
9/20/10

1

05-DrawingInJava 1

Drawing in Java

Barb Ericson
Georgia Institute of Technology

Sept 2010

05-DrawingInJava 2

Learning Goals

•  Understand at a conceptual and practical level
–  Class methods
–  String objects and methods
–  How to use comments in a Java method
–  How to use the Java API
–  How to draw simple shapes in Java
–  How to use the Java 2D API for more complex

drawing
–  To introduce inheritance and interface

How to Create a Picture Object

•  You can create a picture object by asking the
Picture class to create one using the new
keyword

 > new Picture();
•  You will probably want to be able to refer to the

picture object again, so you should declare a
variable to refer to it

 > Picture picture1 = new Picture();
•  You can print out information about the picture

 > System.out.println(picture1);

05-DrawingInJava 3

How to Show a Picture

•  You can show a picture using
> picture1.show();
Or
> picture1.setVisible(true);

•  If you want to create a picture from a file you will
need to specify the full file name as a string.
–  A string is a sequence of characters
–  "C:/intro-prog-java/mediasources/beach.jpg"

05-DrawingInJava 4

Strings
•  Java has a String class and you can create

objects of this class
•  A String object has a sequence of characters

inside of a pair of double quotes
 "this is a string"

•  You can create string objects using
 new String("the characters");

•  You can also declare a variable that refers to a
string object without using the new keyword (it is
implied)

 > String message = "You won!";
05-DrawingInJava 5

String Methods

•  There are many string methods
>String test = "this is a test";
> System.out.println(test.toUpperCase());
THIS IS A TEST
> System.out.println(test.length());
14
> System.out.println(test);
this is a test

•  Strings are immutable
–  They don't change once they have been created

•  Instead a new string is created and returned

05-DrawingInJava 6

9/20/10

2

A Fully Qualified File Name
•  Has a path and base file name

Examples: "C:/intro-prog-java/mediasources/beach.jpg"
"/Users/intro-prog-java/mediasources/beach.jpg"
–  The path is everything up to the final path separator

•  "C:/intro-prog-java/mediasources/" – on windows
•  "/Users/intro-prog-java/mediasources/" – on macs

–  The base file name is the name of the file "beach" and
the extension ".jpg"

•  The extension tells you the format of the data stored in the
file

•  ".jpg" means it is a JPEG image

05-DrawingInJava 7

Special Characters in Strings

•  Java characters are stored using Unicode
–  Which uses 16 bits per character

•  The '\' character is used as a special character in
Java strings
–  '\b' is backspace
–  '\t' is tab
–  '\n' is often used as a new line character

•  In order to use it in fully qualified file names you
will need to double it
"c:\\intro-prog-java\\mediasources\\beach.jpg"

05-DrawingInJava 8

Picking a File

•  There is a class method (also called a static
method) on the FileChooser class that lets you
pick a file and returns the fully qualified file name
> FileChooser.pickAFile();

 This will display a file chooser – navigate to
mediasources and select a file that ends in ".jpg"

•  But, we didn't save the result of the method, let's
try again
> String filename = FileChooser.pickAFile();
> System.out.println(filename);
"C:\intro-prog-java\mediasources\beach.jpg"

05-DrawingInJava 9

Class (Static) Methods
•  Class methods can be called using

–  ClassName.methodName()
•  They do not have to be called on an object of the

class
•  You already have been using one class method

–  The main method
–  The main method must be a class method since no

objects of the class exist when the Java Virtual
Machine calls the method

•  Class methods are often used for general
functionality or for creating objects

05-DrawingInJava 10

The Media Path

•  If you store your media (pictures, sounds, movie
frames) in mediasources
–  You can set the media path which will remember the

path you set
•  You can pick the media directory using a file

chooser.
> FileChooser.pickMediaPath();

•  You can use the stored media directory path
with the base file name. It will return a fully
qualified file name
> FileChooser.getMediaPath("beach.jpg");

05-DrawingInJava 11

Variable Substitution

•  You can pick a file, create a picture from the file,
 and show the resulting picture using
–  new Picture(FileChooser.pickAFile()).show();

