–302.

[24] J. Lach, W. H. Mangione-Smith, M. Potkonjak,
Robust FPGA intellectual property protection
through multiple small watermarks, in:
Proceedings of the 36th Annual ACM/IEEE
Design Automation Conference, ACM,



328 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

New Orleans, Louisiana, United States, 1999,
pp. 831–836.

[25] L. Yuan, P. Pari, G. Qu, Soft IP protection:
Watermarking HDL codes, in: Information
Hiding, 2005, pp. 224–238.

[26] M. Lin, G.-R. Tsai, C.-R. Wu, C.-H. Lin,
Watermarking technique for HDL-based IP
module protection, in: Third International
Conference on Intelligent Information Hiding and
Multimedia Signal Processing, 2007. IIHMSP
2007. vol. 2, IEEE Computer Society, Los
Alamitos, CA, USA, 2007, pp. 393–396.

[27] E. Castillo, U. Meyer-Baese, A. Garcia, L. Parrilla,
A. Lloris, IPP@HDL: efficient intellectual property
protection scheme for IP cores, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems,
15 (5) (2007) 578–591.

[28] A. E. Caldwell, H.-J. Choi, A. B. Kahng,
S. Mantik, M. Potkonjak, G. Qu, et al., Effective
iterative techniques for fingerprinting design IP,
IEEE Trans. Comput. Aided Des. Integr. Circuits.
Syst. 23 (2) (2004) 208–215.

[29] K. Lofstrom, W. R. Daasch, D. Taylor, IC
identification circuit using device mismatch, IEEE
International Solid-State Circuits Conference,
2000. Digest of Technical Papers. ISSCC 2000,
pp. 372–373.

[30] S. Maeda, H. Kuriyama, T. Ipposhi, S. Maegawa,
M. Inuishi, An artificial fingerprint device (AFD)
module using poly-Si thin film transistors with
logic LSI compatible process for built-in
security, Electron Devices Meeting, 2001. IEDM
Technical Digest. International, 2001,
pp. 34.5.1–34.5.4.

[31] B. Gassend, D. Clarke, M. van Dijk, S. Devadas,
Silicon physical random functions, in: Proceedings
of the 9th ACM Conference on Computer and
Communications Security, ACM, Washington,
DC, 2002, pp. 148–160.

[32] B. Gassend, D. Lim, D. Clarke, M. van Dijk,
S. Devadas, Identification and authentication of
integrated circuits, Concurrency. Computat. Pract.
Exper. 16 (11) (2004) 1077–1098.

[33] G. E. Suh, S. Devadas, Physical unclonable
functions for device authentication and secret key
generation, in: Proceedings of the 44th Annual
Design Automation Conference, DAC ’07, ACM,
New York, NY, 2007, 9–14. ACM ID: 1278484.

[34] E. Simpson, P. Schaumont, Offline
Hardware/Software authentication for
reconfigurable platforms, in: Cryptographic
Hardware and Embedded Systems – CHES 2006,
2006, pp. 311–323.

[35] F. Koushanfar, G. Qu, Hardware metering, in:
Proceedings Design Automation Conference,
2001, pp. 490–493.

[36] J. W Lee, D. Lim, B. Gassend, G. E. Suh, M. van
Dijk, S. Devadas, A technique to build a secret key
in integrated circuits with identification and
authentication applications, in: Proceedings of the
IEEE VLSI Circuits Symposium, IEEE, 2004,
pp. 176—179.

[37] J. A. Roy, F. Koushanfar, I. L. Markov, EPIC:
ending piracy of integrated circuits, in: Design,
Automation and Test in Europe, 2008. DATE ’08,
2008, pp. 1069–1074.

[38] N. Couture, K. B. Kent, Periodic licensing
of FPGA based intellectual property, in:
IEEE International Conference on Field
Programmable Technology, IEEE, 2006, FPT
2006, pp. 357–360.

[39] A. Baumgarten, A. Tyagi, J. Zambreno, Preventing
IC piracy using reconfigurable logic barriers, IEEE
Des. Test. Comput. 27 (1) (2010) 66–75.

[40] J. Di, S. Smith, A hardware threat modeling
concept for trustable integrated circuits, in:
Region 5 Technical Conference, 2007 IEEE, 2007,
pp. 354–357.

[41] S. C. Smith, J. Di, Detecting malicious logic
through structural checking, in: IEEE
Region 5 Technical Conference, IEEE, 2007,
pp. 217–222.

