
1

Geometric Chemotaxis: A Biologically-Inspired
Framework for a Class of Wireless Coverage

Problems
H. Ozgur Sanli, Rahul Simha and Bhagi Narahari

Abstract— We present a new, biologically-inspired algo-
rithm for the problem of covering a given region with wire-
less “units” (sensors or base-stations). The general problem,
framed mathematically as the problem of covering a poly-
gon with a minimum number of circles, is applicable both to
sensor networks in which the units are sensors with known
sensing range and to wireless networks in which the units
are base stations that have a known transmission range.
While past work has considered the problem of locating
a given number of units, we consider the joint problem of
both determining the optimal number as well as locating
them. Our approach to solving the problem invokes a new
biological metaphor in algorithm design, chemotaxis, that is
different from other biology-inspired algorithms such as neu-
ral networks or genetic algorithms. In this metaphor, the
wireless units are treated as food-seeking organisms that co-
alesce around nutrient sources and thereby cover a region;
by carefully selecting the geometry of these nutrient sources
and their distribution, we show that it is possible to control
the chemotactic process to efficiently provide overall cover-
age. We also consider the additional problem of coverage in
the presence of obstacles such as indoor walls that attenuate
transmission.

Keywords— Indoor wireless,circle covering,base station
placement

I. Introduction

The area of wireless networks has grown to encompass
various types of networks such as sensor networks and mo-
bile ad hoc networks, all of which are designed to exploit
the transmission of signals through space. However, free-
dom from wiring has also created the expectation among
users that adequate transmission quality will be provided
all over the region of service. This expectation of “full
coverage” gives rise to the problem of providing coverage
using as few resources as possible. We term these resources
“units.” In a sensor network application, the unit is a sen-
sor and its range is the maximum distance at which a sensor
reliably detects its target. In a base-station application, the
unit is a base-station whose range is a radius of coverage
within which signals of a given strength can be reliably de-
coded. In both applications, a region is to be covered by
units that each have a fixed coverage range. The resource
optimization goal is to use as few units as possible in en-
suring that every part of the region is covered by at least
one unit.

We use a standard two-dimensional model in which a
unit’s range is a circle and the given region is a polygon.
Thus, the problem can be stated as follows: given a polygon
P and circles of radius r, what is the minimum number
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of circles needed to cover P , such that each point in P
lies in some circle? A secondary, but just as important,
question is: where should the circle centers be located? We
also consider the additional problems of accounting for the
signal attenuation caused by indoor obstacles such as walls
and different capacity requirements among the region. The
main contribution of this paper is a relatively fast algorithm
that constructs an efficient covering of the given polygon.

A. Prior Work

The coverage problem we consider and some of its vari-
ations are known to be NP-hard [10]. Computational ge-
ometers have studied the related point-covering problem of
finding the minimum number of circles to cover a discrete
set of points in the plane that do not necessarily form a
polygon. For this problem Hochbaum et al [17], [18] give
a metholodogy in which a ”shifting lemma” provides up-
per bounds on solutions obtained by global application of
an algorithm as compared to local application using di-
vide and conquer. In [8] an ε-net approach is given for
the point covering problem. Although algorithms for the
point covering problem can be used as approximations to
the polygon covering problem by selecting a set of discrete
points in the polygon, this approach can result in highly
sub-optimal solutions if the polygon is not regular.

Another related literature is the analysis of spherical
packings in two dimensions. In these problems the goal
is to derive or approximate fundamental constants such as
the minimal radii required of n circles to cover the unit
square [25] or to cover the plane [9]. The particular con-
straints introduced by an irregular polygon fundamentally
change the nature of the covering problem; nonetheless,
some constants from the standard planar packing results
will prove useful in our approach.

Coverage and infrastructure planning has received atten-
tion of many researchers in the area of wireless networks.
Much of the research has concentrated on the problem of
finding the best placement of a fixed number of transmit-
ters over an area and not on the problem of minimizing
the number of such units required for total coverage. Var-
ious objectives have been considered including minimizing
interference, providing best coverage, maximizing average
signal strength or a combination of them. Fortune et al [12]
use the Nelder-Mead simplex method [28] for optimization
while Ephremides et al [32] use neural networks and down-
hill simplex with omni-directional antennas and adaptive
antenna arrays at base stations. Wu et al [36] propose a site
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prediction tool which makes use of genetic algorithms and
neural networks to find suitable places for access points. In
[35], a variant of Nelder Mead simplex method is proposed
that can be used for many optimizations in the wireless
research besides placement. The work in [3] on outdoor
planning, is an example of applying simulated annealing to
placement problems. There has also been some research on
outdoor cellular base site placement [34], [26],[19].

