
1

Aleksandar Stefanovski

CSCI 053	

Department	
 of	
 Computer	
 Science	

The	
 George	
 Washington	
 University	

Spring,	
 2010	

Introduce Eclipse

Create objects in Java

Introduce variables as object references

Invoke methods on objects in Java

Create a method in Java

Pass a parameter to a method in Java

Introduce subclasses

We will work with Turtles in a World in Java

We have to define what we mean by a Turtle to
the computer
We do this by writing a Turtle class definition

Turtle.java

We compile it to convert it into something the
computer can understand
•  Bytes codes for a virtual machine

Turtle.class

Seymour Papert at MIT in the 60s
 By teaching the computer to do something the
kids are thinking about thinking
•  Develop problem solving skills
•  Learn by constructing and debugging something

–  Learn by making mistakes and fixing them

To create objects we ask the
object that defines the
class to create it
•  Each object is created in

memory with space for the
fields it needs

•  Each object keeps a
reference to the class that
created it

The class is like a cookie
cutter
•  It knows how much space

each object needs (shape)
•  Many objects can be created

from the class

World
Object 1

World
Object 2

World: Class

A class is like a factory that creates
objects of that class

We ask a class to create an object
by using the keyword:

 new ClassName

We can also ask the class to
initialize the object
–  And pass data to help initialize it

2

In Java the syntax for creating an object is:
new Class(value, value, …);

Our Turtle objects live in a World object
•  We must create a World object first
•  Try typing the following in the interactions

pane:
new World();

If you just do
new World();

You will create a new World object
and it will display
–  But you will not have any way to refer to

it again
–  Once you close the window the object

can be garbage collected
•  The memory that the object was using

can be reused

We need a way to refer to the new object
–  to be able to work with it again

Alice named your objects for you
–  bunny, bunny2

If you create a new contact in your cell phone you
enter a phone number and a name
•  Later you use the name to find the phone number

In programming we name things we want to refer
to again
•  Gives us a way to work with them
•  Like the World object

In programming this is called declaring a variable

To be able to refer to an object again we need to
specify what type of thing it is and give it a name
•  This is also called declaring a variable
•  Type name; OR
Type name = new Class(value, value, …);

The equal sign doesn’t mean equal
•  But assign the value of the variable on the left to the

result of the stuff on the right
•  The following creates a variable named earth which

refers to a World object created on the right
•  World earth = new World();

When you declare a variable
the computer assigns
memory to it
–  The amount of memory

depends on the type

For each variable the
computer stores a map of
the name to the memory
location and the type

When you use the name the
computer looks up the
memory location
–  And uses the value at that

location

1 00000000
2 00001111
3 00000000
4 00111000
5 00000000
6 00111100
7 01111000
8 00000000
9 00000000
10 00000000
11 00000000
12 00000001

Object of
 type World

earth variable
holds a
reference
to the World
Object above

address memory
You can't declare two variables with the

same name!
> World earth = new World();
> World earth = new World();

Error: Redefinition of 'earth‘

You can change what an object variable
refers to

> World earth = new World();

> earth = new World();

3

In your cell phone you have names
that map to phone numbers
–  When you pick Home it looks up the

number and uses it to make the call

You can’t have two names that are
exactly the same
–  The phone wouldn’t know which

number you are referring to

You can modify the phone number
for a name

•  Barb 555-1235
•  Home 555-2938
•  Michael 555-3214
•  Shannon 555-2921

What value(s) does the memory on the
right represent?
It could be 4 char values

•  2 bytes each (16 bits)
•  Unicode

Or 2 int values
•  4 bytes each (32 bits)
•  2’s compliment

Or 1 double value
•  8 bytes each (64 bits)
•  In IEEE format

Or an object reference
•  The size is up to the virtual machine

1 00001000
2 00100000
3 00000100
4 01000000
5 00000001
6 10000000
7 00111000
8 11110000

Declaration of variables

Creating the objects

You can declare a variable and assign it to refer to a
new object in one statement
• 
•  World earth1 = new World();
•  Turtle tommy = new Turtle(earth1);

The world starts off with a size of 640 by
480
–  With no turtles
World earth1 = new World();

The turtle starts off facing north and in the
center of the world by default
–  You must pass a World object when you

create the Turtle object
•  Or you will get an error:

java.lang.NoSuchMethodException: Turtle
constructor

Turtle tommy = new Turtle(earth1);

Notice that we capitalize the names of the
classes, but not the variable names
•  This World earth1 = new World();
•  is different than English

•  Capitalize proper nouns (the names of things)
•  Not the type of thing

–  Earth is a world.
–  Tommy is a turtle.

