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Abstract

A common problem in molecular biology is to use experimental data, such as microarray

data, to infer knowledge about the structure of interactions between important molecules

in subsystems of the cell. By approximating the state of each molecule as “on” or “off”, it

becomes possible to simplify the problem, and exploit the tools of Boolean analysis for such

inference. Amongst Boolean techniques, the process-driven approach has shown promise

in being able to identify putative network structures, as well as stability and modularity

properties. This paper examines the process-driven approach more formally, and makes

four contributions about the computational complexity of the inference problem, under the

“dominant inhibition” assumption of molecular interactions. The first is a proof that the

feasibility problem (does there exist a network that explains the data?) can be solved

in polynomial-time. Second, the minimality problem (what is the smallest network that

explains the data?) is shown to be NP-hard, and therefore unlikely to result in a polynomial-

time algorithm. Third, a simple polynomial-time heuristic is shown to produce near-minimal

solutions, as demonstrated by simulation. Fourth, the theoretical framework explains how

multiplicity (the number of network solutions to realize a given biological process), which can

take exponential-time to compute, can instead be accurately estimated by a fast, polynomial-

time heuristic.
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Author Summary

A major goal in biology today is to understand how various molecules interact to produce

the complex behavior seen in a typical cell. With today’s laboratory technologies (such as

the microarray), biologists are able to obtain approximate snapshots of the state of the cell,

showing which genes are “on” and which are “off” at the time of the snapshot. The term

biological process is used to mean a collection of snapshots taken in sequence, showing a cell’s

behavior through time. Using such snapshots, it is possible to deduce the network structure

or at least small parts of the network. One may draw an analogy with viewing a Christmas

tree that has lights going on and off in some pattern. The goal then, by analogy, is to

observe the lighting patterns for a few minutes and deduce the “wiring.” This is called the

network inference problem. This paper evaluates the computational complexity of a class of

network interference problems, with the aim of illuminating what is easy to compute, what

is harder, and what can be estimated efficiently.
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1. Introduction

A central theme in molecular biology is to understand the complex network of interac-

tions between biomolecules and how those interactions contribute to higher-level biological

function [1–6]. This problem belongs to the broader field of network analysis: graph theo-

retic representation of objects in physics, biology, sociology, etc; and the categorization and

analysis of graph properties [7, 8]. Many important network classes have been well studied,

such as random networks [9], small-world networks [10], and scale-free networks [11]. Many

important measures and concepts have been defined to characterize network structures,

such as degree distribution [12], clustering coefficient [7], the Estrada index [8], entropy-

based molecular descriptors [13–16], and network motif [17]. These structural approaches

have been used in studying biological networks. For example, topological properties such

as scale-free, power-law degree distribution [18] have been found for biomolecular networks.

The implications of scale-freeness on the robustness and evolvability of genetic regulatory

networks have been studied in [19].

Against the backdrop of the success of structural network analysis is the disappointing

reality that for many subsystems in the cell, very little is known about the network struc-

ture. Instead, what is observable from data is whether or not the molecules are active at a

given moment when a “snapshot” (such as a microarray sample) is taken. Given a collection

of such snapshots that represent the dynamics of the system, one major goal is to address

the network inference problem: what possible network structures could have resulted in the

given dynamics? The network inference problem is made challenging because of the variety

of molecule-to-molecule interactions and by the sheer number of molecules in even small

subsystems of the larger cell. As reviewed in [20], many important inference approaches

have recently emerged, which include clustering-based (e.g., [21]), Boolean-based (e.g., [22]),

Bayesian-based (e.g., [23]), in silico-based (e.g., [20]), and information-theory-based meth-

ods. For example, the algorithm C3NET, based on the estimation of mutual information, is a

successful example of information-theory-based methods [24]. Boolean-based analysis is rel-

atively simple and might be suitable to handle large-scale data [25–27]. In [28], the authors

investigated the effects of discretisation methods, biological constraints, and stringency of

Boolean function assignment on the performance of Boolean network, by using performance

indices such as accuracy, precision, specificity and sensitivity. These performance indices in-
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dicate the correctness of the inferred network based upon the matches between the inference

and reference networks. For example, sensitivity was defined as TP/(TP +FN), where TP

(true positive) is the number of network connections that were correctly predicted and FN

(false negative) is the number of network connections that were deemed as disconnected.