The initial number of units used in most of the previous
efforts is determined by the regular installation method in
which strips of equal width are first projected on the plane
where the width of each strip is equal to the side of the
maximum enclosed square inside a circle. Circles are then
placed sequentially by sweeping row-wise over the polygon
to be covered. Figure-1 shows an example of this method-
ology in which the strip boundaries are indicated by the
solid black lines. Since a circle covers each inscribed square,
each strip can be covered by adjacent squares, the centers
of which are also the centers of the circles. However, as
we show by comparison with our algorithm, this approach
may yield inefficient results.

Some research efforts [23], [24] examined the problem
of coverage in sensor networks in which, instead of com-
plete coverage, the goal is to reduce the width of the max-
imal breach path from a start point to a destination. An-
other variation of the coverage problem involves capacity
requirements of the region. Some portions of the region
demand more data rate (for example, a conference room
where most users bring their laptops) and therefore, the
coverage problem can be extended to provide additional
capacity for high-bandwidth areas. In [20], a greedy ap-
proach is introduced in which the initial number of units
is approximated with respect to aggregate data rate need
of the area. Placement of the units is done on the basis
that if a unit cannot meet the demand, it shares some of
its clients with neighbors to minimize the demand on each
access point.

To our knowledge, there are only two papers which ad-
dressed the problem of determining the minimal number
of units for coverage. Frukwirth et al [14] have used a

Fig. 1. Regular installation method on a nonconvex indoor area

constraint-based optimization method by finding for each
grid point the places at which a unit can be placed to cover
the point and then applying a ”branch and bound” based
methodology to minimize the number of these candidate
positions. In [33] a hierarchical genetic algorithm is pre-
sented in which one gene controls the number of others
representing the base station positions. However in both
these papers, no comparison with an existing optimization
method is given. In terms of approach, Howard et al [16]
use the notion of magnetic fields to spread a given num-
ber of mobile sensor nodes in an indoor area but do not
consider optimized coverage.

Our work is distinguished from these efforts in several
ways. First, we present a new and fast heuristic for the cov-
erage problem. Second, we demonstrate the effectiveness
of our method by comparing it to two heuristics, including
simulated annealing. Lastly we show how our method can
be applied to the non-uniform bandwidth coverage prob-
lem.

Finally, we note that the metaphor of chemotaxis has
been independently developed in [27]. However, their inter-
pretation of chemotaxis for optimization is quite different,
and is aimed at very different kinds of problems. Their goal
is to search for the minimum (or maximum) of a general
non-linear function and to perform a local search by con-
sidering the value of the function in a neighborhood of the
current iteration. In contrast, our problem has elements of
both a continuous and discrete nature and the chemotactic
metaphor is applied to geometric constraints.

II. Algorithm Description

In this paper, we explore a new biological paradigm in de-
signing an algorithm for the coverage problem. For compar-
ison, consider that other biological paradigms in algorithm
design have enjoyed measured success: genetic algorithms
[15], evolutionary algorithms [11] and neural networks [7].
Unlike the selectivity theme of genetic and evolutionary
algorithms, or the function-approximation theme of neu-
ral networks, our approach is inspired by the phenomenon
of chemotaxis in which small organisms (bacteria) move in
response to chemical cues [2],[4]. In chemotaxis, bacteria
regulate movement to move along concentration gradients
of chemical attractants (towards higher concentration) or
repellants (towards lower concentration) and in so moving
can form clusters whose shape is determined by the con-
centrations.

We treat the circles (sensors, transmitters or wireless
units) in our problem as the organisms and we arrange
for nutrients (attractants) and toxins (repellants) to be ju-
diciously placed in the polygon to encourage the organisms
(circles) to properly cover the polygon. Each circle is added
to the system one by one and when added finds its optimal
location through chemotaxis. The successive location of
such “selfish” circles eventually results in a covering of the
polygon that is reported as the solution by the algorithm.

