
Blockchain for the Common Good:
A Digital Currency for Citizen Philanthropy and

Social Entrepreneurship
Shweta Jain

Department of Mathematics & Computer Science
John Jay College of Criminal Justice

sjain@jjay.cuny.edu

Rahul Simha
Department of Computer Science

George Washington University
simha@gwu.edu

Abstract— We present a distributed ledger application for the
world of citizen philanthropy and social entrepreneurship, with
stakeholder incentives designed to increase social good through
accountability, transparency, and flexibility. In this system, called
Directed Cash, individual donors specify conditions (the “Di-
rected” part) attached to their donation or investment (“Cash”),
that are then efficiently paired with interested recipients or
aggregators of recipients (charities, social entrepreneurs) using
distributed consensus so that the intent and pairing are open
while maintaining donor anonymity. Furthermore, Directed Cash
flows both ways to promote accountability and transparency:
after receipt, a validation flows backwards to return to the
donor so that the donor receives a report of how their donation
was spent. While some elements of the system borrow from
existing cryptocurrency and blockchain technologies, we propose
alternative incentives for distributed consensus that are better
aligned with the application and promote social good through the
stakeholders. This paper describes the goals and concepts, and a
system design to achieve these goals, a primary feature of which
is a simple SQL-like language to enable specifying conditions,
pairing, aggregation and publicly-verifiable reporting.

I. INTRODUCTION

Citizen donors or investors concerned about the impact
of their contributions face a daunting gamut of choices. For
charitable donations, for example, they must either trust a
well-established charity by contributing to its general fund
or spend time scouring crowd-funding sites for particular
projects of interest. Not only is this donor-to-cause pairing
problem time-consuming for donors, it forces charities to
spend precious resources competing for eyeballs. But most
importantly, there are few opportunities for ordinary donors to
specify in much detail how they want their contributions spent,
and nearly impossible to verify that their donations were spent
as intended. These shortcomings raise a useful question: can a
marketplace of philanthropic transactions be infused with the
technology to improve efficiency and create a virtuous cycle
that steers stakeholders towards the greater common good?

In this paper, we argue that the following combination of
technologies is well-suited to addressing the above question.
First, a digital currency (called Directed Cash here) that allows
donors to attach conditions to a donation such as the type
and location of aid, a cap on organizational overhead, and
other such expressions of donor intent. Second, a pairing

algorithm to connect donations to charities and causes. Third,
a distributed ledger so that the system functions without a
trusted third party. Fourth, a linked structure within the dis-
tributed ledger that allows the backward flow of transactions,
connecting expenditures to the original donors so that donors
may receive confirmation that their stated intent was satisfied.
And finally, a high-level query language called DCL (Directed
Cash Language) to facilitate clear expression of donor intent
and recipient action. We explain why these components help
us design a system that will be effective in reaching the overall
goal of directing donations to causes that matter to donors.

A. Directed Cash (DC)

The new digital currency will be linked to government
backed currency through a central bank. Unlike Bitcoin, our
goal is not to gain independence from the government and
nor do we want the currency itself to become an investment
vehicle. Instead DC is merely a transactional convenience that
allows a donor to direct spending to favorite causes and with
conditions important to them.

B. Algorithmic Pairing

With algorithmic pairing, donations are not pledged to an
organization but to a cause, aligning the donors’ will with the
needs of potential recipients. Analogous to program trading in
stock markets, algorithmic pairing has the potential to mitigate
human bias and result in socially more optimal allocation of
resources. It can also help address the problem of irrational
herding [1], in which popular projects tend to attract new
investors even if other deserving projects are better suited to
investor intent. Just as importantly, we organically establish
an open verifiable system which enables donors motivated by
public recognition [2] to tout their contribution but also to
stimulate others into providing “matching contributions.”

C. Distributed Ledger:

Because transparency promotes good behavior amongst the
stakeholders, a publicly verifiable distributed ledger without
a trusted third party appears to be a promising approach,
with the advantage of spreading the verification burden, and
facilitating a low barrier to entry (and exit): anyone with

the software can join or leave as they please. As long as
there is sufficient interest in the application, we presume
there will be sufficient honest nodes to keep the application
functioning with integrity. However, a proof-of-work or similar
blockchain based system is unnecessary for our application,
and even computationally infeasible for the types of stake-
holders in our realm of interest. Instead a general consensus
scheme with alternative incentives is more suitable to address
the somewhat more benign threat model, as explained later.
Therefore, we propose a permissioned blockchain [3] that has
the following assumptions: First, anyone can send a query
to the chain to perform accounting, auditing and reporting
tasks. Only bonafide banks can can generate transaction IDs
that accompany donation pledges and claims. Only registered
charities can send DCL statements containing information
about a cause, and only registered vendors can send claims
with invoices for payments for goods and services, both via
their tax IDs. Anyone with a bank account or credit card
can send donation pledge with attached conditions. Permitted
parties consisting of vendors, charities, regulators, banks and
donors participate in maintaining the blockchain.