They found that biological constraints have pivotal influence on the network performance

over the other factors.

In [29], the Boolean network inference problem has been made computationally tractable

by some simplifying assumptions. The goal of this paper is to examine this computational

complexity more formally. In particular, we show that the existence problem (is there a

network that explains the dynamics?) can be solved quickly, in polynomial-time whereas the

minimality problem (what is the smallest network that explains the dynamics?) is NP-hard.

Fortunately, a simple heuristic, which while not guaranteed to find the minimal network,

does appear to find near-minimal networks very efficiently. Furthermore, our formulation

also sheds light on the exponential counting problem of multiplicity (also called designability

by some authors), the number of networks that explain a given dynamics.

There are two simplifying assumptions we make in this paper. One of these is the Boolean

molecule-state assumption adopted by most prior work in the literature on Boolean-network

models [1, 30–32]: at any given moment, a given biomolecule is either “on” (active or

highly-expressed) or “off” (inactive or inhibited), and molecules stimulate or inhibit other

molecules. The successive application of stimulatory or inhibitory interaction results in

the next state for each molecule, and in this manner, the system evolves from state to

state. The second assumption we make is the dominant inhibition assumption [30, 33, 34],

in which any competition between inhibition and stimulation results in inhibition. These

two assumptions allow an analysis that is entirely Boolean in nature and let us, after some

algebraic reduction, exploit fast algorithms for the class of Boolean expressions called Horn

formulas. The satisfiability of a Horn formula is known to be determinable in polynomial-

time [35, 36].

The complexity results in this paper imply that large systems can be solved efficiently, in

polynomial-time, when the goal is to obtain solution networks or to obtain a characterization

of the class of network solutions. On the other hand, when the goal is to find the smallest

network, the problem remains hard; however, a simple heuristic approach appears to work

well in practice although no theoretical guarantees can be made about the minimality of the
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heuristic solutions. In either case, both the existence problem and the minimization problem

reveal useful characteristics of the network. These include the network “backbone,” a list

of edges that must be present in all network solutions, as well as additional groups of edges

called network modules or network motifs that are thought to be an important organizing

principle for biological networks [37].

This paper is organized as follows. In Section 2, we introduce the Boolean network

model and process-driven analysis. In Section 3, we study the feasibility problem and its

applications. In Section 4, we discuss the computational complexity of finding a minimal

network and develop an algorithm to find an approximated minimal network. In Section 5,

we develop a polynomial-time algorithm to estimate multiplicity. Conclusions are drawn in

Section 6. Technical details and illustrative examples are further provided in Supplementary

Information.

2. Boolean network model

The starting point for our model is a collection of N interacting molecules, each of which

at any given time is modeled as either “on” or “off.” Let si(t) ∈ {0, 1} denote the state of

molecule i and S(t) = (s1(t), . . . , sN(t)) the state of the system at time t. Here, the change

of state is assumed to occur over a large enough time interval for biochemical reactions to

complete, and thus time is assumed to be discrete: t = 0, 1, 2, , . . . T − 1. A sequence of such

system states, S∗ = S(0), S(1), . . . , S(T − 1) is what we term a Boolean process. Intuitively,

in biological terms, a Boolean process corresponds to discretized time-course data. Thus, a

sequence of microarray snapshots taken for a system of molecules over a time course can be

converted into this Boolean form by noting which molecules are active and which are not.

In [3], Li et al. introduced a specific type of Boolean network model to determine the

next state of a particular node i from the current state:

si (t+ 1) =



1
∑

j ̸=i ajisj(t) > 0

0
∑

j ̸=i ajisj(t) < 0

0
∑

j ̸=i ajisj(t) = 0 & aii = −1

si(t)
∑

j ̸=i ajisj(t) = 0 & aii = 0 ,

(1)

where j ranges over {1, 2, · · · , N}. Each non-diagonal entry, aji (j ̸= i), takes the value

−γ, 1, or 0, depending on whether node j inhibits, stimulates, or does not interact with,

6



node i. The diagonal entries, aii, take the value −1 (degradation) or 0 (no degradation).

The inclusion of degradation allows the model to determine whether degradation plays an

important role in the dynamics. Note: we have not explicitly included the case that node

i is self-activating (aii = 1), because a self-activating node can be replaced by two different

nodes with one activating the other.