Unfortunately, as other algorithms inspired by biological
metaphors have shown, a naive implementation does not
necessarily produce good results. For example, a simple
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Fig. 2. Optimal planar (lattice) arrangement

initial attempt to place nutrients in the interior of the poly-
gon and toxins in the exterior does not work because it is
necessary to allow limited overlap of circles. Furthermore,
for good coverage it is necessary to exploit the geometry of
overlapping circles and their complicated interaction with
the boundary of the polygon. Interestingly, as we show, it
is possible to incorporate these geometric concepts into the
chemical gradients laid out in the polygon.

To incorporate the local geometry, we introduce local
adaptations that are made after the final location is found
for a particular circle. The general idea is that coverage
starts by attracting circles to cover the periphery of the
polygon and to gradually encourage clustering towards the
interior. At the same time, the nutrient and toxin con-
centrations are altered in the vicinity of the most recently
placed circle to force future circles into near-optimal cover-
age patterns. We discuss these adaptations in some detail
below. The overall structure of the algorithm is:

1. while coverage not achieved
2. Add a new circle
3. Find optimal location for circle
4. Adjust nutrient and toxin concentrations
5. endwhile
6. return circle locations

One issue that surfaced early in our experimentation
with this approach was the proper representation of space:
we discovered that movement in free space (i.e., with real-
valued positions) results in a system that is slow to sta-
bilize and can also result in cyclic behavior, as in many
continuous dynamical systems [6]. Accordingly, we place
a discrete grid over the polygon using a grid spacing that
is a small enough fraction (3-5%) of the circles’ common
radius. Then, each grid position is evaluated by each cir-
cle as a potential location for its center thereby limiting
the computation time for each iteration. The grid contains
both the polygon and a set of points outside the polygon
which form a band around the polygon boundary of thick-
ness equal to the diameter of the units.

Finally, we use a single number v(x, y) at each grid point
(x, y) to indicate the level of nutrient or toxin: a positive

value indicates the concentration of a nutrient and a nega-
tive value indicates a toxin concentration. Define the value
of placing a circle’s center at (x, y) as:

V (x, y) =
x+r∑

x′=x−r

y+r∑
y′=y−r

v(x′, y′) (1)

Both the level and value of a grid point may change as the
algorithm proceeds.

Then, a slightly more refined description of the algorithm
can be given as:

1. Initialize nutrient and toxin concentrations
2. i = 0
3. while coverage not achieved
4. i = i + 1
5. Add circle i
6. Find grid point (xi, yi) that maximizes V (xi, yi)
7. Adjust concentrations v(x, y) in vicinity of (xi, yi)
8. endwhile
9. Adjust for obstacles, if applicable
10. return circle centers (xi, yi)

As line 9 shows, we address the issue of propagation at-
tenuation from obstacles after an initial placement of circles
via chemotaxis. This adjustment uses a variant of simu-
lated annealing [1] that we describe later in Section III.

We next describe the initial concentration of nutrients
and toxins and the concept of local adaptations since these
are collectively important to the success of the algorithm.

A. Nucleal structure and Initial Environment Density

We incorporate geometric information in the chemotaxis
metaphor in two ways. The first involves structural ele-
ments such as defining a “nucleus” for each organism (cir-
cle) and a “cell wall” around the perimeter of the polygon.
The second is chemical and involves defining concentration
gradients within these structural elements.

To explain why we use a nucleus, consider covering the
plane with circles. It is well known that the best arrange-
ment is hexagonal with six neighbors to each circle [9] as
shown in Figure-2, with thickness 2π

3
√

3
. In this covering,

there is some degree of overlap (as there must be in all cir-
cle coverings). Our use of a nucleus is motivated by this
question: how should chemical concentrations be defined to
permit an optimal packing in the plane (i.e., without the
constraints of a polygon)? Our solution is to define for each
circle (of radius r) a nucleus of radius rnuc = r ∗ (

√
3− 1)

and to set the toxin level high inside the nucleus while set-
ting a nutrient level outside the nucleus. In this way, a
new circle will not overlap existing circles to a degree be-
yond what is optimal (because if it did, the overall “value”
V (x, y) would decrease from the negativity of the toxins).