[42] G. Bloom, B. Narahari, R. Simha, Fab forensics:
Increasing trust in IC fabrication, in: IEEE
International Conference on Technologies for
Homeland Security (HST), IEEE, Waltham, MA,
November 2010.

[43] X. Wang, M. Tehranipoor, J. Plusquellic, Detecting
malicious inclusions in secure hardware:
Challenges and solutions, in: IEEE International
Workshop on Hardware-Oriented Security and
Trust, IEEE, HOST 2008, pp. 15–19.

[44] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang,
Y. Zhou, Designing and implementing malicious
hardware, in: Proceedings of the 1st Usenix
Workshop on Large-Scale Exploits and Emergent
Threats, USENIX Association, San Francisco, CA,
2008, pp. 1–8.

[45] M. Hicks, M. Finnicum, S. T. King, M. M. K.
Martin, J. M. Smith, Overcoming an untrusted
computing base: Detecting and removing
malicious hardware automatically, in: IEEE
International Conference on Security and Privacy
(SP), IEEE, 2010, pp. 159–172.

[46] G. Bloom, B. Narahari, R. Simha, J. Zambreno,
Providing secure execution environments with a
last line of defense against trojan circuit attacks,
Comput. Secur. 28 (7) (2009) 660–669.

[47] T. Huffmire, B. Brotherton, G. Wang,
T. Sherwood, R. Kastner, T. Levin, et al., Moats
and drawbridges: An isolation primitive for
reconfigurable hardware based systems, in: IEEE



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 329

Symposium on Security and Privacy, 2007. SP ’07,
IEEE, 2007, pp. 281–295.

[48] G. Bloom, B. Narahari, R. Simha, OS support for
detecting trojan circuit attacks, in: IEEE
International Workshop on Hardware-Oriented
Security and Trust, IEEE Computer Society, Los
Alamitos, CA, 2009, pp. 100–103.

[49] A. Seshadri, A. Perrig, L. van Doorn, P. Khosla,
SWATT: SoftWare-based ATTestation for
embedded devices. in: Proceedings of the IEEE
Symposium on Security and Privacy, 2004.

[50] D. Y. Deng, A. H. Chan, G. E. Suh, Hardware
authentication leveraging performance limits in
detailed simulations and emulations, in:
Proceedings of the 46th Annual Design
Automation Conference, ACM, San Francisco,
CA, 2009, pp. 682–687.

[51] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke,
S. Beattie, et al., Stackguard: Automatic adaptive
detection and prevention of buffer-overflow
attacks, in: USENIX Security Symposium,
USENIX Society, 1998.

[52] T. Chiueh, F. Hsu, Rad: A compile-time solution to
buffer overflow attacks, in: 21st IEEE
International Conference on Distributed
Computing Systems (ICDCS’01), IEEE, 2001.

[53] M. L. Corliss, E. C. Lewis, A. Roth, Using DISE to
protect return addresses from attack, in:
Workshop on Architectural Support for Security
and Anti-Virus, 2004.

[54] D. Samyde, S. Skorobogatov, R. Anderson,
J.-J. Quisquater, On a new way to read data from
memory, in: Security in Storage Workshop, 2002.
Proceedings of the First International IEEE,
Greenbelt, Maryland, December 2002, pp. 65–69.

[55] H. M. Deitel, M. S. Kogan, The Design of OS/2,
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, 1992.

[56] C. Reis, A. Barth, C. Pizano, Browser security:
lessons from google chrome, Commun. ACM 52
(2009) 45–49.

[57] W. Shi, J. B. Fryman, G. Gu, H. H. S. Lee, Y.
Zhang, J. Yang, Infoshield: a security architecture
for protecting information usage in memory, in:
The Twelfth International Symposium on
High-Performance Computer Architecture, 2006,
pp. 222–231.

[58] D. Arora, A. Raghunathan, S. Ravi, N. K. Jha,
Architectural support for run-time validation of
program data properties, IEEE Trans. Very Large
Scale Integration (VLSI) Systems 15 (5) (2007)
(546–559).

[59] E. Witchel, J. Cates, K. Asanovic, Mondrian
memory protection, in: Proceedings of ASPLOS-X,
ACM, New York, NY, USA, October 2002.

[60] W. Shi, C. Lu, H.-H. S. Lee, Memory-centric
security architecture. High performance embedded
architectures and compilers, Barcelona, Spain,
November 17–18, 2005.

