
11/29/10

1

CreateAndModText-Mod15-part1 1

Creating and Modifying Text

Barb Ericson
Georgia Institute of Technology

Nov 2010

CreateAndModText-Mod15-part1 2

Learning Goals

•  Manipulate strings
•  Read and write files
•  Handle exceptions
•  Use a dynamic array: ArrayList
•  Explain interfaces
•  Create a class method
•  Explain generics
•  Write programs that manipulate programs

Why work with text?

•  Text is everywhere
– Web pages are text
– Google works by reading the text

•  Alice only allows us to work with text when
we use say
– Java lets us do much more with text

•  Any type of media can be stored as text
– Text is unimedia

CreateAndModText-Mod15-part1 3 CreateAndModText-Mod15-part1 4

Text as Unimedia
•  Computers only understand 0 and 1

– On and off of voltage
•  But we can store anything with that

– Text, Pictures, Sounds, Movies, HTML pages
•  We can do the same with Text

– Convert a picture to text
– Convert a sound to text

•  HTML is a textual language
– That is used to create web pages

CreateAndModText-Mod15-part1 5

HTML

•  Open a browser and go to any web page
– Go to the View menu and click on Source
– What you see is HTML

•  HTML is HyperText Markup Language
– Uses special tags to denote sections of a

document
– <title>This is the Title</title>
– <p>This tag starts a new paragraph</p>
– This tag means to show this in bold

CreateAndModText-Mod15-part1 6

java.lang.String
•  Text in Java is stored as a String object

–  In Unicode format
•  2 bytes per character (16 bits)
•  Matches ASCII for the first 128 characters

•  A string literal is enclosed in double quotes
–  String message = "Hi There";

•  To add a double quote to a string
–  Use \"
> String s = "She said, \"Hi there\"";
> System.out.println(s);
She said, "Hi there"

•  Other special characters:
–  \n for new line
–  \t for tab

11/29/10

2

CreateAndModText-Mod15-part1 7

Strings are Sequences of Characters

•  You can get the character at an index
– Starting with index 0
stringObj.charAt(index);

•  Try this:
> String test = "Hello";
> System.out.println(test.charAt(0));
> System.out.println(test.charAt(4));

 How would you get the second character?

H e l l o

0 1 2 3 4

Looping through a string

•  Use method length() to get the number of
characters in the string
– Not a public field like in arrays

> for (int i = 0; i < test.length(); i++)
 System.out.println(test.charAt(i));
H
e
l
l
o

CreateAndModText-Mod15-part1 8

Strings are immutable

•  Strings don’t change
–  Instead you get back a new string

> String test = "this is a test";
> String result = test.toUpperCase();
> System.out.println(test);
this is a test
> System.out.println(result);
THIS IS A TEST

CreateAndModText-Mod15-part1 9

Comparing Strings
•  Don’t use str1 == str2 to check if they contain the

same characters
–  This returns true only if they refer to the same string

object
•  Use the method equals

–  str1.equals(str2)
> String str1 = new String("This is a test");
> String str2 = new String("This is a test");
> System.out.println(str1 == str2);
false
> System.out.println(str1.equals(str2));
true

CreateAndModText-Mod15-part1 10

CreateAndModText-Mod15-part1 11

Unicode

•  International standard for character
representation - 2 bytes / 65,536 chars
– Characters from all the major world languages

•  Latin, Japanese, Chinese, etc

– To see the decimal value for a Unicode
character
int temp = 'a';
System.out.println(temp);

– To create a character from a decimal value
char a = (char) 65;

CreateAndModText-Mod15-part1 12

String Methods
•  Open the Java API http://java.sun.com/j2se/1.6.0/docs/

api/index.htm
–  Click on the java.lang package
–  Click on the String class

•  Look at the methods
–  Which will return part of a string?
–  Which will return the first index of a list of characters in the

string?
–  While will return the last index of a list of characters?
–  Which will remove extra space before and after any other

characters?
–  Which will return an array of String objects

•  By chopping the string up into substrings
•  Based on specified delimiters (like spaces or commas)

11/29/10

3

CreateAndModText-Mod15-part1 13

Exercise
•  How would you put the following in a string in

Java?
–  She said, "I will see you later".

•  Create a short message and encode it using
Unicode.
–  http://www.unicode.org/charts/PDF/U0000.pdf

•  The numbers under each character are in hexidecimal

–  Give it to another student to decode it

•  How could you pull out “be” from the string “I will
be back”?