The planar-optimal nucleal radius is sufficient for cover-
ing the plane, but is far from optimal for the unusual con-
straints imposed within an arbitrary polygon. To see why,
consider the placement of circles with respect to polygon’s
edges as shown in Figure-3. The two shaded areas, A1 and



4

Fig. 3. Optimal geometry along polygon boundary

A2, represent “wasted” coverage in some sense because A1
is outside the polygon and A2 is covered by two circles.
Consider what happens to each of these shaded areas as
the circles are moved. If the left circle is moved upwards
(into the interior of the polygon) to decrease A1, then A2
will need to increase because the right circle will have to be
closer to the left one (to cover the polygon boundary). Sim-
ilarly to decrease A2, we will have to increase A1. Thus,
there is some value of A1 and A2 that minimizes their sum
(and therefore minimizes wasted coverage). More precisely,
based on the angle 2Θ subtended by the chord above A1,
we wish to minimize

f(Θ) = A1 +A2

= πr2 − 3/2r2sin(2Θ)−Θr2.

The minimum is found to occur at Θ = 55◦, which is then
used to define the optimal nucleal radius for circles that lie
along a polygon’s edge. Note that the dashed line at the
bottom of Figure-3 indicates the maximum extent to which
circles overlap with the exterior of the polygon. We refer
to this band around the polygon’s edge as the extension
region for that edge. as shown in the figure.

The computation of this extension region bears some ex-
planation since it is key to determining the nucleal radius.
We first start by placing circles to cover the end-points of
each edge, as shown in Figure-5. Now, it would seem that
the above definition of nucleal radius might suffice for all
circles. However, three factors conspire to force differing
nucleal radii on circles. The first is that polygon edges
are of arbitrary length and so an integral number of circles
may not cover an edge. Accordingly, we use the optimal
length of A1 from above to compute the (possibly frac-
tional) number of circles needed for a particular polygon
edge. This number is rounded off to the nearest integer to
decide how many circles will be used to cover the polygon
edge. The circles are then equally spaced so that their A1
chord lengths are now different from the optimal value of
A1 as computed above. This results in smaller or larger
extension regions for each polygon edge.

The second factor arises from considering the covering of
polygon corners as shown in Figure-4. To avoid requiring
two circles in covering a corner with acute interior angle
(α, in the figure) and to minimize wasted space, the circle
perimeter should pass through the corner. This results in

Fig. 4. Adaptation with respect to boundary

defining a different nucleal radius of the corner-covering
circle as r sin(α2 ).

The third factor complicating the nucleal structure arises
from the optimal packing wrought by differing nucleal radii
in the vicinity of a circle. For example, in Figure-4 the ex-
tension regions of the two polygon edges meeting at the
corner may have different widths. Because of this and nu-
cleal radii difference for corner-covering circles, the degree
of circle overlap along one edge (corresponding to area A2
in Figure-3) may be different from the overlap along the
other edge. This overlap can be computed exactly as de-
scribed earlier. In the example of Figure-4, the overlap will
need to be higher along the top edge than along the other
one because its extension region is narrower. To enable this
packing to occur, the effective nucleus of the corner circle
needs to be reduced along the top edge, but not along the
lower edge. This results in an irregular or “truncated” nu-
cleus as shown in the figure. Again, the width of the shaded
area can be computed exactly.

B. Initial distribution of nutrients and toxins

Because we wish to exploit the above geometric analysis
of polygon corners and edges, our algorithm initially places
circles to cover corners and then places circles along poly-
gon edges. To orchestrate such a bias towards the polygon
perimeter, we assign nutrient values in higher concentra-
tions along the polygon boundary, with the highest concen-

Fig. 5. Extension length calculation
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tration at the corners and gradually decrease the level of
nutrient as a function of distance from the boundary. This
graded nutrient distribution is the analogue of the chemical
gradient in chemotaxis. To prevent circles from intruding
too deep into the exterior of the polygon, high toxin con-
centrations are placed on grid points in the exterior of the
polygon outside extension regions.

C. Local adaptations

Local adaptations form a key component of our algo-
rithm and are motivated by the observation that nucleal
radii and shape are alone not sufficient to ensure efficient
coverage. In some cases, a definition of the nucleal radius
must be accompanied with a re-distribution of toxins or
nutrients. The re-distribution is intended to preserve the
total level of toxin inside the nucleus even if the shape was
made irregular to accommodate local geometry.