D. Directed Cash Language:

Since a working system needs a compact and precise way to
specify donations as well as causes, we describe a preliminary
design for a high-level SQL-like language called Directed
Cash Language (DCL). The language facilitates querying,
donating with conditions, automated pairing, reporting, and
verification. We aim to strike a balance between the full
expressibility and high vulnerability of a Turing-complete
language [4] and a fixed-format predetermined list of allowable
donation categories that cannot anticipate future needs, and
which restricts the creativity of projects and aggregators.
We propose a compromise by using a carefully constrained
non-Turing complete SQL like language. For databases, SQL
combines enough expressibility for simple querying with sim-
plicity in syntax, and most importantly, can be fully validated
(and also optimized for execution speed) at runtime.

A constrained language is one part of reducing system
complexity (which can be maliciously gamed [5]). We mention
two others. First, actual transactions involving money in our
system use the standard banking system; the Directed cash is
simply a token that attaches a dollar amount to be drawn from
an actual bank in accordance with a donor’s intent. When a
donation is spent by a recipient, a donor’s reference to the
funds is fulfilled by a central bank that holds the money in
reserve. Second, the only algorithmic component is pairing,
which is achieved by a deterministic open-source algorithm.
Thus, the only potential security loopholes are of two kinds:
the standard ones with any existing digital payment system,
and any “gaming” of the incentives for the stakeholders. We
address the latter in a forthcoming section.

E. Structure of paper

We begin by describing each of the system stakeholders or
roles, and their needs in Section II. Then, in Section III we

outline the system, followed by an explanation of the DCL
language. We present our threat model in Section IV and
conclusion in Section V. We have presented related work in
all of sections as we describe the relevant components.

II. STAKEHOLDERS AND THEIR NEEDS

We begin by identifying the stakeholders:

• Donors are individuals or foundations who invest in a
cause, or an organization that supports their cause.

• A recipient is the ultimate target of a donation, typically
an individual. A project is a fixed-duration enterprise with
a specified outcome; thus, a project can be a collection
of recipients along with spending goals, or a collection
of physical items (such as habitat materials).

• A vendor is a commercial entity that provides goods
and services; examples include grocery stores, landlords,
social workers. Most importantly, a vendor’s legally-
bound receipts form the basis of validating expenditures.

• An aggregator brings together donors, projects, or recip-
ients under one theme or organization. For example, a
donor aggregator can offer to match contributions from
other donors, whereas a recipient aggregator more closely
resembles a charity that features projects and recipients.
Many foundations are often a mix of recipient and donor
aggregator. In our system, such organizations would list
themselves in both categories to offer both functionalities.

• A regulator represents a third party solely interested in
ensuring the system is functioning as designed; such as
a government oversight agency.

A. What donors seek

Economic analyses of donor motivations demonstrate a
variety of intent [2] much of it deeply personal [6], arguing
for a flexible system that accommodates all types of donor
motivation. What is equally clear is the desire among donors
to monitor and evaluate outcomes from their contributions
[7], [8], [9], to find the right opportunity, and to use public
announcements for recognition or to stimulate others [2]. Thus,
for our purposes, we seek a design with the following features:

• Donors should be able to easily attach directions with
their contributions, such as “I want my donations to go
only to food costs, through charities that have lower than
10% overhead and who operate in my state.”

• Donors should receive as complete an accounting as
possible of how their money was spent.

• Donors should not have to spend much time searching for
projects that meet their interest, nor to check how their
contributions get spent even if they have full accounting.

• Beyond the transfer of funds at the time of purchasing Di-
rected Cash, donors should have the option of maintaining
anonymity. Yet, donors who wish public recognition or
to stimulate others via matching contributions should be
able to do so easily.

Fig. 1. Directed Cash Architecture Design

B. What aggregators seek

Aggregator’s seek automation and efficiency.
• It should be easy for recipient aggregators to define

projects and their attributes in ways that promote optimal
pairing or large-scale aggregation.

• The system should enable effective stakeholders to stand
out. Thus, attributes such as low-overhead or low-cost
should be easily available as conditions.

C. Features for vendors

We assume that vendors are commercial entities ultimately
interested in profit. However, we exploit the fact that indirect
outcomes that lead to profit, such as advertising and reputation,
are just as desirable. One of the most important system features
is a reputational incentive for vendors to report on spending
from recipients. This creates a virtuous cycle whereby re-
sponsive vendors are rewarded by having donated funds reach
their products. Also, through the systems public verifiability,
a vendor can acquire positive reputation that impacts its other
customers, in much the same way that commerical entities that
support social causes enhance their standing in society.