CreateAndModText-Mod15-part1 14

Working with Delimited Strings

•  Sometimes you get information about an
object
–  In the form of a delimited string
Jane Dorda :88, 92, 95, 87, 93, 85
Mike Koziatek :75, 92, 83, 81, 91, 87
Sharquita Edwards:91, 93, 95, 92, 94, 99

•  Here the delimiters are a colon after the
name and commas between the grades

CreateAndModText-Mod15-part1 15

Parsing a Delimited String
•  Add another constructor to the Student class

–  That takes a delimited string
•  Name : grade1, grade2, grade3, grade4, grade5

•  Use the split method to get an array of Strings
–  First based on the colon delimiter
–  Use trim to clear off any additional space from the name

•  The first element in the returned array
•  Use the split method again to get the array of grades as

strings
–  Use the comma as the delimiter

•  Use Double.parseDouble to translate the grade string
into a double value
–  For the grade array

CreateAndModText-Mod15-part1 16

Converting to a Number
•  Strings are stored in

Unicode format
–  Two bytes per character

•  Integers are stored in 4
bytes (32 bits)

•  You need to convert a
number that is
represented as a string
into the number
representation

•  The wrapper classes
have methods to do this
–  Integer.parseInt(numStr)

The string “1234” is stored in 8 bytes
With each character taking 2 bytes

The integer 1234 is stored in 4 bytes

00000000|00000000|00000100|11010010

00000000|00110001|00000000|00110010

00000000|00110011|00000000|00110011

CreateAndModText-Mod15-part1 17

Constructor that takes a Delimited String
public Student(String delimString,
 String nameDelim,
 String gradeDelim)
 {
 // split string based on name delimiter
 String[] splitArray = delimString.split(nameDelim);
 this.name = splitArray[0].trim();

 // get the grade string and break it and convert to double
 String grades = splitArray[1];
 String[] gradeStrArray = null;

CreateAndModText-Mod15-part1 18

Constructor - continued
 if (grades != null)
 {
 gradeStrArray = grades.split(gradeDelim);
 this.gradeArray = new
 double[gradeStrArray.length];
 for (int i = 0; i < gradeStrArray.length; i++)
 this.gradeArray[i] =
 Double.parseDouble(gradeStrArray[i]);
 }
 }

11/29/10

4

CreateAndModText-Mod15-part1 19

Testing the Constructor

•  Write a main method that will create a
Student object and initialize the name and
grade array
– From a delimited string

•  Run the main method from DrJava
•  Use the Debugger to walk through the

constructor

CreateAndModText-Mod15-part2 20

Files
•  Files are named collections of bytes on your

hard disk
–  Often have a base name and suffix

•  Like barbara.jpg

•  Are grouped into directories
–  A directory can have other directories in it
–  There is often a root directory

•  Like the C: drive on Windows or \User on Macs

•  A path is the list of all the directories from the
root to the file
–  And includes the file’s base name and suffix

CreateAndModText-Mod15-part2 21

Picture of a Path Tree
•  Drawing a path yields an upside down tree

–  With the root at the top
–  And the leaves at the bottom

•  C:\intro-prog-java\mediasources\640x480.jpg

C

intro-prog-java

mediasources

640x480.jpg barbara.jpg

Root node

Leaf node
Leaf node

Branch nodes

CreateAndModText-Mod15-part2 22

Reading from a File

•  When we read from a file
– We copy data from disk into memory

•  Things can go wrong
– The file may not exist
– The disk may go bad
– The file may change while we are reading it

•  In Java when things go wrong an
java.lang.Exception object is created

CreateAndModText-Mod15-part2 23

Possible Exceptions
•  What would happen if we try to read from a file

that doesn’t exist?
–  We would get a FileNotFoundException

•  What would happen if we try to read past the
end of the file?
–  IOException

•  What would happen if the file changes while we
are reading it?
–  IOException

•  The code won’t compile unless we
–  Either handle the exception with a try and catch
–  Or throw the exception

CreateAndModText-Mod15-part2 24

Generating Runtime Exceptions

•  Try the following in the Interactions Pane
– String test = null;
–  test.length();

•  What exception do you get?

•  Try this
–  int sum = 95;
–  int num = 0;
– System.out.println(sum/num);

•  What exception do you get?

11/29/10

5

CreateAndModText-Mod15-part2 25

The Call Stack

•  Execution begins in the main method
– That method creates objects and invokes

methods on them
•  When execution jumps to another method an entry

is added to the call stack
–  The current method
– Where the call occurred in that method

•  When a method finishes executing
–  The entry is removed from the call stack
–  And execution returns to the next line in that method
– Until the main method finishes

CreateAndModText-Mod15-part2 26

Example Call Stack
•  Remove the check for gradeArray == null in the

getAverage method
–  And run the main method

•  This says a null pointer exception occurred
–  at line 109 in the method getAverage in the Student class

•  Which was called from method toString at line 120
java.lang.NullPointerException:
at Student.getAverage(Student.java:109)
at Student.toString(Student.java:120)
at java.lang.String.valueOf(String.java:2131)
at java.io.PrintStream.print(PrintStream.java:462)
at java.io.PrintStream.println(PrintStream.java:599)
at Student.main(Student.java:129)

Call Stack Picture

CreateAndModText-Mod15-part1 27 CreateAndModText-Mod15-part2 28

Turning on Line Numbers in DrJava

•  To see the line numbers in DrJava click on
– Edit then on
– Preferences and then on
– Display Options and

•  Check the Show All Line Numbers checkbox in the
Preferences window.