•  You can also name the result of each command
 (declare variables)
–  String filename = FileChooser.pickAFile();
–  Picture pictureObj = new Picture(filename);
–  pictureObj.show();

05-DrawingInJava 12

9/20/10

3

Primitive Variables

•  When you declare a variable to be of type int,
double, or boolean
–  This is called a primitive variable
–  It sets aside space to store a value of that type

•  int – 32, double – 64, boolean (maybe 1 bit or maybe more)

–  The value of the variable is stored in that space
> int x = 3;
This sets aside 32 bits and names the space x and sets the

value in the space to 3 (using binary numbers in two's
complement)

Drawing-Turtle-and-AWT 13

x
3

Binary Numbers

•  A bit is a binary digit with a value of 0 or 1
–  A group of 8 bits is a byte

•  Computer memory is allocated in bytes
•  Numbers are stored using the binary number

 system
–  With digits of 0 or 1 and powers of 2

•  Other number systems
–  Decimal- digits of 0 to 9 and powers of 10
–  Octal - digits of 0 to 7 and powers of 8
–  Hexadecimal – digits of 0 to 9 and A, B, C, D, E, F

 and powers of 16.
05-DrawingInJava 14

Converting from Binary to Decimal

•  Multiply the digit value
 times the place value
 and add up the
 results to convert
 from binary to
 decimal

•  The place values start
 with 20 on the right
 (which is 1) and
 increase to the left

05-DrawingInJava 15

Converting from Decimal to Binary

•  Subtraction Method
Keep subtracting out

 largest power of two
 until nothing remains

05-DrawingInJava 16

Converting from Decimal to Binary

•  Division Method

Read result from top to
 bottom.

05-DrawingInJava 17

Object Variables
•  When you declare a variable with the type as a

class name
> World earth = new World();
It sets aside space for a reference to an object

•  An object reference is a way to find the memory
that is assigned to that object
–  It is like a package tracking number, in that it isn't the

object but a way to find it

Drawing-Turtle-and-AWT 18

object of type
World

earth

9/20/10

4

05-DrawingInJava 19

Drawing on a Picture

•  What if we want to draw something on a picture?
•  How about drawing a grid of lines on top of a

picture?
–  We could use a Turtle object to draw the lines
–  Create the Turtle on a Picture object

•  Picture p = new Picture(FileChooser.pickAFile());
•  Turtle turtle1 = new Turtle(p);

–  Using the methods:
•  moveTo(x,y), penUp(), penDown(),
•  turnRight(), turnLeft(), turn(amount)

Exploring a Picture
•  You can create a picture object

> String beachFile = FileChooser.getMediaPath
("beach.jpg");

> Picture beachPict = new Picture(beachFile);

•  You can explore the picture
–  This makes a copy of the current picture and then

displays it
> beachPict.explore();

•  You can get information about the picture
> int width = beachPict.getWidth();
> int height = beachPict.getHeight();

05-DrawingInJava 20

Saving a Modified Picture

•  When you draw on a picture you are changing
the picture in memory
–  Not changing the original picture file

•  You can write out a new picture file with the
changed picture data
–  pictureObj.write(pathWithFile);

•  pathWithFile is the fully qualified path name to write to
including the base file name with the extension

–  You can use FileChooser.getMediaPath(baseFile);
•  pictureObj.write(FileChooser.getMediaPath("barbGrid.jpg");

05-DrawingInJava 21 05-DrawingInJava 22

Drawing Lines Exercise
•  Write a method drawGrid in

Picture.java to draw horizontal and
vertical lines on the current picture,
using a Turtle
–  Draw 3 lines in x and 3 in y

•  To test it:
String file = FileChooser.getMediaPath

(“barbara.jpg”);
Picture p = new Picture(file);
p.drawGrid();
p.show();

05-DrawingInJava 23

Drawing Other Shapes

•  How would you draw a circle on a picture?
•  How would you draw text?
•  Java has a class that knows how to do these

things
–  Using a Graphics object

•  It knows how to draw and fill simple shapes and images

–  You can draw on a picture object
•  By getting the graphics object from it

– pictureObj.getGraphics();