D. Other desirable system properties

The overriding goal of our proposed system is to incentivize
all stakeholders to fulfill their role in making the system
work, and in doing so, achieve better outcomes for all.
Thus, we need mechanisms that align the common good
with each stakeholder’s goals to advance their own interests.
Since aggregators and vendors seek recognition, we propose a
points-based reward system to enable these stakeholders to rise
in rankings by gaining points for participation (successfully
constructing the next block) in distributed consensus. This,
together with a mechanism to prevent domination by any
particular stakeholder, helps us avoid the burden of proof-
of-work blockchains. Finally, stakeholders should be able to
make changes to the system through the consensus approach.
This is particularly relevant for sanctifying nomenclature (what
constitutes food) and rankings (of vendors).

III. HOW DIRECTED CASH WORKS

We assume that donor aggregators or crowd-funding plat-
forms will offer donors a user-friendly interface and will

connect through the banking system to enable donors to both
make contributions and specify their conditions in a convenient
manner. Aggregators, vendors, regulators, and any member
of the public may operate a Directed Cash server (DC-
server) that participates in the computations of the system.
The computational goals of the system (algorithmic pairing,
validation, reporting, recognition) are achieved through the
distributed computation that occurs amongst these servers. In
particular, servers jointly agree through distributed consensus
on the public ledger that includes anonymized donations, their
pairings with recipients or projects, vendor validation, rank-
ings, and reports sent back to donors. As mentioned earlier,
this is a permissioned chain and hence all participants in the
consensus process will need to be registered. Yet, participants
are subject to malicious intent as well as external attack
and hence protection needs to be built to counter associated
security risks as described later in Section IV.

Because donors’ conditions can greatly vary, there needs
to be a simple way to let donors specify their conditions.
To enable efficient and simple to use systems, we propose
knowledge-representation systems using ontologies [10], that
have predefined categories and hierarchies of accepted terms.
We merely enable the use of any tree-structured ontology (such
as those described in [11], [12]), along with a distributed
mechanism to alter the ontology as needed.

A. The Directed Cash Language (DCL)

Rather than present a formal description of the language
that is more suited to a tech report, we outline the language’s
features through examples typical for the stakeholders.

1) Identity and authentication: Because every DCL trans-
action (query and statement) will feature the writer’s identity,
and will itself have a unique ID, we first address the question
of how stakeholders are identified and authenticated. The
identity and authentication part of the system is not central to
the contributions of the paper and thus we see any of several
approaches as roughly equal, with competing advantages.

The first approach is to have the system require a single
central bank or a digital payment system such as PayPal
which is responsible for issuing both types of IDs: stakeholder
identities as well as unique transaction (or DCL statement)
serial numbers. Clearly, since our goal is to have our system
tied to standard government-backed banking, it is convenient
to have all stakeholders possess accounts linked to the digital
payment system that generates IDs and transaction numbers.
The advantages are simplicity and convenience in transaction
ID generation, but its disadvantages include a single point of
failure and reliance on a single source for trust. Note that
computational efficiency is less of a concern because most
DCL statements and queries feature a human-in-the-loop that
automatically limits the rate at which transactions are likely
to be generated. Thus, the maximum computational capacity
needed is no worse than at any major ecommerce website.

The second approach is a slight variation: each stakeholder
is affiliated to some bank or credit card account, and these are

at mutually-distrusting financial entities. These financial enti-
ties are responsible for issuing IDs. This has the advantages,
again, of tying the proposed system to regular banking but,
through multiple banks that audit each other, can address both
issues: single point of failure and single source of trust.

In both the first and second approaches, we assume that
banks will post to the distributed ledger every request for
an ID. For donors that do not wish to be identified, the
IDs anonymize the donor but can be “opened” via public-
key cryptography in case of a legal challenge. We note that
one compelling advantage of using standard banks is that they
combine four useful features for the stakeholders: (1) the banks
are already legally bound to operate under audit; (2) they
have an incentive to be efficient since they benefit from the
transaction flow; (3) the banks can serve as a policing function
by blocking malicious parties from gaming the system; (4)
and perhaps the most important one is that banks have the
legal authority to authenticate stakeholders as individuals and
as organizations based on their physical tax identifiers. This
last one is critical in preventing denial-of-service or flooding
attacks that create multiple fake identities.

2) Queries for donors and donor aggregators: We envision
the following common scenarios for donors. Donors should
have the ability to: (1) search existing proposals, projects and
recipients; (2) make isolated donations with constraints and
reporting requirements; (3) issue continued donations spread
over time; (4) stimulate or join matched contributions; (5) rate
a recipient aggregator; (6) receive reports on their spending;
(7) perform validation by operating a server in the ecosystem.