The parameter γ models the relative dominance of inhibition over stimulation. Since we

assume inhibition dominates stimulation for most biomolecular interactions, γ ≥ 1 in our

model. Simulation results reported in [29] show that for the budding yeast network, the

cases γ = 3, 4, 5, · · · ,∞ produce exactly the same dynamics and are only slightly different

from the cases γ = 1, 2; for the fission yeast network, the cases γ = 2, 3, 4, · · · ,∞ produce

exactly the same dynamics and are only slightly different from the case γ = 1. We therefore

follow the “dominant inhibition” assumption [30, 33, 34] by setting γ =∞. This assumption

renders a simpler, purely logical representation of Eq. (1), namely:

si (t+ 1) =

(∑
j ̸=i

(sj (t) gji) + si (t) r̄ii

)∏
j ̸=i

(
sj (t) rji

)
, (2)

where addition represents the Boolean operator OR, multiplication represents AND, and the

bar on a variable represents NOT. The Boolean variable rji represents a putative inhibitory

edge (conventionally drawn in red color) from node j to node i. The Boolean variable gji

represents a putative stimulatory edge (conventionally drawn in green color) from node j

to node i. Note that each r or g is modulated by an s-variable because edge ji is active

only when sj(t) = 1. For Eq. (2), one additional constraint, rjigji = 0, is imposed to

exclude solutions where an edge interaction is both inhibitory and stimulatory, a possibility

absent in Eq. (1). However, under “dominant inhibition” condition, such a solution with an

edge being both inhibitory and stimulatory produces exactly the same dynamics as if the

edge were only inhibitory because the inhibition dominates over the stimulation. Thus this

constraint will only come into play in Section 5 on solution multiplicity, and the Boolean

variables rji and gji will be treated as independent for the rest of the paper.

To understand Eq. (2), consider just one of the four possible transitions for node i at

some time step t, for example, 1 → 1. This transition requires either at least one active

stimulatory edge, or no active self degradation if no active stimulatory edge is present,

and no active inhibitory edge overall. These three conditions correspond precisely to the

three terms
∑

j ̸=i (sj (t) gji), si (t) r̄ii, and
∏

j ̸=i

(
sj (t) rji

)
in Eq. (2) respectively. To prove

7



Eq. (2), one similarly completes the analysis for the remaining three possible transitions of

1→ 0, 0→ 1, and 0→ 0.

3. Feasibility: does a solution exist?

3.1. Simplification

Equation (2), while compact, is somewhat inconvenient for determining the feasibility of

a Boolean process. By a simplification procedure (see Supplementary Information A), Eq.

(2) is instead converted into four equations each corresponding to a type of state transition

of node i:

0→ 1 :
∑

j∈θt(i)

gji = 1, (3)

1→ 1 :
∑

j∈θt(i)

gji + r̄ii = 1, (4)

0→ 0 :
∏

j∈θt(i)

gji +
∑

j∈θt(i)\Θ

rji = 1, (5)

1→ 0 : rii
∏

j∈θt(i)

gji +
∑

j∈θt(i)\Θ

rji = 1, (6)

where θt(i) = { j |sj (t) = 1; j ̸= i} represents the set of nodes other than i that are active

at time t, Θ = { j |rji = 0; j ̸= i} represents the set of nodes that are found not inhibiting

node i (see Supplementary information A as to how these nodes are identified), and θt(i)\Θ

represents the set of nodes in θt(i) but with the ones in Θ excluded.

3.2. Conjunctive normal form

Equations (3)–(6) represent a Boolean satisfiability (SAT) problem – the problem of

deciding whether a setting of variables {rji, gji} can satisfy a Boolean statement. The general

satisfiability problem is usually given in the so-called Conjunctive Normal Form (CNF) [38].

A CNF formula or statement consists of a number of clauses in conjunction, and where each

clause features variables or their complements with the OR operator. While a solution to

the satisfiability problem of a general CNF statement is NP-complete [39], there are some
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types of CNF that lend themselves to a polynomial solution: a CNF in Horn-clause form

can be solved in polynomial time [35, 36].

First, note that the first two equations above are already in the form of CNF clauses.

The other two are not because they feature products that are not allowed inside clauses.