05-DrawingInJava 24

AWT Graphics Class
•  Methods of the Graphics

class in the java.awt
package (group of related
classes) let you paint
–  Pick a color to use
–  Draw some shapes

•  Circles, Rectangles, Lines,
Polygons, Arcs

–  Shapes drawn on top of
other shapes will cover
them

–  Set the font to use
•  Draw some letters

(strings)

9/20/10

5

05-DrawingInJava 25

Working with java.awt.Color

•  To create a new color object
–  new Color(redValue,greenValue,blueValue)

•  There are predefined colors
–  red, green, blue, black, yellow, gray, magenta, cyan,

pink, orange
–  To use these do: Color.RED or Color.red

•  Set the current drawing color using
–  graphicsObj.setColor(colorObj);

•  Get the current drawing color using
–  Color currColor = graphicsObj.getColor();

05-DrawingInJava 26

Using Classes in Packages

•  Java organizes classes into packages
–  Groups of related classes

•  The full name of a class is
–  packageName.ClassName
–  java.awt.Color

•  If you want to use just the class name to refer to
a class in a package
–  Use the import statement before the class definition in

your class
import java.awt.Color; // to allow you to use Color or
import java.awt.*; // to use any class in this package

05-DrawingInJava 27

Graphics Environment

0,0

0, 0 is at the top left
X increases to the right

Y increases going down the page

+X

+Y

•  Graphics are often positioned by their top left corner
•  Coordinate units are measured in pixels

400,200

Drawing Rectangles

•  gObj.drawRect(topLeftX,topLeftY,width,height);
•  Will draw a rectangle that has the top left corner

 at location topLeftX, topLeftY and the specified
 width and height

•  gObj.fillRect(topLeftX,topLeftY,width,height);
•  Will draw a filled rectangle that has the top left

 corner at location topLeftX, topLeftY and the
 specified width and height

05-DrawingInJava 28

width

height
topLeftX,topLeftY

addBox Method
 /**
 * Method to add a solid red rectangle to the current picture
 */
 public void addBox()
 {
 // get the graphics context from the picture
 Graphics g = this.getGraphics();

 // set the color to red
 g.setColor(Color.red);

 // draw the box as a filled rectangle
 g.fillRect(150,200,50,50);
 }

05-DrawingInJava 29

Testing addBox

public static void main(String[] args)
{

 String filename = FileChooser.getMediaPat
h("beach-smaller.jpg");
 Picture p = new Picture(filename);
 p.addBox();
 p.show();

}

05-DrawingInJava 30

9/20/10

6

A more general addBox method
public void drawBox(Color color, int topLeftX, int topLeftY,
 int width, int height)
 {
 // get the graphics context for drawing
 Graphics g = this.getGraphics();

 // set the current color
 g.setColor(color);

 // draw the filled rectangle
 g.fillRect(topLeftX,topLeftY,width,height);
 }

05-DrawingInJava 31

Comments

•  You should add comments to your methods
–  To help explain what the method is for
–  And to explain what a statement is doing

•  There are 3 types of comments in Java
/** Javadoc type */
/* multi-line comment */
// comments out from there to the end of the line

•  Javadoc is the Java utility that creates the API
 documentation from Java source code

05-DrawingInJava 32

05-DrawingInJava 33

Drawing Circles and Ellipses
•  gObj.drawOval(x,y,width,

 height)
•  gObj.fillOval(x,y,width,

 height)
•  Give the x and y of the upper

left corner of the enclosing
rectangle
–  Not a point on the circle or

ellipse
•  Give the width and height of

the enclosing rectangle
–  To make a circle use the same

value for the width and height

x,y

width

height

05-DrawingInJava 34

Draw Circle Exercise
•  Write a method to add a

yellow sun to a picture
–  Test with beach.jpg

String file = FileChooser.getMediaPath
(“beach.jpg”);

Picture p = new Picture(file);
p.drawSun();
p.show();