In Java it is the class names that are the most
important
•  Not the variable or method names

You can create several World objects
World mars = new World();

You can create several Turtle objects
Turtle shar = new Turtle(mars);
Turtle jen = new Turtle(mars);

–  One turtle is on top of the other

4

Turtles can move forward
jen.forward();
–  The default is to move by

•  100 steps (pixels)

You can also tell the turtle how far
to move
shar.forward(50);

Turtles can turn
Right

jen.turnRight();
jen.forward();

Left
shar.turnLeft();

shar.forward(50);

Turtles can turn by a specified
amount

A positive number turns the turtle to
the right
jen.turn(90);

jen.forward(100);

A negative number turns the turtle to
the left
shar.turn(-90);

shar.forward(70);

Each turtle has a pen
The default is to have the pen

down to leave a trail

You can pick it up:
turtle1.penUp();

turtle1.turn(-90);

turtle1.forward(70);
You can put it down again:

turtle1.penDown();

turtle1.forward(100);

How would you use a turtle to draw a large letter T?

Process
•  Create a World variable and a World object and a Turtle

variable and object.
•  Ask the Turtle object to go forward 100
•  Ask the Turtle object to pick up the pen
•  Ask the Turtle object to turn left
•  Ask the Turtle object to go forward 25
•  Ask the Turtle object to turn 180 degrees
•  Ask the Turtle object to put down the pen
•  Ask the Turtle object to go forward 50

World world1 = new World();
Turtle turtle1 = new Turtle(world1);
turtle1.forward(100);
turtle1.penUp();
turtle1.turnLeft();
turtle1.forward(25);
turtle1.turn(180);
turtle1.penDown();
turtle1.forward(50);

5

A turtle can move to a
particular location
turtle1.penUp();
turtle1.moveTo(500,20);

Coordinates are given as x
and y values
•  X starts at 0 on the left and

increases horizontally to the
right

•  Y starts at 0 at the top of the
window and increases to the
bottom

•  A new turtle starts out at
320,240 by default

X

Y

639

479

Create a World object
•  Don’t forget to declare a variable

to hold a reference to it

Create a turtle object
•  Don’t forget to declare a variable

to hold a reference to it

Use the turtle to draw a
•  Rectangle (but, not a square)
•  Equilateral triangle
•  Hexagon

You can change the width of the trail the pen leaves
World world1 = new World();
Turtle turtle1 = new Turtle(world1);

turtle1.setPenWidth(5);
turtle1.forward(100);

Use setPenColor to set the color of the pen
turtle1.setPenColor(java.awt.Color.RED);

There are several predefined colors
•  In the package java.awt

•  A package is a group of related classes
•  In the class Color

To use them you can use the full name
•  java.awt.Color.RED

You can change the pen color
turtle.setPenColor(java.awt.Color.RED);

You can change the turtle color
turtle1.setColor(java.awt.Color.BLUE);

You can change the turtle’s body color
turtle1.setBodyColor(java.awt.Color.CYAN);

You can change the turtle’s shell color
turtle1.setShellColor(java.awt.Color.RED);

Turtles won’t move completely out of the
boundaries of the world
World world2 = new World();

Turtle turtle2 = new Turtle(world2);
turtle2.forward(600);

6

Objects don’t “tell” each other what to do
•  They “ask” each other to do things

Objects can refuse to do what they are
asked
•  The object must protect it’s data

•  Not let it get into an incorrect state
•  A bank account object shouldn’t let you withdraw

more money that you have in the account

In Alice you could create a method
–  like teaching a bunny to hop

We can name a block of Java statements and then
execute them again
•  By declaring a method in a class