Let us walk through the steps with a simple example of a
donor that wishes to make a monthly donation for a year for
either food or clothing. The donor first uses their account with
the central digital bank to convert actual currency into a token
that can be sent with the DCL statement into the public ledger.
The DCL statement includes the user’s ID and is carried
inside a transaction message described later in Section IV. The
message header contains various IDs that tie the DCL query
to the originator and the bank that created the transaction IDs.

FROM ANON (USERID=VO8t05RV9NrZYtrT1wL4QLcjp)
TIMESTAMP 2018-02-12T20:53:00+00:00:00001 DONATE $100
MONTHLY 3-10-17 TO 3-10-18 DECIDE FCFS WHERE (SCHEMA=1.1)
AND ((CATEGORY=food) OR (CATEGORY=clothing)) REPORT ONCE

Here, we see that a donor who wishes to be anonymous is
donating $100 per month over the period of a year, with
the stated aim of allocating the funds on a first-come-first-
served (FCFS) basis in the categories of food and clothing.
The schema refers to the product ontology that is being applied
(for which options include schema.org and other such
ontologies [11], [10], [12]). The donor also seeks a single
report at the end of spending. Next, we see that the bank issues
both a timestamp that’s sufficient to serialize such statements,
and an encrypted token to be used as the reference so that
later, when donation is paired with a charity, the charity can
use the token to reference this donation. Finally, the bank also
includes a signed digest to detect whether the statement itself
has been tampered with. The statement is then written to the

public distributed ledger, awaiting further action when a node
in the system performs pairing as part of writing the next block
in the blockchain.

Eventually, when algorithmic pairing occurs, such “buy
orders” are paired with projects or recipients and eventually
spent, with a report that aggregates over time using the token
reference number so that it can be returned to the donor.

A simpler version allows a donor or a representative to
query the system for existing projects that might suit their
interests, as in: Query existing proposals:
FROM PSEUDONYM NightHawk (ID=...) FIND PROJECTS WHERE
(SCHEMA=1.1) AND (CATEGORY=food) OR (CATEGORY=clothing)

Since these carry no obligation, no security measures are nec-
essary and hence are not wrapped into a transaction message.
A donor may wish to change the DECIDE clause by seeking to
match existing contributions: DECIDE MATCH name=...
names a particular pseudonym whereas leaving the name out
results in the first match that meets all the criteria. Thus,
a matching contribution merely adds the requirement that
another contribution has already been made of at least the
same amount. And, a donor can issue a rating, as in:
FROM ANON (ID=...) RATE Bright Ray Charity AS 4.3/5

Finally, a donation statement whose conditions are not satisfied
or which has expired will eventually be returned to the donor,
at which time they could reconsider some of the conditions.

3) Queries from recipient aggregators: One of the most
important features in enabling algorithmic pairing is to allow
recipient aggregators to create a statement of intent – that is,
to define a project. Here is an example:
FROM Bright Ray Charity (ID=...) DEFINE PROJECT Food Drive
2018 GOAL $10,000 WHERE (SCHEMA=1.1) AND (CATEGORY=food)

Clearly, this is a project that can be paired with the donation
example from the previous section. Here is an example of
issuing a call to vendors for a particular food item:
FROM Bright Ray Charity (ID=...) PROJECT Food Drive 2018
VENDOR RFP $1000 WHERE (SCHEMA=1.1) AND CATEGORY=food.canned.soup)
DESCRIPTION URL http://brc/fooddrive2018.html

Note the use of a hierarchical ontology (in Schema 1.1).
Recipient aggregators may also query existing donations in
the ledger, rate vendors, and are expected to report on their
spending as in:
FROM Bright Ray Charity (ID=...) EXPENSE=$550.00 TO VENDOR
Fresh House Grocery WHERE (SCHEMA=1.1) AND PROJECT=Food
Drive 2018 AND (CATEGORY=food.canned.soup)

Once a vendor verifies this by posting a receipt to the ledger,
such a claim can be verified. The more verified claims that a
charity has, the higher its rating.

4) Queries from vendors: A vendor needs to be able to
query existing calls, make bids, and rate recipient aggregators.
As an example of making a bid, consider:
FROM Fresh House Grocery (ID=...) BID $550 TO Bright Ray
Charity WHERE (SCHEMA=1.1) AND PROJECT=Food Drive 2018 AND
(CATEGORY=food.canned.soup) DESC URL
http://fhg/search.html?prodid=98735

Then, it is up to a recipient to accept the bid and complete the

transaction. A completed transaction then result in the vendor
posting the receipt on the ledger.

B. Distributed-Ledger and Consensus

A ledger entry is merely a DCL statement secured by
standard cryptographic means into a transaction. Once a trans-
action containing a DCL statement is in a resolved block of
the ledger it will also have a serial number so that all resolved
DCL statements are uniquely ordered, as are the larger blocks
in which they are contained. This is the purpose of operating
a blockchain: to achieve distributed consensus by offering
participation incentives and yet prevent domination by any one
player.