[61] E. Leontie, G. Bloom, B. Narahari, R. Simha,
J. Zambreno, Hardware containers for software
components: A trusted platform for COTS-based
systems, in: Proceedings of The 2009 IEEE
International Symposium on Trusted Computing,
TrustCom09, Vancouver, Canada, August 2009.

[62] E. Leontie, G. Bloom, B. Narahari, R. Simha,
J. Zambreno, Hardware-enforced fine-grained
isolation of untrusted code, in: Proceedings of the
First ACM Workshop on Secure Execution of
Untrusted Code, ACM, Chicago, IL, 2009,
pp. 11–18.

[63] T. Huffmire, S. Prasad, T. Sherwood, R. Kastner,
Policy-driven memory protection for
reconfigurable hardware. Lecture Notes in
Computer Science, 2006, pp. 461–478.

[64] H. M. Levy, Capability-Based Computer Systems,
Butterworth-Heinemann, Newton, MA, USA,
1984.

[65] R. B. Lee, D. K. Karig, J. P. Mcgregor, Z. Shi,
Enlisting hardware architecture to thwart
malicious code injection, in: Proceedings of the
2003 International Conference on Security in
Pervasive Computing, Springer Verlag, Boppard,
Germany, 2003, pp. 237–252.

[66] H. Ozdoganoglu, T. N. Vijaykumar, C. E. Brodley,
B. A. Kuperman, A. Jalote, SmashGuard: A
hardware solution to prevent attacks on the
function return address. IEEE Transactions on
Computers, 2006.

[67] J. Xu, Z. Kalbarczyk, S. Patel, R. K. Iyer,
Architecture support for defending against buffer
overflow attacks, in: Proceedings of the 2nd
Workshop Evaluating and Architecting System
Dependability (EASY-2002), 2002.

[68] K. Inoue, Energy-security tradeoff in a secure
cache architecture against buffer overflow attacks,
SIGARCH Comput. Archit. News 33 (1) (2005)
81–89.

[69] W. Kao, S. F. Wu, Lightweight hardware return
address and stack frame tracking to prevent
function return address attack, in: CSE ’09:
Proceedings of the 2009 International Conference
on Computational Science and Engineering, IEEE
Computer Society, Washington, DC, 2009, pages
859–866.

[70] Z. Shao, J. Cao, K. C. C. Chan, C. Xue, E. H.-M.
Sha, Hardware/software optimization for array &
pointer boundary checking against buffer overflow
attacks, J. Parall. Distrib. Comput. 66 (9) (2006)
1129–1136.



330 CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions

[71] J. R. Crandall, S. F. Wu, F. T. Chong, Minos:
Architectural support for protecting control data,
ACM Trans. Archit. Code Optim. 3 (4) (2006)
359–389.

[72] A. Smirnov, T. Chiueh, Dira: Automatic detection,
identification, and repair of control-hijacking
attacks, in: NDSS, 2005.

[73] G. E. Suh, J. W. Lee, D. Zhang, S. Devadas, Secure
program execution via dynamic information flow
tracking, in: ASPLOS-XI: Proceedings of the 11th
International Conference on Architectural Support
for Programming Languages and Operating
Systems, ACM, New York, NY, 2004, pp. 85–96.

[74] J. Zambreno, A. Choudhary, R. Simha, B.
Narahari, N. Memon. Safe-ops: An approach to
embedded software security, ACM Trans. Embed.
Comput. Syst. 4 (1) (2005) 189–210.

[75] M. Abadi, M. Budiu, Ú. Erlingsson, J. Ligatti,
Control-flow integrity, in: Proceedings of the 12th
ACM Conference on Computer and
Communications Security, ACM, November 2005,
pp. 340–353.

[76] E. Leontie, G. Bloom, O. Gelbart, B. Narahari,
R. Simha, A compiler-hardware technique for
protecting against buffer overflow attacks,
J. Inf. Assur. Secur. 5 (1) (2010).

[77] M. Kharbutli, X. Jiang, Y. Solihin,
G. Venkataramani, M. Prvulovic,
Comprehensively and efficiently protecting the
heap, ACM SIGOPS Operating Systems Review,
Proceedings of the 2006 ASPLOS Conference,
December 2006, pp. 207–218.