•  Then click on OK.

CreateAndModText-Mod15-part2 29

Exceptions
•  Exceptions are objects of the class

java.lang.Exception
– Or are objects of classes that inherit from

Exception
•  There are two types of exceptions

– Checked and Unchecked
•  Checked exceptions must be caught or thrown

–  IOException and FileNotFoundException
•  Unchecked exceptions do not have to be caught or

thrown
– NullPointerException, ArrayIndexOutOfBoundsException

CreateAndModText-Mod15-part2 30

Exception Inheritance Tree

•  All classes inherit from Object
•  All Exception classes inherit from

Exception

11/29/10

6

Catching exceptions

•  Use a try, catch, and finally block
•  The try block encapsulates the code that

can cause an exception
•  The catch block is what to do if an

exception happens
– Catches all exceptions of the specified type

and subclasses of that type
•  The finally block will always be executed

– Whether or not an exception occurs

CreateAndModText-Mod15-part1 31 CreateAndModText-Mod15-part2 32

Importing Classes To Read From Files
•  To read from a file we will use classes in the

java.io package
–  Which means that we will need to use import

statements
•  Or use the full names of classes

–  package.Class

•  Import statements go before the class
declaration in the file
–  import package.Class;

•  Allows the short name to be used for just the mentioned
class

–  import package.*;
•  Allows the short name to be used for any class in this

package

CreateAndModText-Mod15-part2 33

Reading from a File

•  To read from a character based file
– Use a FileReader object

•  This class knows how to read character data from
a file

– With a BufferedReader object
•  To buffer the data as you read it from the disk

–  Into memory

•  Disks are much slower to read from than memory
–  So read a big chunk from disk into memory

»  And then read from the chunk in memory as needed

CreateAndModText-Mod15-part2 34

Using Try, Catch, and Finally Blocks
•  Wrap all code that can cause a checked

exception in try, catch (and optionally finally)
blocks

try {
 // code that can cause an exception
} catch (ExceptionClass ex) {

 // handle this exception
} catch (ExceptionClass ex) {
 // handle this exception
} finally { // optional
 // do any required clean up
}

CreateAndModText-Mod15-part2 35

SimpleReader - Example Class
public class SimpleReader
{
 /**
 * Method to read a file and print out the contents
 * @param fileName the name of the file to read from
 */
 public void readAndPrintFile(String fileName)
 {
 String line = null;

 // try to do the following
 try {

 // create the buffered reader
 BufferedReader reader =
 new BufferedReader(new FileReader(fileName));

CreateAndModText-Mod15-part2 36

Simple Reader - Continued
 // Loop while there is more data
 while((line = reader.readLine()) != null)
 {
 // print the current line
 System.out.println(line);
 }

 // close the reader
 reader.close();

11/29/10

7

CreateAndModText-Mod15-part2 37

Simple Reader - Continued
 } catch(FileNotFoundException ex) {
 SimpleOutput.showError("Couldn't find " + fileName +
 " please pick it.");
 fileName = FileChooser.pickAFile();
 readAndPrintFile(fileName);
 } catch(Exception ex) {
 SimpleOutput.showError("Error reading file " + fileName);
 ex.printStackTrace();
 }
 }

 public static void main(String[] args)
 {
 SimpleReader reader = new SimpleReader();
 reader.readAndPrintFile("test.txt");
 }
}

CreateAndModText-Mod15-part2 38

Key Points
•  Notice that we put all ‘normal’ code in the try

block
–  This handles the case when everything goes right

•  We can catch more than one exception
–  Here we caught FileNotFoundException

•  And used the FileChooser to have the user pick the file
–  And then called the method again

–  Catching Exception will catch all children of Exception
as well

•  So make it the last Exception you catch
•  Finally blocks are not required

–  But they will always execute if there is an exception or
not

CreateAndModText-Mod15-part3 39

java.util.ArrayList

•  An ArrayList object is an array that can
 grow or shrink as needed
– Do we always know how many students can

 be in a class period?
•  If we create an array for more than we have, we

 waste space
•  If we try to add a student past the end of the array

– We get an exception

•  Use an ArrayList when you don’t know
 how many of something you need

CreateAndModText-Mod15-part3 40

ArrayList Methods
•  Look in the Java API for ArrayList

– Open the class java.util
– Click on the class ArrayList
– What methods let you add an object to the

 ArrayList?
– What method lets you get an object from the

 ArrayList?
– What method tells you how many things are in

 the ArrayList?
– What method lets you remove an object from

 an index in the ArrayList?