Any registered stakeholder (with an account with a central
bank) can operate a computational node in the permissioned
distributed ledger system. We assume that regulators already
have an incentive to become nodes. We describe in the
following section an incentive mechanism for aggregators and
vendors to participate.

Since DCL statements (ledger entries) flow into various
nodes in the system, there needs to be a way to organize the
serialization and resolution of blocks into the blockchain. Our
approach is to combine a leader-based consensus mechanism
(such as RAFT [13]), with incentives to spread the leadership
capability and prevent any one node from dominating as
leader. In particular:

• Each node in the consensus system receives ledger entries
from anyone and can generate ledger entries.

• A node broadcasts its ledger entries to the current con-
sensus leader who follows an acknowledgement based
protocol to enable fault tolerance (see Section IV).

• A leader is elected as in the RAFT algorithm [13] and any
secure voting process such as [14][15] can be utilized.

• Only a leader has the authority to resolve the next block
through a sequence of computations to: (1) determine the
potential ledger entries in the current block; (2) compute
pairing if needed; (3) hash and sign the block; (4) verify
P previous blocks (where P is a system parameter); (5)
broadcast the current block.

• The resolution of the next block triggers a new leader
election (to prevent domination). Also, the current leader
is ineligible to become the next leader in the next L
rounds of leader elections. Here, L is a parameter of the
system.

• Leader elections are also triggered by timeouts so that
no leader can deny service by merely blocking further
action.

• After the next leader is elected, the previous leader
finalizes the block by adding a signed ledger entry that
contains the next leader’s ID as well as the votes affirming
the election of the leader.

• A leader’s reward is based on the number of ledger entries
processed (to maximize processing as many entries as
possible), weighted by the age of each transactions (to
prevent an entry from being left behind).

When a leader resolves a block, it is awarded a participation
point. These participation points accumulate as an incentive.
We propose two alternatives. One is for the central bank to
charge a tiny fee for each actual transaction and to let that fee
accumulate into a fund used to reward aggregators or vendors
who have accumulated sufficient points. Another approach is
to allow the points generated to be incorporated into the ratings
of aggregators and vendors so that they compete for visibility
and recognition. In order the further incentivize leaders, the
reward for making a block is in proportion to the number of
ledger entries in the block.

C. Algorithmic pairing

The purpose of algorithmic pairing is to find a suitable
project or recipient according to the donor’s criteria. A sec-
ondary goal is to ensure some degree of spread amongst
multiple competing projects that satisfy the criteria. Finally,
we also wish to design a system that is robust to gaming or
attacks.

Our approach is to use a variation of the classic Gale-
Shapley algorithm for the stable marriage problem [16]. In the
most basic version of the problem, there are M type-A items
to be paired with N type-B items (most often M = N), where
each item ranks every member of the other type. Under certain
conditions, a simple algorithm provides a stable “marriage.”
Much research has gone into variations as well as attempts to
make the resulting allocation fair to both sides [16]. In our
case, we can choose the donations as type A, and potential
recipients or projects as type B. However, we need a variation
that must account for the following:

• In our case, preferences are often binary: either a project
satisfies the criteria or not. Thus, to decide amongst
equivalently satisfying projects, the projects can be ran-
domized before selecting the next one. For transparency,
the method of randomization and the particular choice
made would need be made public and written back into
the ledger. A simple way to achieve this is to use a known
algorithm (such as a Lehmer generator) where the seed
uses a combination of the timestamp of the last ledger
entry in the most recently resolved block and that block’s
hash. This way, the sequence is reasonably unpredictable
yet verifiable.

• It will almost never be the case that M=N and so
some items will not receive a pairing and will have to
“wait.” Also, it is equally probable that the current set of
donations are not sufficient to meet the goal of a particular
project, and thus, the difference will remain to be fulfilled.
Thus, the pairing algorithm will need to go as far back
as needed in the blockchain to find incompletely-satisfied
projects.

• It should be possible to prioritize projects that are either
very early or have received very little so that no project
remains unlucky for too long or is totally unfunded.

• Finally, donations can also specify that rankings should
be used, in which case, there is a natural preference order.
However, to prevent a few aggregators from dominating,

some randomness can be inserted to enable spreading the
wealth.

D. Reporting and donor interfaces

One of the computational tasks of a leader is to aggregate
expenditure data for donors. Here, the algorithm is simple:
examine posted receipts, find the originating transactions and
post reports to the ledger, one for each donor whose funds
were used towards a receipt. Thus, at any given time, a donor
might have a list of such report entries awaiting them. Donors
can retrieve reports by signing on to the system through which
they originally sent the pledge.