[78] D. Arora, A. Raghunathan, S. Ravi, N. K. Jha,
Architectural support for safe software execution
on embedded processors, in: Proceedings of the
fourth International Conference on
Hardware/Software Codesign and System
Synthesis, ACM, New York, NY, USA, 2006,
pp. 106–111.

[79] G. Venkataramani, B. Roemer, Y. Solihin,
M. Prvulovic, Memtracker: Efficient and
programmable support for memory access
monitoring and debugging. High-Performance
Computer Architecture, International Symposium
on, 0:273–284, 2007.

[80] G.E. Suh, J. Lee, S. Devadas, Secure program
execution via dynamic information flow tracking.
Architectural support for programming languages
and operating systems, 2004, pp. 85–96.

[81] M. Dalton, H. Kannan, C. Kozyrakis, Raksha:
A flexible information flow architecture for
software security, in: International Symposium
on Computer Architecture, ACM, New York, NY,
USA, June 2007, pp. 482–493.

[82] F. Qin, C. Wang, Z. Li, H. S. Kim, Y. Zhou,
Y. Wu, Lift: A low-overhead practical information

flow tracking system for detecting security attacks,
in: 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06),
IEEE, 2006, pp. 135–148.

[83] M. Tiwari, H. Wassel, B. Mazloom, S. Mysore,
F. Chong, T. Sherwood, Complete information
flow tracking from the gates up, in: Proceedings of
the 14th International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), ACM,
New York, NY, USA, March 2009.

[84] G. Venkataramani, I. Doudalis, Y. Solihin,
M. Prvulovic, Flexitaint: A programmable
accelerator for dynamic taint propagation, in:
International Symposium on High Performance
Computer Architecture, IEEE, 2008, pp. 173–184.

[85] T. Grembowski, R. Lien, K. Gaj, N. Nguyen,
P. Bellows, J. Flidr, et al., Comparative analysis of
the hardware implementations of hash functions
SHA-1 and SHA-512, in: Proceedings of the
International Conference on Information Security
(ISC), Springer-Verlag, London, UK, 2002,
pp. 75–89.

[86] K. U. Jarvinen, M. T. Tommiska, J. O. Skytt, A
fully pipelined memoryless 17.8 Gbps AES-128
encryptor, in: Proceedings of the International
Symposium on Field Programmable Gate Arrays
(FPGA), 2003, pp. 207–215.

[87] J. Kaps, C. Paar, Fast DES implementation for
FPGAs and its application to a universal
key-search machine, in: Proceedings of the Annual
Workshop on Selected Areas in Cryptography
(SAC), Springer-Verlag, London, UK, 1998,
pp. 234–247.

[88] O. Kocabas, E. Savas, J. Grosschadl, Enhancing an
embedded processor core with a cryptographic
unit for speed and security, in: International
conference on Reconfigurable Computing and
FPGAs, 2008, ReConFig ’08. December 2008,
IEEE, pp. 409–414.

[89] J. Burke, J. McDonald, T. Austin, Architectural
support for fast symmetric-key cryptography,
SIGOPS Oper. Syst. Rev. 34 (2000) 178–189.

[90] J. Zambreno, D. Nguyen, A. Choudhary,
Exploring area/delay tradeoffs in an AES FPGA
implementation, in: Proceedings of the
International Conference on Field Programmable
Logic and Applications (FPL), Springer, 2004,
pp. 575–585.

[91] S. Okada, N. Torii, K. Itoh, M. Takenaka,
Implementation of elliptic curve cryptographic
coprocessor over GF(2m ) on an FPGA, in:
Proceedings of the International Workshop on
Cryptographic Hardware and Embedded Systems
(CHES), Springer-Verlag, London, UK, 2000,
pp. 25–40.



CHAPTER 12 Hardware and Security: Vulnerabilities and Solutions 331

[92] M. Ernst, M. Jung, F. Madlener, S. Huss,
R. Blumel, A reconfigurable system on chip
implementation for elliptic curve cryptography
over GF(2n ), in: Proceedings of the
International Workshop on Cryptographic
Hardware and Embedded Systems (CHES),
Springer-Verlag, London, UK, 2002,
pp. 381–399.

[93] A. Hodjat, I. Verbauwhede, A 21.54 Gbits/s fully
pipelined AES processor on FPGA, 12th
Field-Programmable Custom Computing
Machines (FCCM), 2004.