However, they can be multiplied out to create CNF clauses as follows. Treating the entire

sum of rji’s with the symbol x, each equation is of the form

y1y2 · · · yn + x = (y1 + x)(y2 + x) · · · (yn + x), (7)

where n = |θt(i)|. Then, with yk = gj(k),i (for k = 1, 2, · · · , n) and x =
∑

j∈θt(i)\Θ rji, one

has ∏
j∈θt(i)

gji +
∑

k∈θt(i)\Θ

rki =
∏

j∈θt(i)

gji +
∑

k∈θt(i)\Θ

rki

 . (8)

Note that the conversion takes n < N steps, which is clearly polynomial. In summary, we

have the following new forms of equations:

0→ 1 :
∑

j∈θt(i)

gji = 1, (9)

1→ 1 :
∑

j∈θt(i)

gji + r̄ii = 1, (10)

s→ 0 : gji +
∑

j∈θt(i)\Θ

rji = 1, (11)

1→ 0 : rii +
∑

j∈θt(i)\Θ

rji = 1, (12)

where s can be either 0 or 1.

3.3. Horn formula

With the equations transformed into the conjunctive normal form, one can apply a SAT

algorithm to determine whether the given Boolean process is feasible or not. Although a

general SAT problem is NP-complete [40], some special class of SAT problem can be solved

in polynomial time. For example, the 2-SAT problem (the number of literals in a clause is

limited to 2), is a polynomial time problem [41]. Another important example, relevant to

our case, is the HORNSAT problem.

In mathematical logic, a Horn clause is a clause with at most one positive literal. The

positive literal is called the head and the negative literals form the body of the clause.
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The Horn clause form is named after the logician Alfred Horn, who first pointed out the

significance of such clauses in [42]. Indeed, Horn clause forms have played a basic role in

logic programming and are important for constructive logic [43–45]. A Horn formula is a

propositional formula formed by the conjunction of Horn clauses. In formal logic, Horn-

satisfiability, or HORNSAT, is the problem of deciding whether a given Horn formula is

satisfiable.

Because HORNSAT can be determined in polynomial-time [35, 36, 45], this means that

the network existence problem (for a given dynamics) can be solved in polynomial-time, as

discussed below.

We now show how to convert the particular CNF formula for our Boolean network into

a Horn formula. First, recall that we have formed a set of nodes Θ = { j |rji = 0; j ̸= i}.

In the following, we let lowercase letters a, b, c, · · · denote nodes belonging to Θ; leave node

i as it is; and let uppercase letters A,B,C, · · · denote the other nodes. With these new

notations, the left hand side of Eqs (9)–(12) can be represented by the following clause

forms:

gai + gbi + gci + · · · , (13)

r̄ii + gai + gbi + gci + · · · , (14)

gdi + rAi + rBi + rCi + · · · , (15)

gDi + rAi + rBi + rCi + · · · , (16)

rii + rAi + rBi + rCi + · · · , (17)

where expressions (13), (14), and (17) are from Eqs. (9), (10), and (12), respectively;

expressions (15) and (16) are from Eq. (11). Note that the used subscripts do not correspond

to the actual nodes; they only indicate to which set (Θ or not Θ) the nodes belong. For

example, the subscript a in Eq. (13) does not necessarily equal the subscript a in Eq. (14),

and similarly the subscript D in Eq. (16) is allowed to equal the subscript A in the same

equation.

For the nodes j = a, b, c, · · · , we define new variables

Gji = ḡji

to replace gji. That is, we shall use the four variables rji, r̄ji, Gji, and Gji for j = a, b, c, · · · .
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For the nodes j = A,B,C, · · · , we define new variables

Rji = r̄ji

to replace rji. That is, we shall use the four variables Rji, Rji, gji, and gji for j = A,B,C, · · · .

The clauses (13)–(17) now turn into

Gai +Gbi +Gci + · · · , (18)

r̄ii +Gai +Gbi +Gci + · · · , (19)

Gdi +RAi +RBi +RCi + · · · , (20)

gDi +RAi +RBi +RCi + · · · , (21)

rii +RAi +RBi +RCi + · · · , (22)

which are in Horn-clause form.

To summarize, the simplification (to CNF) and conversion steps result in a Horn formula

that is solvable in polynomial time.