–  Save the new image with
pictureObj.write(fileName);

05-DrawingInJava 35

Working with Fonts

•  Create a font object with the font name, style,
and point size
–  Font labelFont = new Font(“TimesRoman”,

Font.BOLD, 24);
–  Font normalFont = new Font(“Helvetica”,Font.PLAIN,

12);
•  Set the current font

–  gObj.setFont(labelFont);

•  Get font information
–  gObj.getStyle(), g.getSize(), g.getName(), g.getFamily

()

05-DrawingInJava 36

Working with Strings

•  To draw a string
–  gObj.drawString(“test”,leftX,baselineY);

•  Use FontMetrics class for drawing information
–  FontMetrics currFontMetrics = g.getFontMetrics();
–  int baselineY = currFontMetrics.getHeight() -

 currFontMetrics.getDescent();
–  int width = currFontMetrics.stringWidth(“test”);

leftX

baselineY

height test string
descent

ascent leading

9/20/10

7

Method to draw a string on a picture
public void drawString(String text, int x, int y, Font font, Color color)
 {

 // get the graphics object
 Graphics g = this.getGraphics();

 // set the color
 g.setColor(color);

 // set the font
 g.setFont(font);

 // draw the string
 g.drawString(text,x,y);
 }

05-DrawingInJava 37

Testing drawString

•  Use the picture explorer to find a good x value
 for left x and y value for the baseline y of the
 string

> Picture p =
 new Picture(FileChooser.getMediaPath("kitten.jpg"));
> p.explore();
> p.drawString("Matt's picture of a kitten in Greece", 67, 283);
> p.explore();

05-DrawingInJava 38

05-DrawingInJava 39

Centering the String in Width
•  Using the FontMetrics class

we can get the width of the
displayed string in pixels
–  In the current font
int strWidth =

fontMetrics.stringWidth(text);

•  And use this to calculate the
left x for the string so that it
is centered in width
–  subtract half the string width

from half the width of the
picture to get the left x

05-DrawingInJava 40

Drawing Lines and Polygons

•  Line
–  g.drawLine(x1,y1,x2,y2);

•  Polygon
–  Outlined Polygon

•  gObj.drawPolygon(xArray,yArray,numPoints);
•  gObj.drawPolygon(currPolygon);

–  Filled Polygon
•  gObj.fillPolygon(xArray, yArray, numPoints);
•  gObj.fillPolygon(currPolygon);

x1,y1
x2,y2

05-DrawingInJava 41

Drawing Lines Exercise
•  Write a method (drawX)

for adding two crossed
lines to a picture
–  Using a passed color

•  Start one line at the top
left corner of the picture
–  End it at the bottom right

corner of the picture
•  Start the other line at the

bottom left of the picture
–  End it at the top right

•  You can test it with
barbara.jpg

05-DrawingInJava 42

Drawing Arcs

•  Arcs
–  Outlined Arc

•  g.drawArc(topLeftX, topLeftY, width, height, startAngle,
 arcAngle);

–  Filled Arc
•  g.fillArc((topLeftX, topLeftY, width, height, startAngle,

 arcAngle);

9/20/10

8

05-DrawingInJava 43

Drawing on a Blank Picture

•  You can make pictures from the “blank” files
–  They will have all white pixels
–  640x480.jpg
–  7inX95in.jpg

•  You can also create a “blank” picture with a
 width and height
–  They will also have all white pixels
–  Picture blankPicture = new Picture(width,height);

05-DrawingInJava 44

Draw a Picture Exercise
•  Create a method that will

 draw a simple picture
–  Use at least one rectangle
–  Use at least one polygon
–  Use at least one oval
–  Use at least one arc

05-DrawingInJava 45

Bitmapped Versus Vector Graphics

•  We have been doing bitmapped graphics
–  Specifying the color of each pixel in the picture

•  We just wrote a method that drew a simple
 picture
–  Which is smaller the program or the picture?