[94] A. Dandalis, V. K. Prasanna, J. D. P. Rolim, An
adaptive cryptographic engine for ipsec
architectures, in: Proceedings of the IEEE
Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2000,
pp. 132–144.

[95] B. Yee, J. D. Tygar, Secure coprocessors in
electronic commerce applications, in: Proceedings
of the USENIX Workshop on Electronic
Commerce, USENIX Association, Berkeley, CA,
USA, July 1995, pp. 155–170.

[96] S. H. Weingart, Physical security for the µabyss
system, IEEE Symposium on Security and Privacy,
vol. 52, 1987.

[97] P. Kocher, J. Jaffe, B. Jun, Differential power
analysis, in: Proceedings of Advances in
Cryptology (Crypto), Springer-Verlag, London,
UK, 1999, pp. 388–397.

[98] S. R. White, Abyss: A trusted architecture for
software protection, IEEE Symposium on Security
and Privacy, vol. 38, 1987.

[99] J. D. Tygar, B. Yee, Dyad: A system for using
physically secure coprocessors, in: Proceedings of
the Harvard-MIT Workshop on Protection of
Intellectual Property, April 1993.

[100] E. Palmer. An introduction to Citadel – a secure
crypto coprocessor for workstations. Research
Report RC 18373, IBM T. J. Watson Research
Center, 1992.

[101] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer,
L. van Doorn, S.W. Smith, Building the IBM 4758
secure coprocessor, Computer, 34 (10) (2001)
57–66.

[102] S. W. Smith, Secure coprocessing applications and
research issues, in: Los Alamos Unclassified
Release LA-UR-96-2805, Los Alamos National
Laboratory, Los Alamos, NM, 1996.

[103] X. Zhuang, T. Zhang, H.-H. S. Lee, S. Pande,
Hardware assisted control flow obfuscation for
embedded processors. in: Proceedings of the
International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems
(CASES), ACM, New York, NY, USA, September
2004.

[104] X. Zhuang, T. Zhang, S. Pande. HIDE: An
infrastructure for efficiently protecting
information leakage on the address bus.
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2004.

[105] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, Dan
Boneh, John Mitchell, et al., Architectural Support
for Copy and Tamper Resistant Software.
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), ACM,
New York, NY, USA, 2000.

[106] M. Milenkovic, A. Milenkovic, E. Jovanov,
Hardware support for code integrity in embedded
processors. CASES, 2005.

[107] D. Kirovski, M. Drinić, M. Potkonjak, Enabling
trusted software integrity, ASPLOS, 30 (5)
October (2002).

[108] O. Gelbart, P. Ott, B. Narahari, R. Simha,
A. Choudhary, J. Zambreno, CODESEAL:
Compiler/FPGA approach to secure applications,
in: Proc. IEEE, ISI, IEEE, 2005.

[109] O. Gelbart, E. Leontie, B. Narahari, R. Simha,
Architectural support for securing application data
in embedded systems, in: IEEE International
Conference on Electro/Information Technology,
IEEE, May 2008, pp. 19–24.

[110] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk,
S. Devadas, AEGIS: Architecture for tamper-
evident and tamper-resistant processing, in: P17
International Conference on Supercomputing
(ICS), ACM, New York, NY, USA, 2003.

[111] F.-X. Standaert, S. B. Ors, J.-J. Quisquater,
B. Preneel, Power analysis attacks against FPGA
implementations of the DES, in: Proceedings of the
International Conference on Field-Programmable
Logic and its Applications (FPL), 2004, pp. 84–94.

[112] S. B. Ors, F. Gurkaynak, E. Oswald, B. Preneel,
Power-analysis attack on an ASIC AES
implementation, in: Proceedings of the
International Conference on Information
Technology (ITCC), IEEE Computer Society,
Washington, DC, USA, 2004.

[113] M.-L. Akkar, C. Giraud, An implementation of
DES and AES secure against some attacks, in:
Proceedings of the International Workshop on
Cryptographic Hardware and Embedded Systems
(CHES), Springer-Verlag, London, UK, May 2001,
pp. 309–318.

[114] K. Tiri, I. Verbauwhede, A digital design flow for
secure integrated circuits, IEEE
Trans. Comput.-Aided Design of Integrated
Circuits and Systems, July 2006, pp. 1197–1208.

[115] P. Yu, P. Schaumont, Secure FPGA circuits using
controlled placement and routing. International
Conference on Hardware/Software Codesign and
System Synthesis, October 2007.



This page intentionally left blank