Theorem: Given a Boolean process, the feasibility problem (the problem of determining

whether or not the process can be realized by a network based on the model Eq. (2)), can be

solved in polynomial time.

Supplementary Information B and C provide two examples for CNF and Horn formula

conversions. A different proof of the above theorem using Eq. (2) directly is also given in

Supplementary Information D.

4. Finding a minimal network

Minimality is an important concept in studying genetic networks [46, 47], biochemical

networks [48], and cell signaling networks [49, 50], for example. In the context of this paper,

it refers to making the smallest number of positive assignments (rji = 1 or gji = 1) necessary

for the Boolean equations to be satisfied. Because each such an assignment corresponds to

an interaction edge in the biomolecular network, a minimal number of positive assignments

corresponds to a minimal network — a network that can realize the same biological function

but has the smallest number of edges [51]. For example, the budding yeast cell cycle process

in [29] can be produced by 3.7 × 1030 networks, according to the present model Eq. (2).

Among these network solutions, there are 40,300 networks that only have 23 edges. The
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remaining networks all have more than 23 edges. The 40,300 networks are therefore minimal

networks because they have the smallest number of edges. The minimality of the budding

yeast cell cycle process is therefore 23.

It is important to identify these minimal networks. First, the smallest network that

“explains” a biological process helps identify the core relationships between molecules that

must be present for the biological process to function. Second, in a real biological network,

the remaining edges beyond the minimal network often confer some functionality orthogonal

to the biological process. For example, for the cell-cycle process, the non-minimal edges were

found to confer stability properties [29]. Therefore, identifying minimal networks may well

be the key to understanding the important elements of a biological process.

In general, a minimal network solution is difficult to find by chance, because the minimal

solutions occupy only a tiny fraction of the whole solution space (e.g., 40,320 out of 3.7×1030

for the case of budding yeast cell cycle process). Perhaps for this reason, a large number of

algorithms have been developed in the area of learning sparse Boolean functions [48, 52–55].

These algorithms usually take minimality as a constraint in learning.

From the computational complexity viewpoint of this paper, one would like to know

whether it is even computationally feasible to compute a minimal solution in reasonable time.

Some early studies [25, 27, 56] have considered and established the connection between the

minimal Boolean network inference problem and the minimal set cover (MSC) problem . For

the present Boolean model, we show that the minimal network problem is of equal complexity

to the MSC problem, which is well-known to be NP-complete. The comparison also enables

the development of a fast heuristic that, when evaluated with randomly-generated processes,

produces near-minimal solutions.

4.1. Minimal set covering (the MSC problem)

The Minimal Set Cover (MSC) problem is a classical question in computer science and

complexity theory [57, 58]. It is a problem “whose study has led to the development of

fundamental techniques for the entire field ”of approximation algorithms [59], and it was

one of Karp’s 21 core NP-complete problems shown to be NP-complete in his landmark

1972 paper [60]. It can be informally described as follows. Given a collection of M sets

S1, . . . , SM , each is a subset of the integers {0, . . . , K − 1}, what is the minimum number
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of sets whose union contains all the integers 0, . . . , K − 1? For example, if the collection of

sets (M = 8, K = 4) is: {S1 = {1}, S2 = {0, 1}, S3 = {1, 3}, S4 = {0}, S5 = {0, 2}, S6 =

{2, 3}, S7 = {2}, S8 = {3}}. Note that sets S1, S3, S5, S7 together cover the elements, that

is, S1 ∪ S3 ∪ S5 ∪ S7 = {0, 1, 2, 3}. However, it is a cover of size 4. On the other hand,

S2 = {0, 1} and S6 = {2, 3} also form a cover: S2 ∪ S6 = {0, 1, 2, 3}. No single set contains

all the elements, and thus the minimal set cover is of size 2.

Next, we explain how an MSC problem can be expressed in Boolean form, using the

example above. Consider the Boolean equations

Element 0: x2 + x4 + x5 = 1,

Element 1: x1 + x2 + x3 = 1,

Element 2: x5 + x6 + x7 = 1,

Element 3: x3 + x6 + x8 = 1. (23)

Here, the variable xj = 1 if set Sj is part of a set cover. Thus, the first line above says

that at least one of the sets S2, S4, S5 needs to be in the cover in order for element 0 to be

included. Since all elements need to be included, a solution to the CNF expression

(x2 + x4 + x5)(x1 + x2 + x3)(x5 + x6 + x7)(x3 + x6 + x8) = 1

results in a cover. For a minimal cover, we want as few variables xj = 1 as possible.