CreateAndModText-Mod15-part3 41

An ArrayList is a List

•  Look at the API for ArrayList

It implements the
List interface

CreateAndModText-Mod15-part3 42

Interfaces
•  An interface is an abstract class that only has

 public abstract methods and/or constants
–  An abstract method is a method without any code

•  like the compareTo method in Comparable
package java.lang;
public interface Comparable {
 public int compareTo(Object o);
}

–  Useful for saying what methods a class needs to have
•  The class that implements the interface must provide the

 code for the methods in the interface
•  The String class implements the Comparable interface

11/29/10

8

Declare variables as interface types

•  When you create a variable that
 implements an interface you should
 declare it to be of the interface type
– List studentList = new ArrayList();

•  Many classes implement the same
 interface
– So this gives you the flexibility to change the

 actual class with a minimum number of
 changes

CreateAndModText-Mod15-part1 43 CreateAndModText-Mod15-part3 44

Exercise
•  Modify the Student class to implement the

 Comparable interface
– public class Student implements Comparable

•  Try to compile it
–  It won’t compile till you add the compareTo

 method
•  And provide code for it

– Create a compareTo method to compare the
 current student to a passed in one
•  You can compare the names

–  Since the String class implements Comparable

CreateAndModText-Mod15-part3 45

What the compareTo Method Returns

•  The compareTo method returns an integer
– Negative if the current object is less than the

 passed object
– 0 if they are equal
– Positive if the current object is greater than

 the passed object
•  You need to cast from Object to Student

– Before you can compare names
•  Student testStudent = (Student) o;

CreateAndModText-Mod15-part3 46

Final compareTo Method
•  If o is null this will cause a NullPointerException
•  If o isn’t a Student it will cause a ClassCastException
•  This will say two students with the same name are equal

–  Okay for sorting by name

public int compareTo(Object o)
{
 Student testStudent = (Student) o;
 return this.name.compareTo(testStudent.name);
}

CreateAndModText-Mod15-part3 47

Decoupling Classes

•  One of the goals of Object-Oriented
 Programming
–  Is to decouple classes

•  Make class A not dependant on class B so that
 you can change out B for C

–  Interfaces let you do this
•  Variables can be declared to be the interface type

–  List studentList = null;

•  Then any class that implements this interface can
 be used

–  studentList = new ArrayList();

CreateAndModText-Mod15-part3 48

Other Interfaces

•  LEGO bricks have a common interface
– Makes it easy to connect two bricks
–  It doesn’t matter what you connect as long as

 the interface is the same
•  A USB interface

– Allows you to connect different devices to
 your computer
•  USB drive, camera, etc
•  As long as they use the USB interface

11/29/10

9

CreateAndModText-Mod15-part3 49

ArrayList Exercise
•  In the ClassPeriod class

–  Modify the studentArray to be a studentList
 List studentList = new ArrayList();

•  Change all the methods that use an array to use
 a list
–  Cast back to Student when you pull the object out of

 the list
 public Student getStudent(int index)
 {
 return (Student) this.studentList.get(index);
 }

CreateAndModText-Mod15-part3 50

Collections Store Objects

•  Why do we need to cast the Student
 object back to Student when we pull it
 back out of a list?
– A list is a collection of objects

•  We need to tell the compiler that it is really a
 Student object

•  Or, if we are using Java 1.5 we can use
 generics
– List<Student> studentList = new ArrayList();

•  Then we wouldn’t need to cast to Student

CreateAndModText-Mod15-part3 51

Add a Constructor that takes a File Name

•  Let’s add a constructor to the ClassPeriod class
 that takes a file name to read the student
 information from

public ClassPeriod(String name, int num, String
 fileName)

{
 this.teacherName = name;
 this.periodNumber = num;
 loadStudentsFromFile(fileName);
}

CreateAndModText-Mod15-part3 52

Create Students from File Exercise
•  Write the method loadStudentsFromFil

e(fileName);
–  It will be similar to the readAndPrintFile method in

 SimpleReader
•  It will loop reading from the specified file

–  Until the line that is returned from the reader is null
•  It will use each line that it reads to create a

 Student object
–  Using the constructor that takes a delimited string

•  It will add each new student to the studentList

CreateAndModText-Mod15-part3 53

Testing the Method
 public static void main(String[] args)
 {
 ClassPeriod period =
 new ClassPeriod("Ms. Clark",5,"student.txt");

 // print info about the class period
 System.out.println(period);

 // print info for each student
 for (int i = 0; i < period.studentList.size(); i++)
 System.out.println("Student " + i + " is " +
 period.getStudent(i));

 }

CreateAndModText-Mod15-part4 54

Writing to a File

•  Very similar to reading from a file
– But use FileWriter and BufferedWriter
– Write out things with the method

•  write(string);

– Force a new line with
•  newLine();

– Different systems use different ways to end a line
» Macs versus Windows

–  This will write it out in away that works for the current
 system

11/29/10

10

CreateAndModText-Mod15-part4 55

SimpleWriter
public class SimpleWriter
{
 /**
 * Method to write a silly file
 */
 public void writeSillyFile()
 {
 try {
 // try to open the buffered writer
 BufferedWriter writer =
 new BufferedWriter(new FileWriter("silly.txt"));