Consider the irregular nucleus in Figure-4. As mentioned
earlier, part of the nucleus needs to be truncated to accom-
modate a closer packing of circles along one or the other
edge at the corner. Recall also that we place a high level
of toxin inside the nucleus to control the degree of over-
lap of circles. Now, if we simply reduced the size of the
nucleus without maintaining the same level of toxin inside
the nucleus, it is possible that a third circle will overlap the
affected region of the nucleus and compute a higher than
normal “value” using the convolution in equation (1). This
affects the optimality of circle placements that do not need
the accommodation provided by the truncation. Accord-
ingly, we have discovered that better solutions are obtained
by maintaining the same level of toxin, via re-distribution
of the total toxin with the nucleus.

We refer to the toxin re-distribution above as a local
adaptation. Another adaptation arises in the interior of the
polygon as circle placements get “squeezed” into arrange-
ments that deviate from the hexagonal planar-optimal ar-
rangement. Consider the two circles A and B in Figure-
6. Assume they have been already placed and that their
nuclei have been computed and toxins assigned inside the
nuclei. Because these two circles can come (towards each
other) from incremental growth initiated at different poly-
gon edges, their overlap may not be planar-optimal. This
means that if a potential third circle is located at point
C and covers the space in between, including the point P ,
then the extent of overlap that C has with A will be differ-

Fig. 6. Adaptation with respect to neighbors

ent from the overlap C has with B. To accommodate these
differences, we need to re-structure the nuclei of circles A
and B so that no toxins are present in the shaded regions.

Note that both these shaded areas and the optimal lo-
cation of C can be computed knowing the centers of A
and B. Once these are computed, the toxins in the shaded
areas are distributed amongst the grid points in the trun-
cated nucleus. The two adaptations above are the two main
modifications needed to accommodate the irregular geom-
etry imposed by an irregular polygon.

D. Complete Algorithm

A formal description of the algorithm is given below fol-
lowing the definition of some terms:
• P : the polygon, including its boundary.
• ∂P : the polygon’s boundary
• P ◦ = P − ∂P : interior of the polygon
• P ′: the exterior of the polygon
• τ : user-supplied coverage threshold value
• r: transmission radius of each unit
• G: the set of grid points
• ej,ext: the extension region of edge ej ∈ ∂P
• Kmax: maximum positive value that can be assigned to
a grid point
• |a, b|: distance function where the first parameter a is a
point and the second parameter b is either a point or line
segment
• T : set of currently assigned units
• U : set of units in the neighborhood of the recently placed
unit
• E : set of boundary edges in the neighborhood of the
recently placed unit

Algorithm Coverage (P, τ, r)

1. begin algorithm
2. T = ∅
3. coverage = 0%
4.
5. // Find the extension region for each boundary edge
6. for each ej ∈ ∂P
7. Compute extension region ej,ext for each edge ej
8. endfor
9.
10. for each (x, y) ∈ G //For every point in grid
11.
12. if (x, y) ∈ P ◦ //Grid point inside polygon
13. //Add value depending on distance from edge
14. if (∃ei ∈ ∂P : |(x, y), ei| ≤ ei,ext)
15. for each ej ∈ ∂P : |(x, y), ej | ≤ ej,ext
16. v(x, y) = v(x, y) + r

|(x,y),ej |
17. endfor
18. else
19. v(x, y) = 1
20. else if (x, y) ∈ P ′ //Grid point outside
21. //Assign unit value if it belongs to an extension region
22. if (∃ej ∈ ∂P : |(x, y), ej | ≤ ej,ext)
23. v(x, y) = 1
24. else
25. v(x, y) = −Kmax
26. endfor
27.
28. while(coverage < τ)
29.
30. Choose (x∗, y∗) to maximize V (x, y)
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31. Place a new unit t at (x∗, y∗)
32. T = T ∪ {t}
33. Compute neighborhood E,U of t
34. Assign rnuc(t) with respect to E and U
35.
36. //First compute default nutrient/toxin distribution after placement
37. for each (x, y) : (|(x, y), (x∗, y∗)| < r and
38. 6 ∃t′ ∈ (T − {t}) : |(x, y), (t′.x, t′.y)| < rnuc(t′))
39. if (|(x, y), (x∗, y∗)| < rnuc(t))

40. v(x, y) = −Kmax
|(x,y),(x∗,y∗)|

41. else
42. v(x, y) = 1
43. endfor
44.
45. //Apply adaptations with respect to neighborhood
46. for each t′ ∈ U
47. Apply unit-unit adaptations to t and t′