4.2. The minimal-network problem is at least as hard as the MSC problem

In the standard approach [58], to demonstrate that problem A is hard, one shows that

a known hard problem B can be transformed into A. In this manner, a putative fast

(polynomial-time) algorithm for A must also be able to solve B quickly and since B is

known to be hard, therefore A must be hard. The transformation from B to A needs to

occur in polynomial-time so that the entire process takes polynomial-time.

We now show how an arbitrary instance of an MSC problem can be transformed into an

equivalent minimal-network problem in polynomial time so that a putative fast algorithm

for the minimal network problem would have to solve the MSC problem in polynomial-time.

The transformation is best explained via an example – we use the example MSC problem
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above in Eq. (23). We need to find a feasible Boolean biological process whose equations

match Eq. (23).

Figure 1(A) shows a process withM+1 = 9 nodes and 2K = 8 time steps 0, 1, . . . , 2K−1.

The (M + 1)-th column is for a molecule called i, whose transitions will define the desired

Boolean process. At time t = 2k (k = 0, 1, · · · , K−1), we set sj = 1 for those j appearing in

the equation for element k. For example, the equation for set element 3 is x3 + x6 + x8 = 1;

we therefore set s3 = s6 = s8 = 1 in the row 6 of the process. As for node i, we set si = 1

at rows t = 2k + 1 (k = 0, 1, · · · , K − 1).

Next, consider the Boolean equations for node i, shown in Fig. 1(B). The first four

equations are exactly Eq. (23) after replacing gji with xj. Notice that in the column for i,

whenever node i makes a 0→ 1 transition, the other nodes in the row that are “on” cannot

have an inhibitory edge. Thus, rji = 0 for these nodes. Similarly, the only way in which the

1→ 0 transition can occur is due to self-degradation, i.e., rii = 1.

At first, it appears that this transformation is sufficient. However, notice that nodes

1, . . . , 8 need to make a 0 → 1 transition in alternate rows. Unfortunately, the transitions

rely solely on the activations from node i, which would result in conflicts. Figure 1(A)

indicates that node 3 makes a 0 → 1 transition at t = 5, and therefore there must be a

stimulatory edge from node i to node 3 (gi3 = 1). Therefore, this stimulatory edge must

have activated node 3 at time t = 3 (i.e., s3 (4) = 1), which contradicts the Boolean process

and which shows s3 (4) = 0.

Based on the process in Fig. 1(A), we construct a new process in Fig. 1(C) whose

feasibility is guaranteed. The process has K − 1 additional nodes, denoted by Ak (for

k = 0, 1, · · · , K − 2). The node Ak is responsible solely for all the activations at time

t = 2k + 1. Supplementary Information E explains why the resulting process is always

feasible.

If the minimal network problem for the Boolean process in Fig. 1(C) were solved in

polynomial-time, then the equations in Fig. 1(D) and consequentially Eq. (23) could be

solved in polynomial-time. This would imply that the MSC problem can be solved in

polynomial-time and that the NP = P problem is solved in the affirmative. Therefore, it is

unlikely that there is a polynomial-time algorithm to find a minimal network.

Theorem: Given a Boolean process, the problem of finding a minimal network (a network

with the smallest number of edges) to realize it, based on the model Eq. (2), is NP-complete.
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4.3. A heuristic algorithm for finding an approximated minimal network

While the association with the cover problem proved that the problem is hard, it also

suggests a heuristic. It is known that a simple “greedy” algorithm for the set-cover problem

is effective in practice and in fact can be shown to result in covers within log(N) of optimal

[61]. The greedy algorithm for set-cover works as follows: first select the set that covers the

most elements. Then, mark the covered elements as “covered.” Then, select the set that

covers the most uncovered elements, and repeat in this fashion. The greedy algorithm was

used in various biological fields including the inference of sparse Boolean functions [56, 62–

64].

For our minimal network problem, we first apply the greedy algorithm to only the equa-

tions containing stimulatory edges, which approximately identifies a set of minimal stimu-

latory edges. The results simplify the remaining equations, which contain only inhibitory

edges. By applying the greedy algorithm again, an approximated minimal network is found.