 // write out the file
 writer.write("Here is some text.");
 writer.newLine();
 writer.write("Here is some more.");
 writer.newLine();

CreateAndModText-Mod15-part4 56

Simple Writer - Continued
 writer.write("And now we're done.");
 writer.newLine();
 writer.newLine();
 writer.write("THE END");
 writer.close();
 } catch (Exception ex) {
 System.out.println("Error during write of silly.txt");
 }
 }

 public static void main(String[] args)
 {
 SimpleWriter writer = new SimpleWriter();
 writer.writeSillyFile();
 }

}

CreateAndModText-Mod15-part4 57

Generating a Form Letter

•  You can use a method to personalize a
 form letter
– By passing in the title, last name, city and eye

 color
– And writing out the letter with these items

 inserted at the appropriate places

CreateAndModText-Mod15-part4 58

Form Letter Generator Class
import java.io.*;
/**
 * Class used to generate form letters
 * @author Barbara Ericson
 */
public class FormLetterGenerator
{

 /**
 * Method to generate a form letter
 * @param title the person's title (Mr., Mrs., Dr.)
 * @param lastName the last name for the recipient
 * @param city the name of the city for the recipient
 * @param eyeColor the eye color of the recipient
 */
 public void writeLetter(String title, String lastName,
 String city, String eyeColor)
 {

CreateAndModText-Mod15-part4 59

Form Letter Generator Class - Cont
 String fileName = lastName + "Letter.txt";

 // try to open the file and write to it
 try {

 // create the buffered writer to use to write the file
 BufferedWriter writer =
 new BufferedWriter(new FileWriter(fileName));

 // write the beginning of the letter
 writer.write("Dear " + title + " " + lastName + ", ");
 writer.newLine();
 writer.newLine();

CreateAndModText-Mod15-part4 60

Form Letter Generator Class - Cont
 // write the body of the letter
 writer.write("I am writing to remind you of the offer");
 writer.newLine();
 writer.write("that we sent to you last week. Everyone in");
 writer.newLine();
 writer.write(city +
 " knows what an exceptional offer this is!");
 writer.newLine();
 writer.write("(Especially those with lovely eyes of " +
 eyeColor + "!)");
 writer.newLine();
 writer.write("We hope to hear from you soon.");
 writer.newLine();
 writer.newLine();

11/29/10

11

CreateAndModText-Mod15-part4 61

Form Letter Generator Class - Cont
 // write the ending
 writer.write("Sincerely,");
 writer.newLine();
 writer.write("I. M. Acrook");

 // close the file
 writer.close();
 } catch (Exception ex) {
 System.out.println("Error writing to " + fileName);
 }
 }

 public static void main(String[] args)
 {
 FormLetterGenerator formGenerator = new FormLetterGenerator();
 formGenerator.writeLetter("Mr.","Guzdial","Decatur","brown");
 }

}

CreateAndModText-Mod15-part4 62

Write a File Exercise

•  Create another method to write a form
 letter
– Have it take the high temp, low temp and,

 chance of rain
– Have it print out the following:

– Todays high will be (high temp) and the low
 will be (low temp). There is a (chance of rain)
 % chance of rain

CreateAndModText-Mod15-part4 63

Modifying a Program
•  You can read the source code from a file

–  And change it in some way
•  And write it back out

•  Just read each line and look for a string that you
 want to change
–  If the current line doesn’t have the string to change

 then just add it to a list of lines
–  If the current line has the string to change then

 change it and add it to a list of lines
•  When you reach the end of the file

–  Write out the lines in the list

CreateAndModText-Mod15-part4 64

Modifying the Cartoon Class

•  We will create a method to change the text
 passed to the addWordBalloon method
–  In the main method
– Use indexOf to
look for the text

CreateAndModText-Mod15-part4 65

FileModifier Class
import java.util.*;
import java.io.*;

/**
 * Class to demonstrate using a program to modify another program
 * @author Barb Ericson
 */
public class FileModifier
{
 /**
 * Method to modfiy the first string in a method to
 * be the passed changed text
 * @param fileName the file name for the class to modify
 * @param textToChange the text to change
 * @param changedText the new text to use for the text to
 * change
 */
 public void modifyFile(String fileName,
 String textToChange,
 String changedText)

CreateAndModText-Mod15-part4 66

File Modifier - Cont
{
 List lineList = new ArrayList();
 String line = null;
 int pos = 0;

 // try the following
 try {

 // open the file to read from
 BufferedReader reader =
 new BufferedReader(new FileReader(fileName));

 /* loop while there are more lines in the file
 * and we haven't found the text to change yet
 */
 while((line = reader.readLine()) != null &&
 line.indexOf(textToChange) < 0)
 lineList.add(line);

11/29/10

12

CreateAndModText-Mod15-part4 67

File Modifier - Cont
 /* If we get there we either ran out of lines or we
 * found the text to change
 */
 if (line != null)
 {
 // get the position of the text to change
 pos = line.indexOf(textToChange);