48. endfor
49. for each ej ∈ E
50. Apply unit-boundary adaptations to t with respect to ej
51. endfor
52.
53. //Modify values of grid points on cluster of units’
54. //inner boundary
55. for each (x, y) : ∃t̂ ∈ T, (|(x, y), (t̂.x, t̂.y)| ∼= r) and
56. 6 ∃t̄ ∈ (T − {t̂})(|(x, y), (t̄.x, t̄.y)| < r)
57. v(x, y) = v(x, y) + 1
58. endfor
59.
60. Update coverage
61. endwhile
62. return T
63. end algorithm

The algorithm description above is intended for com-
pleteness. Note that lines [53-58] describe how the algo-
rithm proceeds once the regions close to the boundary are
covered. By favoring neighborhood of the units according
to their placement order, a continuous cluster of units is
built up from boundary to center which yields complete
coverage of the polygon.

E. Discussion

After seeing the incorporation of geometric constraints,
the reader familiar with biological systems might wonder if
phyllotaxis might not be the more appropriate metaphor for
our approach. After all, phyllotaxis is concerned with regu-
lar arrangements of biological units (leaves, cells or organs)
in patterns. Indeed, phyllotaxis has been mathematically
modeled as a dynamical system [5] and models have been
used in generating realistic patterns for use in computer
graphics [13]. Note however that phyllotaxis is concerned
with the generation of patterns with known mathemati-
cal structure (such as the commonly occurring plant spi-
ral). Thus, while it is true that our algorithm models local
geometry, its use of graded nutrient and toxin quantities
suggests that chemotaxis is the closer metaphor.

III. Extension for obstacles and signal

attenuation

The propagation of a wireless signal indoors is affected by
many factors including indoor obstacles such as walls. To
incorporate such effects in coverage, we extend our frame-
work to a two-phase approach. The first phase uses chemo-
taxis to assign coverage without consideration of obstacles.

The second phase consists of modeling signal quality in the
presence of obstacles and making an iterative adjustment
of the initial chemotactic assignment. This section focuses
on the second phase, which itself consists of two parts.

We begin by describing the signal propagation model
used in the presence of obstacles. Propagation models are
either based on the direct path between sender and receiver
or use ray-tracing for a more precise determination of path
loss [22]. A comparison of these two types of models is
given in [30]. We use the statistical model of [31] that in-
corporates indoor obstacles in to the free space propagation
model. The mean path loss PL(d) in dB at a distance d is
given by

PL(d)[dB] = 20 log10

(
4πd
λ

)
(2)

+ np ∗ (partition attenuation)[dB]
+ nw ∗ (wall attenuation)[dB]

where np, nw are the number of soft partitions and con-
crete walls in the direct line of sight between sender and
receiver. A polygon point at a distance d is said to be
covered in this case if PL(d) is less than some given thresh-
old T , a property of the transmitter units. From the path
loss equation above, one can find the effective range of a
unit ER((p, q), (x, y)) located at (p, q) at a receiving point
(x, y). This can be calculated from equation (2) after elim-
inating the path loss caused by walls and partitions.

The first part of the second phase of the algorithm con-
sists of appropriately modeling and evaluating signal qual-
ity. Here our approach is standard [31]: a point is said to
be covered by a unit if the signal quality predicted at the
point from the unit is sufficiently high. Thus, an obstacle
might degrade the signal, whose strength at the point of
interest can be computed using equation (2). Hence, for
any grid point one can compute the level of coverage from
neighboring circles. In the second part of the adjustment
phase, we apply a modified version of simulated annealing
to adjust circle positions so that as many grid points as
possible are covered.

We refer the reader to [1] for a comprehensive description
of simulated annealing and only briefly describe the main
ideas here. Simulated annealing explores the state space of
candidate solutions by defining for each state a collection of
“neighboring” states via a neighborhood function. Because
a greedy search of the state space may result in getting
stuck at a local minimum, simulated annealing provides
an opportunity to accept occasional, probabilistic jumps
to higher-cost states. The idea is that such jumps help
lead the process out of local minima to facilitate further
searching of the state space. This acceptance of jumps to
higher-cost states is itself gradually lowered by decreasing
a parameter referred to as the temperature.

Most annealing implementations leave the neighborhood
function intact while gradually decreasing the tempera-
ture. However, in some geometric optimization problems,
it has been found valuable to simultaneously also adjust
the neighborhood function [21],[29], We take this approach
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here and reduce the neighborhood as the algorithm pro-
ceeds.