We consider separately the two cases of rii = 1 and rii = 0. The algorithm is described as

follows.

1. // Start with the first node

i← 1

2. // The case rii = 1

rii ← 1

Use the greedy algorithm to find a set of stimulatory edges

Use the greedy algorithm to find a set of inhibitory edges

3. // The case rii = 0

rii ← 0

Use the greedy algorithm to find a set of stimulatory edges

Use the greedy algorithm to find a set of inhibitory edges

4. Choose the smaller edge set from steps 2 and 3 above for node i

5. // Move onto the next node

i← i+ 1

if i > N goto 6

else goto 2
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endif

6. stop

4.4. Validation of the algorithm for finding an approximated minimal network

To test the efficacy of the greedy heuristic, we constructed 90,635 feasible processes, each

with N = 11 and T = 12. For each of these 90,635 processes, we used the algorithm to seek

an approximated minimal network. As a comparison, we also compute the actual minimal

networks, by time-consuming brute force enumerations, whereby we can assess how far off

from optimal the heuristic’s solutions are. The results are shown in Fig. 2(A). One sees that

the approximated minimal network for each of the 68,058 processes (75.1% of total) is a

genuine minimal network. The approximated minimal network for each of 18,862 processes

(20.8% of total) has only one more edge than the genuine minimal network. Only 4%

processes have two or more edges than minimal.

We also constructed 21,000 feasible processes each with N = 15 and T = 16. The results

for these are shown in Fig. 2(B). One sees that the approximated minimal network for

each of the 9030 processes (43% of total) is a genuine minimal network. The approximated

minimal network for each of the 7329 processes (34.9% of total) has one more edge than

the genuine minimal network. Only 22% processes give deviations more than one edge. We

also studied many N = 9 and T = 10 processes, with the results presenting in Fig. 2(C),

together with the other results.

The above numerical results indicate that the heuristic algorithm is very accurate, with

high confidence for at most one additional edge than optimal.

Supplementary Information F and G further provide examples of finding minimal net-

works.

5. Designability: how many solutions?

We consider one more computational aspect of Boolean networks: computing the des-

ignability of a biological process. The designability of a process is the number of network

solutions, that is, the total number of networks that can produce a given process. A process

with high designability is likely to be more robust and therefore survive natural selection.
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If a biological process has only one network solution, for example, then it is unlikely that

random mutation would find that network. In other words, processes with high designability

are more likely to occur (or be discovered by evolution) than low-designability ones [5, 65].

Unfortunately, computing the designability of a process appears to take exponential time,

a result that is not unexpected because the problem is similar to many such combinatorial

enumeration problems [66]. Instead, we seek a fast approximate algorithm. Our approach

is to use a type of logistic regression on certain features of a problem. These features are

obtained during the simplification procedure described earlier in the feasibility solution.

During simplification, it is easy to obtain the following: xr, the number of inhibitory edges

(rji = 1); xg, the number of stimulatory edges (gji = 1); xr, the number of edges that cannot

be inhibitory (rji = 1); xg, the number of edges that cannot be stimulatory (gji = 1); x0, the

number of nodes that cannot connect to node i (rjigji = 1); x1, the number of nodes that

can be associated with node i in arbitrary way (inhibitory, stimulatory, or “no connection”).

We now assume that the approximated log-designability (denoted by D) is a linear func-

tion of xk:

lnD = b+
∑
k

akxk, (24)

where k ∈ {r, g, r, g, 0, 1} , b and ak are unknown coefficients. The coefficients can be

estimated by minimizing the difference between the approximated designability D and the

exact designability D0 for some test cases. To this end, we generate 800,000 random Boolean

process, each of which has N = 11 and T = 12. For each process, we calculate the exact

designability D0 and the values of xk, for k ∈ {r, g, r, g, 0, 1}. We then perform a least-

square data fitting to obtain the values of the coefficients. The results are: b = 64.0796,

ar = −0.458234, ag = −0.302389, ar = −0.0477189, ag = −0.0368327, a0 = −0.572591, and

a1 = 0.398622.