 // modify the string
 lineList.add(line.substring(0,pos) +
 changedText + line.substring(pos + textToChange.length()));

 // loop till the end of the file adding the rest
 while ((line = reader.readLine()) != null)
 {
 lineList.add(line);
 }
 }

CreateAndModText-Mod15-part4 68

File Modifier - Cont
 // now close the file
 reader.close();

 // create a writer to write out the file
 BufferedWriter writer =
 new BufferedWriter(new FileWriter(fileName));

 // loop writing out the lines
 for (int i = 0; i < lineList.size(); i++)
 {
 writer.write((String) lineList.get(i));
 writer.newLine();
 }

CreateAndModText-Mod15-part4 69

File Modifier - Cont
 // close the writer
 writer.close();
 } catch (FileNotFoundException ex) {
 SimpleOutput.showError("Couln't find file " + fileName);
 fileName = FileChooser.pickAFile();
 modifyFile(fileName,textToChange,changedText);
 } catch (Exception ex) {
 SimpleOutput.showError("Error during read or write");
 ex.printStackTrace();
 }
 }

CreateAndModText-Mod15-part4 70

File Modifier – Main Method
 // Main method to run
 public static void main(String[] args)
 {
 FileModifier fileMod = new FileModifier();
 String file =
 "C:\\intro-prog-java\\bookClassesFinal\\Cartoon.java";
 fileMod.modifyFile(file,
 "Just Horsing Around!",
 "What's up, Wilbur?");
 }
}

Searching for data in a file

•  Sequences of nucleotides are in a file
– Name of a parasite followed by nucleotide

 sequence (DNA)
– Search for a sequence with > starting data for

 a parasite
>Schisto unique AA825099
gcttagatgtcagattgagcacgatgatcgattgaccgtgagatcgacga
gatgcgcagatcgagatctgcatacagatgatgaccatagtgtacg
>Schisto unique mancons0736
ttctcgctcacactagaagcaagacaatttacactattattattattatt
accattattattattattattactattattattattattactattattta
ctacgtcgctttttcactccctttattctcaaattgtgtatccttccttt

CreateAndModText-Mod15-part1 71

Algorithm for search

•  Open the file
•  Loop reading the file a line at a time until

 we find the sequence or reach the end of
 the file
– Append the new line to a string with “\n” to

 show the end of a line
•  Once we find the sequence look

 backwards for the start of the sequence
– Find the name between > and “\n”

CreateAndModText-Mod15-part1 72

11/29/10

13

Class SequenceSearcher
import java.io.*;
/**
 * Class that searches a file for a given sequence and reports
 * on the name where that sequence was found
 * @author Barb Ericson
 */
public class SequenceSearcher
{
 /**
 * Method to search for a given sequence and then
 * report on the name
 */
 public String getNameForSequence(String fileName, String seq)
 {
 CreateAndModText-Mod15-part1 73

SequenceSearcher - cont
 String info = "";
 String line = null;
 String name = null;

 // try the following
 try {
 // read from the file
 BufferedReader reader =
 new BufferedReader(new FileReader(fileName));

 // loop till end of file or find sequence
 while ((line = reader.readLine()) != null &&
 line.indexOf(seq) < 0)
 {

CreateAndModText-Mod15-part1 74

SequenceSearcher - cont
 // add to string with new line character
 info = info + line + "\n";
 }

 // if get here either end of line or we found the sequence
 if (line != null)
 {
 // look backward for the last >
 int firstIndex = info.lastIndexOf(’>’);

 // look forward from the > for the new line character
 int secondIndex = info.indexOf(’\n’,firstIndex);

CreateAndModText-Mod15-part1 75

SequenceSearcher - cont
 // get the name between the > and new line
 name = info.substring(firstIndex+1,secondIndex);
 }
 } catch (FileNotFoundException ex) {
 SimpleOutput.showError("Couldn’t find file " + fileName);
 fileName = FileChooser.pickAFile();
 getNameForSequence(fileName,seq);
 } catch (Exception ex) {
 SimpleOutput.showError("Error during read or write");
 ex.printStackTrace();
 }
 return name;
 }

CreateAndModText-Mod15-part1 76

Main method for testing
public static void main(String[] args)
 {
 SequenceSearcher searcher = new SequenceSearcher();
 String fileName = FileChooser.getMediaPath("parasites.txt");
 String seq = "ttgtgta";
 String name = searcher.getNameForSequence(fileName,seq);
 if (name == null)
 System.out.println("The sequence " + seq +
 " wasn’t found in " + fileName);
 else
 System.out.println("The sequence " + seq +
 " was found in " + name);
 }
}

CreateAndModText-Mod15-part1 77

Challenge

•  Find some interesting data on a web page
– Like the current temperature
– View the source and save the source as a text

 file
– Write a class that reads the desired data from

 the file

CreateAndModText-Mod15-part1 78

11/29/10

14

Adding text to all files in a directory

•  Professional photographers add text to all
 their photos on the web
– To make it harder for people to “steal” them