E. Validation and challenge

A third computational task for any leader, beyond pairing
and reporting, is to cross-check the entries written by other
leaders. This feature is at the heart of public verifiability, so
that any leader who games the system or even makes a mistake
is identified, followed by appropriate corrective action.

We propose that each leader checks P randomly selected
previous blocks and includes a ledger entry in the block it
generates stating the block IDs that were checked. To reduce
the burden on checking and to ensure all blocks are checked by
a majority of leaders, we propose that any block that has been
checked by sufficient number of leaders is considered “retired”
and does not need to be checked anymore. What happens
when an inconsistency is discovered? It is tempting to try and
design an automated way to “undo” a resolved block and re-
resolve the block following an inconsistency. However, this
may lead to catastrophic consequences (actual expenditures)
that are difficult to roll back. Instead, we propose that any
inconsistency is reported in the next block through a ledger
entry and it is escalated to human intervention, through a
steering committee or governing board. If the penalty is severe
enough (denial of participation for a year, for example), there
is little incentive for legitimate entities to cheat.

IV. SECURITY

We present our threat model and specific details that allow
for building a system that is robust to the given threat.

1) An adversary might remove or change a donation
2) A donor might go back on a pledge
3) A bank might withhold funds
4) A vendor might use the same receipt to claim money

from multiple donations (double claim).
5) Denial of service by the consensus leader i.e., suppress-

ing a DCL query or activity.
6) Duplicate malicious leader sending spoofed blocks, or

deploying multiple servers to win an election (Sybil
attack).

In order to thwart the above threats, we define the system’s
transaction design and the process of maintaining consistency.
We will reflect back on the threats to explain how the design
removes the risks posed by the above threats.

Fig. 2. Transaction structure

A. Transaction structure

We propose the following structure for a transaction in
our system, shown in Figure 2. First each transaction has a
header that consists of the header length field, version number,
transaction id, originator id, originator’s bank id, time of
creation, status code, link address and the signature of the
transaction that this transaction links. There is a sub-header
containing retry flag, a retry count and an optional expiration
date to deal with retransmission of a ledger entry when needed
for fault tolerance. Following this, the transaction body consist
of the contents of the DCL statement. Finally, the transaction
header signed by the bank and the header and body signed
by the originator are attached to the transaction. We represent
a transaction with the following notation: Ta(hi, tidi) where
a is the originator id and tidi is the ith transaction id
and hi is the header associated with the transaction. The
digitally signed hash of the transaction is represented as
E(Ka, H(Ta(hi, tidi))) and the header alone is signed as
E(Kb, H(hi)) by the originator’s bank. Having this structure
helps us maintain the data that is needed to thwart each one
of the threats mentioned above.

B. Types of Transactions

We propose four types of transactions, Donation Pending
(P), Donation Expired (E), Donation under Contract (C) and
Donation Claimed (D). When a donor makes a pledge, the
Donation Pending transaction is created which appears as a
pending payment against the credit card or bank account.
These funds remain in a pending state until the donation
expires or Donation Claimed transactions are created. The link
address field in the Donation Pending transaction is set to
the bank’s transaction authorization code and the signature is
the signed hash of the authorization code. This creates a link
between the digital currency and an actual bank authorization
binding both the donor and the bank into honoring the pledge.
The header field ’link address’ in the Donation under Contract
transaction is set to the transaction id in the Donation Pending
transaction and its signature filed contains the signed donation
pending transaction. Similarly the Donation Claimed transac-
tion is linked with the Donation under Contract transaction and
the Donation Expired transaction is linked to the Donation
Pending transaction. This information ties each transaction

directly and immutably with the original donation and each
transaction header. Figure 3 shows the above workflow.

Fig. 3. Transaction life-cycle and built-in backward accounting

C. Transaction chaining and consensus

We propose a chained Merkel root based ledger
structure similar to that of Bitcoin. Thus lets say
a transaction Ta(hi, status, tidi) is generated by an
originator a. Then Ta(hi, status, tidi)||E(Kb, H(hi))||
E(Ka, H(Ta(hi, status, tidi))) is sent as a ledger entry to
the consensus network. A participant q in the blockchain
consensus process, sends the ledger entry to the current
consensus leader. The leader constructs a block as a Merkle
tree composed of all ledger entries that were received during a
block generation period δ. In addition, the Merkle tree of block
Bi consists of the Merkle root of Bi−1 signed by the creator
r of block B(i − 1). Thus B(i − 1)||E(Kr, H(B(i − 1)))
becomes the leftmost leaf in the block B(i). We do not
believe that a proof-of-work like blockchain is sustainable
in this scenario. Therefore, as explained earlier, we use a
leader-based distributed consensus algorithm with sufficient
additions to ensure proper functioning in the presence of
malicious participants in the system. Participants in the
consensus system might be charities, aggregators and vendors
who have a vested interest in maintaining an honest and
verifiable chain.