In Fig. (3), each dot represents one Boolean process; the x and y axes representD0 and D,

respectively. One sees that the fitting is successful. The dots locate along the diagonal with

only small deviations. Therefore, we now have an empirical formula to estimate designability

with sensible accuracy. Although it is not very accurate to assume N - and T - independent

regression coefficients and use them to estimate designability, the estimation can still be

very useful because it becomes very difficult to compute the exact designability for large N

and T.

17



6. Summary

Biological systems are generally large, involving many complicated molecular interactions

among numerous working components. In this case, a “coarse grained” description such as a

Boolean network model is often a useful step towards understanding a system. Furthermore,

a study of general Boolean networks may help elucidate network design principles in biolog-

ical systems. The Boolean framework in this paper results in a single analytical equation

(Eq. 2) to integrate the information about network structure (edge variables) and biological

process (state variables). This has rendered the structure-function relationship tractable.

When structural information is known, one can use Eq. (2) to study the dynamics and learn

the biological function. When the process is known, one can use Eq. (2) to characterize the

network space constrained by the process. When both information are partially known, Eq.

(2) can still help enumerate the structure-function combinations.

In this paper, we have answered some key questions about the computational complexity

of the network inference problem in Boolean networks that feature dominant inhibition.

The first is the feasibility problem: is the solution space null? The second is the minimal

network problem: what are the fundamental building blocks of the space, namely those

networks with the least number of edges? The third is the designability problem: how big

is the solution space if it is not null?

Fast algorithms provide the benefit of being able to study many types of processes and

to explore the statistics of processes. For example, one is interested in what general features

of a process make a process a biological one suited to evolution. Is it the case, for example,

that a small minimal network acts as the core with additional edges accumulated during

evolution, and does a large multiplicity help maintain stability against mutation?

Beyond a rigorous classification of problem complexity, the present study also offers

accurate heuristic algorithms that run in polynomial time. This will be crucial for handling

both large-scale datasets and the inevitable statistical noise. The former requires a well-

controlled scaling as observed in these polynomial heuristics and the latter requires iterative

applications of these algorithms for noise sampling on a trial-and-error basis.
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Figure Captions

Figure 1. The transformation of a minimal set covering problem into the

problem of finding a minimal biological network for a given Boolean process.

(A) A Boolean process which does not always have a network solution. (B) The Boolean

equations for network edges incoming to node i, according to the process in (A). (C) A

Boolean process that is guaranteed to have a network solution. (D) The Boolean equations

for network edges incoming to node i, according to the process in (C).

Figure 2. Validation of a heuristic algorithm for finding an approximated

minimal network. A large number of feasible Boolean processes were generated. For

each process, an approximated minimal network was determined by the heuristic

algorithm; the actual minimal network is also computed by time-consuming enumeration.

The histogram shows how the number of processes spread over the deviation of estimation

(actual minimality minus estimated minimality). (A) 90,635 processes with N = 11 and

T = 12. (B) 21,000 processes with N = 15 and T = 16. (C) Processes with N = 9 and

T = 10 as compared with other processes.

Figure 3. Designability approximation. The 800,000 dots in the picture each

represent a random Boolean process. For each dot, the actual designability D0 and the

approximated designability D are represented by the x axis value and the y axis value,

respectively. The diagonal corresponds to the ideal fitting.
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FIG. 1: The transformation of a minimal set covering problem into the problem of

finding a minimal biological network for a given Boolean process. (A) A Boolean process

which does not always have a network solution. (B) The Boolean equations for network edges

incoming to node i, according to the process in (A). (C) A Boolean process that is guaranteed

to have a network solution. (D) The Boolean equations for network edges incoming to node i,

according to the process in (C).
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FIG. 2: Validation of a heuristic algorithm for finding an approximated minimal net-

work. A large number of feasible Boolean processes were generated. For each process, an approx-

imated minimal network was determined by the heuristic algorithm; the actual minimal network

is also computed by time-consuming enumeration. The histogram shows how the number of pro-

cesses spread over the deviation of estimation (actual minimality minus estimated minimality).

(A) 90,635 processes with N = 11 and T = 12. (B) 21,000 processes with N = 15 and T = 16.

(C) Processes with N = 9 and T = 10 as compared with other processes.
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FIG. 3: Designability approximation. The 800,000 dots in the picture each represent a random

Boolean process. For each dot, the actual designability D0 and the approximated designability D

are represented by the x axis value and the y axis value, respectively. The diagonal corresponds to

the ideal fitting.
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