•  You can write a class to do this!
> import java.io.File;
> File dir = new File("C:\\intro-prog-java\\mediasources\\");
> String[] pathArray = dir.list();
> for (int i=0; i < 5; i++) System.out.println(pathArray[i]);
swan.jpg
MattScotland.jpg
twoSwans.jpg
kidsTree.jpg
redDoor.jpg

CreateAndModText-Mod15-part1 79

Class DirectoryWorker
import java.io.*;
/**
 * Class to work with files in a directory
 */
public class DirectoryWorker
{
 /**
 * Method to add a string to every picture in directory
 * @param dir the name of the directory
 * @param text the text of the string to add
 */
 public void addStringToPictures(String dir, String text)
 {

CreateAndModText-Mod15-part1 80

DirectoryWorker - cont
 String name = null;

 // create the object that represents the directory
 File file = new File(dir);

 // Get the array of names in the directory
 String[] nameArray = file.list();

 // loop through the names
 for (int i = 0; i < nameArray.length; i++)
 {
 name = nameArray[i];

CreateAndModText-Mod15-part1 81

DirectoryWorker - cont
 // if this is a picture file
 if (name.indexOf(".jpg") >= 0)
 {
 // create the picture object
 Picture p = new Picture(dir + name);

 // add the text to the picture
 p.drawString(text, 5,
 p.getHeight() - 50);

 // save the changed picture to a file
 p.write(dir + "titled-" + name);
 }
 }
 } CreateAndModText-Mod15-part1 82

Testing DirectoryWorker
 public static void main(String[] args)
 {
 DirectoryWorker worker = new DirectoryWorker();
 worker.addStringToPictures(
 "c:\\intro-prog-java\\mediasources\\",
 "Copyright 2009");
 }
}

CreateAndModText-Mod15-part1 83

Challenge

•  Add another method to the
 DirectoryWorker class to turn all pictures
 in a directory into grayscale

•  Write them out with –gray appended to the
 original name

CreateAndModText-Mod15-part1 84

11/29/10

15

CreateAndModText-Mod15-part5 85

Randomly Generated Text

•  Some magazines titles are very strange
– Elvis runs a restaurant.

•  You can randomly generate combinations
 of nouns, verbs and phrases to make your
 own silly sentences.

•  Using the class java.util.Random
– To create a random number generator
– And methods nextDouble and nextInt to get

 random numbers

CreateAndModText-Mod15-part5 86

Try Out the Random Number Generator

•  In the interactions pane
– Create a random number generator
– Random randNumGen = new Random();

•  Get a random double between 0 and 1
– double num = randNumGen.nextDouble();

•  Get a random integer between 0 and the
 (passed number – 1)
–  int steps = randNumGen.nextInt(11);
– Will randomly get from 0 to 10

CreateAndModText-Mod15-part5 87

SentenceGenerator Class
import java.util.Random;

/**
 * Class to generate sentences
 * @author Barb Ericson
 */
public class SentenceGenerator
{
 /////////// fields /////////////
 private String[] nounArray = {"Mark", "Adam", "Angela",
 "Larry", "Jose", "Matt", "Jim"};

CreateAndModText-Mod15-part5 88

SentenceGenerator Class - Cont
 private String[] verbArray = {"runs", "skips", "sings",
 "leaps", "jumps", "climbs", "argues", "giggles"};
 private String[] phraseArray = {"in a tree", "over a log",
 "very loudly", "around the bush",
 "while reading the newspaper",
 "very badly", "while skipping",
 "instead of grading"};
 private Random randGen = new Random();

CreateAndModText-Mod15-part5 89

SentenceGenerator Class - Cont
 //////////////// methods ///////////////////////////////////
 /**
 * Method to generate a random sentence
 * @return a random sentence
 */
 public String generateRandomSentence()
 {
 String sentence =
 nounArray[randGen.nextInt(nounArray.length)] + " " +
 verbArray[randGen.nextInt(verbArray.length)] + " " +
 phraseArray[randGen.nextInt(phraseArray.length)] + ".";

 return sentence;
 }

CreateAndModText-Mod15-part5 90

SentenceGenerator Class - Cont
public static void main(String[] args)
 {
 SentenceGenerator sentenceGen =

 new SentenceGenerator();
 for (int i = 0; i < 5; i++)
 System.out.println(
 sentenceGen.generateRandomSentence());
 }
}

11/29/10

16

CreateAndModText-Mod15-part5 91

Read Field Data Exercise

•  Create another constructor for the
 SentenceGenerator class
– That takes 3 files names

•  One for the nouns
•  One for the verbs
•  One for the phrases

– And reads each file into an ArrayList
•  Read an item on each line

– And then uses the toArray method of ArrayList
 to convert from an ArrayList to an array