D. Non-repudiation of transactions

Each transaction of type P and E is signed by the private
key of the donor and the donor’s bank as explained before and
shown in Figure 2. The aggregator or charity signs transactions
of type C and the vendor signs the Donation Claimed trans-
action. As in the case of donor generated transactions, their
banks sign the headers of these transactions to prevent misuse
and spoofing of the transaction IDs. These signatures help us
achieve non-repudiation for each stakeholder. The charity and
donor may still keep paper trail or electronic evidence of their
physical transactions for regular audit and monitoring.

The transactions are structured as components of a linked
data structure due to the inclusion of the address of the
previous transaction. Thus a claim transaction can be linked to

only one donation in contract transaction. If a project cannot
be fulfilled by a single donation, it will need to be broken
down into multiple donation contract transactions to bind with
different donation pending transactions (similar to real life
partial payments when multiple methods of payment are used
to pay for an expensive purchase).

Due to the linked structure, an independent validator can
easily create an accounting balance sheet of any donation and
all claims against it to verify how a donation has been spent.

E. Defending against threats

The threat of tampering with any transaction is addressed
due to inherent integrity properties of the blockchain. Each
block consists of the signed Merkle root of the previous block,
which makes the chain self-certifiable. The block creator signs
the Merkle root of each block it creates. Thus any inconsis-
tencies can be traced back to the participant who constructed
a bad block provided the participants in the consensus system
remain honest. In order to ensure that a malicious leader did
not go back to change or remove ledger entries, each newly
elected leader is required to check P previous blocks. The
leader certifies this by producing the first ledger entry in the
merkle root which contains the IDs and signed digests of the P
blocks that the current leader has checked. Any block that has
been checked by a majority of consensus participants during
their tenures as leaders can be “retired” and hence do not need
to be checked. Each Merkle root also contains the ID of the
leader elected to compute the next block along with the votes
that affirmed the leader. This removes the problem of spoofed
blocks as the next leader can easily detect the presence of
any spoofed block and the network can differentiate between
genuine and spoofed blocks since the signature in the spoofed
block is not expected to be that of the leader whose ID is
embedded in the previous block.

The threat of donor’s going back on a pledge is solved
through standard banking processes as donors authorize the
funds they are committing through their bank or credit-card
accounts. In addition, source non-repudiation is achieved due
to the donor’s and their bank’s digital signature accompanying
a Donation Pending transaction. The Donation Pending trans-
action includes the ID of the bank that authorizes the payment
as well as the transaction ID that the bank creates. Thus a
pending donation can be traced back to the original bank
that authorized the transaction and issued a transaction ID.
Therefore, the bank is bound by federal regulations and must
honor the commitment to release funds when the transaction
enters the claimed status.

The vendor signs a Donation Claim transaction and the
transaction can be traced back to the original Donation Pend-
ing transaction by following the the link address field of the
transaction header. The body of the claimed transaction itself
contains the receipt of the delivery of the goods signed by
the charity. The recipient bank generates the transaction ID
for the Donation Claimed transaction. A vendor would not
be able to post fraudulent claims unless they collude with a
charity. Through our openly verifiable system, such collusion

can be easily detected by someone who knows the ground
truth in these transactions, which makes it easy to alert the
appropriate law enforcement authority.
F. Denial of service by the consensus participants and leader

We have earlier proposed that the Raft Consensus protocol
can be used as an alternative to the expensive proof-based
consensus used in crypto-currencies. Leader election in Raft
is subject to Sybil attack where a node makes several copies of
itself to increase its odds of election. However, since the leader
election can itself be based on unique IDs of candidates and
voters, even if a node mounts a Sybil attack, only one of the
Sybil nodes will succeed in posing as a candidate and only one
vote can be casted by a voter ID. Furthermore, a leader must
wait L rounds, which also mitigates the Sybil attack. Denial
of service by suppressing DCL queries is another threat that is
inherent to a leader-based consensus mechanism. A standard
and perhaps the only way to defend against this attack is to
retry a failed message. We will also follow a protocol based
approach to this threat which we illustrate in the following
steps. Note that we present defense against malicious leaders
only:

1) A donor or stakeholder S sends a DCL query to any
other consensus participant Cj .

2) Cj must generate a ledger entry and pass it to the leader
Li. Li must acknowledge receipt of the entry with a
return message that contains sufficient information and
cryptographic protection so that it can be uniquely tied
to the original ledger entry.

3) Cj logs the acknowledgment as proof that the query was
received by Li, waits for a block generation period and
then queries the blockchain to ensure that the transaction
has been entered in the block.