•  Some applications use vector graphics which are
 programs that produce the picture
–  Used in Postscript, Flash, and AutoCAD
–  Advantages: smaller, easy to change, can be scaled

05-DrawingInJava 46

Java 2D Graphics – java.awt
•  Newer drawing classes

–  More object-oriented
–  Instead of drawOval() or fillOval() you create an Ellipse2D object

 and ask a 2d graphics object to draw or fill it
–  Geometric shapes are in the java.awt.geom package

•  Advanced Drawing
–  Support for different types of brushes

•  Line thickness, dashed lines, etc
–  Supports cubic curves and general paths
–  Drawing of gradients and textures
–  Move, rotate, scale and shear text and graphics
–  Create composite images

05-DrawingInJava 47

Java 2D Demo
•  Open a console window
•  Change directory to C

:\jdk\demo\jfc\Java2D
•  Run the demo

java –jar Java2Demo.jar

•  The source code is inC
:\jdk\demo\jfc\Java2D\src

05-DrawingInJava 48

How To Use Java 2D
•  Cast the Graphics class to Graphics2D

–  Graphics2D g2 = (Graphics2D) gObj;
•  Set up the stroke if desired (type of pen)

–  g2.setStroke(new BasicStroke(widthAsFloat));
•  Set up a Color, GradientPaint, or TexturePaint

–  g2.setPaint(Color.blue);
–  g2.setPaint(blueToPurpleGradient);
–  g2.setPaint(texture);

•  Create a geometric shape
–  Line2D line2D = new Line2D.Double(0.0,0.0,100.0,100.0);

•  Draw the outline of a geometric shape
–  g2.draw(line2d);

•  Fill a geometric shape
–  g2.fill(rectangle2d);

9/20/10

9

05-DrawingInJava 49

Graphics2D inherits from Graphics
•  Inherits basic drawing ability from

 Graphics
•  Adds more advanced drawing

 ability

Graphics

Graphics2D

Inheritance Terminology

•  Graphics is the parent class,
 base class or superclass

•  Graphics2D is the child
 class, derived class, or
 subclass

•  An object of type Graphics2D
 can be upcast to type
 Graphics
–  Or downcast back to

 Graphics2D
–  Using (Graphics2D) gObj

05-DrawingInJava 50

Graphics

Graphics2D

05-DrawingInJava 51

Inheritance

•  Class Graphics2D inherits from Graphics
•  It inherits fields and methods

–  Graphics has a drawImage method
–  Graphics2D inherits this method from Graphics

•  The API shows the parent class
–  And the inherited methods
–  Look in package java.awt and then at the class

Graphics2D
–  http://java.sun.com/j2se/1.5.0/docs/api/index.html

05-DrawingInJava 52

Drawing Lines Method
•  Method drawWideX adds

 two wide crossed lines to
 a picture
–  Using a passed color
–  Using a passed line width

•  Set up the stroke to make
 the lines thicker
–  g2.setStroke(new

 BasicStroke(width));
–  Draw the lines

•  You can use
 redMotorcycle.jpg to test.

drawWideX Method
public void drawWideX(Color color, float width)
 {
 // get the Graphics2D object
 Graphics graphics = this.getGraphics();
 Graphics2D g2 = (Graphics2D) graphics;

 // set the color and brush width
 g2.setPaint(color);
 g2.setStroke(new BasicStroke(width));

 // get the max x and y values
 int maxX = getWidth() - 1;
 int maxY = getHeight() - 1;

05-DrawingInJava 53

drawWideX - continued

 // draw the lines
 g2.draw(new Line2D.Double(0,0,maxX,maxY));
 g2.draw(new Line2D.Double(0,maxY, maxX,0));
 }

05-DrawingInJava 54

9/20/10

10

05-DrawingInJava 55

Drawing with a Gradient Paint
•  Instead of filling with one

color you can fill with a
paint that changes from
one color to another
–  java.awt.GradientPaint

•  Create by specifying a
point and the color at that
point and then a second
point and the color at that
point.
–  There will be a change

from one color to the other

Point 1, Color 1

Point 2, Color 2

05-DrawingInJava 56

The drawSun Method
 public void drawSun(int x, int y, int width, int height)
 {

 // get the graphics2D object for this picture
 Graphics g = this.getGraphics();
 Graphics2D g2 = (Graphics2D) g;