CreateAndModText-Mod15-part5 92

Computer Networks

•  Computers communicate with each other
 over networks

•  Networks use agreements about how to
 communicate

•  How to address computers?
•  How data is represented?
•  How data will be transferred?
•  What protocol will the computers use to pass the

 data?
–  Rules for doing the activity

CreateAndModText-Mod15-part5 93

Internet Agreements
•  How to address the computers

–  Use Internet Protocol (IP) addresses
–  x.x.x.x where 0 <= x <= 255
–  Domain name servers translate domain names to addresses

•  www.cnn.com is http://64.236.24.20

•  Data will be passed in packets
–  Like an envelope with from and to IP addresses and the number

 of bytes in the packet
•  How packets are routed

–  Allow for some machines to be down
•  In case of a nuclear attack

•  Protocols
–  FTP (File Transfer Protocol)
–  POP and SMTP (Mail transfer protocols)

CreateAndModText-Mod15-part5 94

Web Agreements
•  Way to specify a location of a resource on the

 web
–  URL - Uniform Resource Locator

•  Has protocol to use, domain name of the server, and path to
 resource on the server

•  http://www.cc.gatech.edu/index.html

•  How to serve documents
–  HTTP – HyperText Transfer Protocol
–  HTTPS – More secure protocol

•  How the documents are formatted
–  HTML – HyperText Markup Language

•  Used for Web pages

CreateAndModText-Mod15-part5 95

Reading a Web Page

•  Some programs gather information from
 several web pages
– They pull out the information they want

•  And then display it in a new format
•  Like google’s news page

•  You can do this too! We can write a
 method to find the current temperature in
 a web page
– And display it to the user

CreateAndModText-Mod15-part5 96

Reading from the Web

•  We need to know where the web page is
– URL (Uniform Resource Locator)
– Gives protocol

•  We need something that can read from a
 URL
– And give us the bits
– And we need it to be character
– And we want to buffer it for more efficient

 reading

11/29/10

17

CreateAndModText-Mod15-part5 97

Reading from the Web
•  To represent a URL

–  We will use java.net.URL
•  To get something that can read from a URL

–  We will use the openStream method to get an
 InputStream from a URL

•  To convert the InputStream object into
 something that works with characters
–  We will create an InputStreamReader

•  To buffer the data in memory as we read it
–  We will use a BufferedReader

CreateAndModText-Mod15-part5 98

Each Class has a Responsibility

•  In Object-oriented programming each
 object should be responsible for one
 major thing
– Like representing a URL

•  You create objects of different classes to
 work together to accomplish a task

•  In a well designed program
– No one object does all the work
– Classes are easy to reuse

CreateAndModText-Mod15-part5 99

getTempFromNetwork Method
 public String getTempFromNetwork(String urlStr)
 {
 String temp = null;
 String line = null;
 String seq = "º";

 try {

 // create a url
 URL url = new URL(urlStr);

 // open a buffered reader on the url
 InputStream inStr = url.openStream();
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(inStr));

CreateAndModText-Mod15-part5 100

getTempFromNetwork Method - Cont
 // loop till end of file or find sequence
 while ((line = reader.readLine()) != null &&
 line.indexOf(seq) < 0)
 {}

 // if there is a current line
 if (line != null)
 {
 // find the temperature
 int degreeIndex = line.indexOf(seq);
 int startIndex = line.lastIndexOf('>',degreeIndex);
 temp = line.substring(startIndex + 1, degreeIndex);
 }

CreateAndModText-Mod15-part5 101

getTempFromNetwork Method - Cont
 } catch (FileNotFoundException ex) {
 SimpleOutput.showError(
 "Couldn't connect to " + urlStr);
 } catch (Exception ex) {
 SimpleOutput.showError
 "Error during read or write");
 ex.printStackTrace();
 }
 return temp;
 }

CreateAndModText-Mod15-part5 102

How it Works
•  First we create some variables that we will need

–  And set temp to null
•  This method reads a line at a time from the network

 address while
–  the line isn’t null and
–  doesn’t have the sequence we are looking for in it

•  After this we check if the loop stopped because the line
 was null
–  If not we get the starting index of the sequence we were looking

 for
–  And we look backwards from there for the previous >
–  Then we get the temperature from between the > and the

 sequence
•  Finally we return the value in temp

11/29/10

18

CreateAndModText-Mod15-part5 103

Read from Web Page Exercise

•  Find a web page with some interesting
 data on it

•  Use the view source button to see what
 the HTML looks like for the page

•  Find some way to identify the data that
 you want

•  Write a method to read from that URL and
 return the desired data

•  Write a main method to test it
CreateAndModText-Mod15-part1 104

Summary
•  All media can be saved as text
•  Text in Java is stored in String objects

–  java.lang.String
•  Exceptions are exceptional events

–  Checked exceptions must be caught or thrown
•  Classes in the java.io package can be used with

files
•  Classes in the java.net package can be used to

work with networks
•  While loops will loop till a condition is false