To complete describing the algorithm, we need to de-
fine the neighborhood, the temperature schedule and the
adjustments made to the neighborhood. For the tempera-
ture schedule, we have experimented with both linear and
polynomial cooling schedules (see [1]).

We now describe the neighborhood function. Recall that
the first part of this phase identifies all uncovered grid
points. More formally, let {(x1, y1), . . . , (xn, yn)} be the
set of uncovered points and {(p1, q1), . . . , (pm, qm)} be the
set of circle centers computed in the first phase. For each
uncovered grid point (xi, yi), we identify the least distance
γ(xi, yi) a neighboring circle needs to be moved toward the
grid point in order to cover it using the effective range ER
equation found in Section-??:

γ(xi, yi) = min
1≤k≤m

{|(xi, yi), (pk, qk)|−ER ((pk, qk), (xi, yi))}

The initial neighborhood is defined as the average of
such values over all uncovered points. Since the distance
γ(xi, yi) changes as the circle placements are adjusted, the
neighborhood changes as the algorithm proceeds.

IV. Extension for Capacity Based Planning

We have assumed in the previous sections that the data
rate demand is uniformly distributed (unit demand per grid
point) among the indoor region to be covered and total
demand from coverage area is within the capacity of each
transmitter (unit). The problem with this infinite capacity
assumption is that the wireless infrastructure may not meet
the quality-of-service users are expecting during high load.

One approach to increasing capacity is to add more units
so that each grid point is covered by multiple units. How-
ever, such an approach might require additional hardware
or software to distinguish between the units during opera-
tion and to balance the load. Our approach, instead, is to
use smaller radii to cover regions with high demand. The
idea is to let the range r be inversely proportional to the
demand. In this manner, high-demand sub-regions will be
assigned more units.

Suppose a high demand region has M units of demand
per grid point. The new range is taken to be r′ = r√

M
.

Thus, an algorithm for the variable-demand case can use
the previous algorithm as follows: If P =

⋃n
j=1 pj and

capacity requirement for each of the subpolygon is pj,cap,
the extended algorithm is

Algorithm CapacityBasedCoverage (P, τ, r)
1. begin algorithm
2. T = ∅
3. for each pj ∈ P
4. T = T∪ Algorithm Coverage (p, τ, r√

pj,cap
)

5. end for
6. return T
7. end algorithm

V. Algorithm Evaluation

We have evaluated our algorithm using randomly gener-
ated polygons. For concreteness, we have used transmission

parameters arising from the 914MHz band in equation (2).
The grid spacing was taken to be 1m and circles with radii
30m and 50m were used in two sets of simulations. Figure-7
shows the corners and edges of a seven-sided irregular poly-
gon covered by circles and the placement obtained at the
end of the chemotaxis phase of the algorithm. Three atten-
uating walls are shown in light gray; the longer one has 6dB
attenuation whereas the smaller two have 5dB attenuation.
Figure-8 and Figure-9 shows the solution after the second
phase(extension for obstacles) for units with 30m and 50m
radii for the same region. All the figures also display the
Voronoi regions arising from the point set consisting of the
circle centers. The Voronoi regions are used in determining
the extent of coverage.

We compare our algorithm with a standard implemen-
tation of simulated annealing for the same problem. Note
that in comparison with our algorithm, this simulated an-
nealing implementation directly solves the whole problem
of both allocating circles and placing them. We experi-
mented with various temperature schedules and neighbor-
hood functions for simulated annealing; in particular, the
neighborhood had to be defined to allow the number of cir-
cles to change. We also compare our algorithm with the
regular installation heuristic described in Section I-A. The
two existing techniques, simulated annealing and regular
installation, delineate the extremes of a spectrum of per-
formance: regular installation is simple and fast but sub-
optimal whereas simulated annealing is time-consuming yet
produces significantly better solutions.

The overall qualitative results can be summarized as fol-
lows:
• Our chemotaxis algorithm almost always produces better
solutions than either simulated annealing or regular instal-
lation – about 10-15% fewer circles.
• With the densest grid, the chemotaxis algorithm (the
first phase) runs orders of magnitude faster than simulated
annealing, as would be expected of a technique that directly
constructs a solution instead of searching the state space
with an average ratio close to 1:700. Due to the high grid
density and optimizations, an average ratio of 103:1 exists
with respect regular installation. Our algorithm therefore
lies in the middle of the computational spectrum as com-
pared to these two classical approaches.
• The difference between chemotaxis and the other meth-
ods is greater when the polygon is irregular, as measured
by the Brinkhoff complexity [37] of the polygons.