 // create the gradient for painting from yellow to red with
 // yellow at the top of the sun and red at the bottom
 float xMid = (float) (width / 0.5 + x);
 GradientPaint gPaint = new GradientPaint(xMid, y,
 Color.yellow,
 xMid, y + height,
 Color.red);

 // set the gradient and draw the ellipse
 g2.setPaint(gPaint);
 g2.fill(new Ellipse2D.Double(x,y,width,height));
 }

05-DrawingInJava 57

Testing drawSun

•  String file = FileChooser.getMediaPath
(“beach.jpg”);

•  Picture p = new Picture(file);
•  p.drawSun(201,80,40,40);
•  p.show();

05-DrawingInJava 58

Paint is an Interface

•  Look up the API for Graphics2D
–  Find the setPaint method

•  Notice that it takes a Paint object as a parameter

•  How come we can pass this method a
java.awt.Color object or a java.awt.GradientPaint
object?
–  They both implement the Paint interface

•  Objects can be passed to a method that requires
an object of an interface type
–  As long as the object is from a class that implements

that interface
–  Or inherits from a class that implements the interface

05-DrawingInJava 59

Why Use an Interface?

•  A USB interface lets you plug in different devices
–  Camera, disk drive, key drive, etc

•  The computer doesn’t care what the device is
–  Just that it uses the USB interface

•  Java interfaces are the same
–  They let you plug in different classes as long as they

implement the interface
•  This means the implementing class must include all the

methods defined in the interface

05-DrawingInJava 60

Clipping to a Shape

•  You can specify a shape to clip the image to
when you draw it
–  Ellipse2D.Double ellipse =
 new Ellipse2D.Double(0,0,width,height);
–  g2.setClip(ellipse);

•  And only the portion of the image that is inside
that shape will be drawn
–  g2.drawImage(this.getImage(),0,0,width,

 height,null);

9/20/10

11

05-DrawingInJava 61

Clipping to an Ellipse Method
public Picture clipToEllipse()
 {
 int width = this.getWidth();
 int height = this.getHeight();
 Picture result = new Picture

(width,height);

 // get the graphics2D object
 Graphics g = result.getGraphics();
 Graphics2D g2 = (Graphics2D) g;

 // create an ellipse for clipping
 Ellipse2D.Double ellipse =
 new Ellipse2D.Double(0,0,width,height);

 // use the ellipse for clipping
 g2.setClip(ellipse);

 // draw the image
 g2.drawImage(this.getImage(),
 0,0,width,
 height,null);

 // return the result
 return result;
 }

05-DrawingInJava 62

Testing clipToEllipse

•  This method creates a new picture and returns it
so in order to see if we will need to save a
reference to it

String file = FileChooser.getMediaPath
(“beach.jpg”);

Picture p = new Picture(file);
Picture p2 = p.clipToEllipse();
p2.show();

05-DrawingInJava 63

Clipping Exercise

•  Write a method that will clip a picture to a
triangle
–  You can use the java.awt.geom.GeneralPath class to

create the path to clip to
–  You can create a new GeneralPath passing it a

•  Line2D.Double object

–  You can append more
•  Line2D.Double objects

Drawing on Alice Pictures
•  Start Alice and set up a

 scene
•  Click the "Play" button
•  Pause the action

–  Click the "Take Picture"
 button to take a picture

–  Alice will display the
 name and location of
 the picture

–  You can rename the
 picture and move it to
 mediasources

05-DrawingInJava 64

Summary

•  Java packages group related classes
–  Package java.awt has classes for Color and Graphics

•  You can use an import statement when you want
 to use short name for classes that are in
 packages
–  Or use the full name such as java.awt.Color

•  Class methods can be called on the class name
•  When a class inherits from another class it

 inherits the object data and behavior
•  Objects can be declared to be an interface type

05-DrawingInJava 65