4) If Cj does not receive an acknowledgement, it incre-
ments the retry count field in the transaction header, sets
the retry flag to true, and sends the transaction again.

5) The above step may be repeated until a maximum
number of retries have failed or a successful acknowl-
edgement is received.

6) If Cj fails to receive the acknowledgement after the
maximum number of attempts, it can send the ledger
entry to the next leader. At this point, retry flag is set to
1 and retry count is reset to 0.

7) If after receiving the acknowledgement, Cj does not
find the transaction in the next block that was created,
it would follow up by sending the acknowledgement
and the transaction to the next leader. If the donor or
stakeholder fails to find the DCL in the block, it can try
to send the query to another consensus participant.

The above protocol steps enable senders by generating suffi-
cient proofs that their transactions were acknowledged. They
can be extended to allow the consensus participants to build
a blacklist of malicious or faulty nodes in the network.

V. DISCUSSION AND CONCLUSIONS

This paper attempts to explain how blockchain technology
can be adapted for the realm of charitable donations and social

entrepreneurship. Instead of a proof-of-work approach, we use
a well known leader based consensus scheme from distributed
computing, with the addition of incentives to participate in
block creation. We propose algorithmic pairing to give donors
more control over how their money is used and to ease the
burden of searching for best matches to their intentions. It has
the potential to reduce the human bias noted by others, gives
better access to funds to smaller organizations and NGOs, and
reduces the outsize power currently held by foundations and
big charitable organizations. Most importantly, the features
of the system promote social good through incentives for
transparency, accountability and participation.

Acknowledgements: Some of the ideas in this paper first appeared
in a whitepaper written by the lead author [17]. Some of this work
is based on the work supported by the National Science Foundation
under Grant No. 1742919 and PSC-CUNY Grant No. 60814-00 48

REFERENCES

[1] Inés Alegre and Melina Moleskis. Crowdfunding: A review and research
agenda. 2016.

[2] Lise Vesterlund. Why do people give. The nonprofit sector: A research
handbook, 2:168–190, 2006.

[3] Christian Cachin. Architecture of the hyperledger blockchain fabric.
In Workshop on Distributed Cryptocurrencies and Consensus Ledgers,
2016.

[4] Pablo Lamela Seijas, Simon J Thompson, and Darryl McAdams. Script-
ing smart contracts for distributed ledger technology. IACR Cryptology
ePrint Archive, 2016:1156, 2016.

[5] Quinn DuPont. Experiments in algorithmic governance: A history and
ethnography of the dao, a failed decentralized autonomous organiza-
tion. Bitcoin and Beyond: Cryptocurrencies, Blockchains and Global
Governance. Routledge, 2017.

[6] R.Dietz and B.Keller. Donor loyalty study: A deep dive into donor
behaviors and attitudes. Nonprofit Times, 2016.

[7] A.Butcher. What donors want when it comes to communication.
Nonprofit Quarterly, September 2015.

[8] Root Cause. Informed giving: Information donors want and how non-
profits can provide it. Root Cause, Boston, MA. http://www. rootcause.
org/docs/Blog/Informed Giving Full Report. pdf, 2013.

[9] Simon McGrath. Giving donors good reason to give again. International
Journal of Nonprofit and Voluntary Sector Marketing, 2(2):125–135,
1997.

[10] T.D. Wang, B. Parsia, and J. Hendler. A survey of the web ontology
landscape. The Semantic Web - ISWC 2006.Lecture Notes in Computer
Science., 2006.

[11] Dan Brickley and RV Guha. Rdf schema. W3C, 2014.
[12] Martin Hepp. Goodrelations: An ontology for describing products and

services offers on the web. In Proceedings of the 16th International
Conference on Knowledge Engineering and Knowledge Management
(EKAW2008), Acitrezza, Italy, 2008.

[13] Diego Ongaro and John K Ousterhout. In search of an understandable
consensus algorithm. In USENIX Annual Technical Conference, pages
305–319, 2014.

[14] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards se-
cure and scalable computation in peer-to-peer networks. In Foundations
of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium
on, pages 87–98. IEEE, 2006.

[15] Qi Dong and Donggang Liu. Resilient cluster leader election for wireless
sensor networks. In Sensor, Mesh and Ad Hoc Communications and
Networks, 2009. SECON’09. 6th Annual IEEE Communications Society
Conference on, pages 1–9. IEEE, 2009.

[16] Kazuo Iwama and Shuichi Miyazaki. A survey of the stable marriage
problem and its variants. In Informatics Education and Research
for Knowledge-Circulating Society, 2008. ICKS 2008. International
Conference on, pages 131–136. IEEE, 2008.

[17] Rahul Simha. Directed cash: A distributed ledger for charitable dona-
tions. Whitepaper, Department of Computer Science, George Washington
University, 2016.