The syntax for declaring a method is
•  visibility returnType name(parameterList)
•  Visibility determines access

•  Usually public or private
•  The return type is the type of thing returned
•  If nothing is returned use the keyword void

•  Name the method starting with a lowercase word and
uppercasing the first letter of each additional word

public void drawSquare
()

 {
 this.turnRight();

 this.forward(30);
 this.turnRight();

 this.forward(30);
 this.turnRight();

 this.forward(30);

 this.turnRight();
 this.forward(30);

 }

•  The visibility is public
•  The keyword void means

this method doesn’t
return a value

•  The method name is
drawSquare

•  There are no parameters
–  Notice that the parentheses

are still required

•  The keyword this means
the object this method
was invoked on

1. Open file Turtle.java

2. Type the method before the last }

3. Compile open files

Compiling resets the interactions pane
Clearing all variables

•  But you can still use the up arrow to pull up previous
statements

You will need to create a world and turtle again
World world1 = new World();
Turtle turtle1 = new Turtle(world1);

turtle1.forward(50);

turtle1.drawSquare();

turtle1.turn(30);

turtle1.drawSquare();

7

In Alice there is a way to
specify what method
to execute when the
world starts

In Java when you
execute a class you
can have a main
method
–  This is where

execution will start

The main method is a class (static) method
that can take an array of strings
•  It is a class (static) method since no objects of

the class exist yet

public static void main(String[] args)

{

 // statements to execute

}

A method to draw a square
public void drawSquare()
 {
 int width = 30;
 this.turnRight();
 this.forward(width);
 this.turnRight();
 this.forward(width);
 this.turnRight();
 this.forward(width);
 this.turnRight();
 this.forward(width);
 }

•  We added a local variable for
the width
–  Only known inside the method

•  This makes it easier to change
the width of the square

•  But, we still have to recompile
to draw a different size square

Test with:
public static void main(String[] args)
{
World world1 = new World();

Turtle turtle1 = new Turtle(world1);
turtle1.forward(50);

turtle1.drawSquare();

turtle1.turn(30);
turtle1.drawSquare();

}

public void drawSquare(int width)
 {
 this.turnRight();
 this.forward(width);
 this.turnRight();
 this.forward(width);
 this.turnRight();
 this.forward(width);
 this.turnRight();
 this.forward(width);
 }

•  Parameter lists specify
the type of thing
passed and a name to
use to refer to the value
in the method

•  The type of this
parameter is int
–  For integer

•  The name is width

•  Values are passed by
making a copy of the
passed value

Test a method with a parameter
public static void main(String[] args) {

World world1 = new World();
Turtle turtle1 = new Turtle(world1);
Turtle turtle2 = new Turtle(world1);
turtle1.forward(50);
turtle1.drawSquare(30);
turtle2.turn(30);
turtle2.drawSquare(50);

}

8

When you ask turtle1 to drawSquare(30)
turtle1.drawSquare(30);
•  It will ask the Turtle Class if it has a method
drawSquare that takes an int value

•  And start executing that method
•  The parameter width will have the value of 30 during the

executing of the method
•  The this keyword refers to turtle1

When you ask turtle2 to drawSquare(50)
turtle2.drawSquare(50);
•  The width will have a value of 50
•  The this refers to turtle2 (the object the method was

invoked on)

Create a method for drawing a rectangle
•  Pass the width and height

Create a method for drawing an equilateral
triangle
•  all sides have the same length
•  Pass in the length

Create a method for drawing a house
•  Using the other methods

Create a method for drawing a school
•  Using the other methods

The Turtle class is a subclass of
SimpleTurtle
•  public class Turtle extends SimpleTurtle

This means it inherits methods and fields from
SimpleTurtle
•  See if you can find the forward and turnRight

methods in SimpleTurtle
Classes can subclass another class in Java and

Alice

You can create objects from classes in Alice and Java
Each object needs a unique way to refer to it

•  In Java we call this declaring a variable

You can create new methods
•  visibility returnType name(Type name, Type name, …)
•  Let’s you reuse a block of statements

You can pass parameters to methods
•  To make them more flexible and reusable

You can create subclasses of other classes
•  They will inherit fields and methods from the parent class