Note that we use simulated annealing as a base-line com-
parison. Our goal here is to explore a new paradigm in
directly constructing a solution. Hence, in some ways, our
approach may serve as a valuable starting solution for state-
space algorithms such as annealing or tabu search.

Table-I and Table-II depict the results of five sample ex-
periments that compare coverage (as a percentage of the
polygon area) and number of circles required for the three
approaches with units of range 30m and 50m. The first
column shows the complexity of the polygon.

We have used the formal measure of the [37] for polygon
complexity whose results are multiplied by 100 to show a
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Complexity Chemotaxis Annealing Regular Install.
Expt. 1 12.69 Coverage 99.91% 99.09% 100%

Num. circles 46 64 59
Expt. 2 11.17 Coverage 99.79% 99.32% 100%

Num. circles 48 65 58
Expt. 3 7.49 Coverage 99.92% 98.57% 100%

Num. circles 63 72 68
Expt. 4 0 Coverage 99.93% 99.53% 100%

Num. circles 58 73 64
Expt. 5 1.52 Coverage 99.91% 98.92% 100%

Num. circles 57 69 60

TABLE I

Coverage yield vs number of units, 30m range

Complexity Chemotaxis Annealing Regular Install.
Expt. 1 12.69 Coverage 99.80% 99.46% 100%

Num. circles 20 23 23
Expt. 2 11.17 Coverage 99.83% 98.86% 100%

Num. circles 19 22 24
Expt. 3 7.49 Coverage 99.99% 98.83% 100%

Num. circles 27 27 28
Expt. 4 0 Coverage 99.95% 99.16% 100%

Num. circles 21 25 24
Expt. 5 1.52 Coverage 99.93% 99.11% 100%

Num. circles 22 23 23

TABLE II

Coverage yield vs number of units, 50m range

percentage scale. The model emphasizes the global shape
of the object (how it deviates from its convex hull) and
local vibration of its boundary by considering the following
factors
• frequency of vibration : Notches define the nonconvex
corners of the polygon. The normalized number of notches
in a polygon pol is

notchesnorm(pol) =
notches(pol)

vertices(pol)− 3

where the denominator is the upper limit on number of
notches. The frequency of vibration is
freq(pol) = 16(notchesnorm(pol)− 0.5)4 − 8(notchesnorm(pol)− 0.5)2 + 1

• amplitude of vibration : As the objects get more com-
plex, their boundary increases. This boundary amplitude
increase is referred as

ampl(pol) =
boundary(pol)− boundary(convexhull(pol))

boundary(pol)

• deviation from the convex hull : For the global shape of
the object the following convexity measure is defined

conv(pol) =
area(convexhull(pol))− area(pol)

area(convexhull(pol))

The complexity of a polygon compl(pol) is defined as
follows
compl(poly) = 100 ∗ ((0.8) ∗ ampl(pol) ∗ freq(pol) + (0.2) ∗ conv(pol))

A convex polygon has measure close to 0 and values larger
than 40 are for very complex polygons. Values smaller than
10 are typical for polygons representing indoor areas. All
these experiments have emphasized the chemotaxis phase
of the algorithm which constructs the direct solution and
did not include extension models. User supplied tolerance
values are selected randomly from the [99.5 - 100]% inter-
val.

A. Results for Variable-Demand Case

We have tested effectiveness of our variable-demand ver-
sion, using experiments 2 and 3 from tables I and II, corre-
sponding to the indoor area of Figure-7. For the obstacles
and signal attenuation, when walls are taken into account
with 30m range experiment, the coverage value reduces
to 97.89% from 99.79%. Application of the second phase
has improved the coverage in case of obstacles to 98.57%.
Figure-10 shows the centers of the units for the result of
demand-based coverage extension when the same indoor
area to be covered is divided into three regions A,B,C
with demands 5,3,2 for each grid point respectively.

VI. Summary

In this paper, we proposed a new biologically-inspired
algorithm for a class of indoor wireless coverage problems.



9

Initial experimentation with the algorithm appears to show
promising results: the algorithm results in fewer wireless
units being allocated than two existing algorithms for the
problem: simulated annealing and the regular installation
method.
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