
11/2/10

1

13-CreatingClasses 1

Creating Classes
part 1

Barb Ericson
Oct 2010

13-CreatingClasses 2

Learning Goals
–  Define a class

•  Including fields, constructors, and methods
–  Override an inherited method
–  Start using a debugger
–  Overload constructors
–  Create, initialize, access, and process an array
–  Create accessor and modifier methods
–  Introduce runtime exceptions
–  Create a main method
–  Create Javadoc comments
–  Introduce dynamic binding

Classes in Alice
•  The only way to create a class in Alice 2.2

 is to modify an existing class
– And save it out with a new class name
– Like the CleverSkater

•  Each class in Alice has a set of properties
 and a set of methods
–  In Java we call properties fields
–  In Java we also have a special type of method

 that initializes the newly created object
•  Called constructors

13-CreatingClasses 3 13-CreatingClasses 4

Identifying Objects and Classes
•  Object-oriented programs

– Consist of interacting objects
•  Which are defined by and created by classes

•  To identify the objects in a task
– What are the things that are doing the work or

being acted upon?
– How do you classify them?
– What data (fields) do they need to know to do

the task?
– What procedures (methods) do they need?

13-CreatingClasses 5

Identifying the Objects and Classes

•  Say that we want to write a program to do
a slide show
– A series of pictures shown one after the other

with some time waiting between the pictures
•  One way to start is to underline the nouns

– Slide show, picture, wait time
•  A slide show has pictures and a time to

wait between pictures

13-CreatingClasses 6

UML Diagram for SlideShow

SlideShow

waitTime
Picture

11/2/10

2

13-CreatingClasses 7

Class Definition
•  Each class is defined in a file

–  With the same name as the class: SlideShow.java
•  Class names

–  Are singular (SlideShow not SlideShows)
–  Start with an uppercase letter
–  The rest of the word is lowercase
–  Uppercase the first letter of each additional word

•  The syntax for a class definition is:
–  visibility class Name {}

•  Inside the class definition goes:
–  Fields, constructors, and methods

13-CreatingClasses 8

Class Declaration

•  To declare a SlideShow class
– Click on the New button in DrJava

•  Type in:
public class SlideShow
{
}

•  Save it in SlideShow.java
– Click on File then Save

•  Click the Compile All button to compile it

13-CreatingClasses 9

SlideShow Fields

•  A SlideShow has pictures and a wait time
– What type should we use for each of these?

•  For the pictures we can use a 1-D array
•  For wait time we can use integer to hold the

number of milliseconds to wait
•  Use Thread.sleep(waitTime) to wait for waitTime

number of milliseconds
–  1000 milliseconds is one second

•  This can cause an exception so write the method
to throw Exception by adding throw Exception

13-CreatingClasses 10

Declaring Fields
•  Syntax

–  visiblity type name;
–  visibility type name = expression;

•  Usually use private for the visibility
–  So that other classes can’t access it directly

•  The type is any of the primitive types, a class
name , or an interface name

•  Arrays are declared with [] after the type or after
the name
–  type[] name; or type name[];

•  Names start with a lowercase letter
–  The first letter of each additional word is uppercased

13-CreatingClasses 11

Default Field Values
•  If you don’t specify an initial value for a field

–  It will get one anyway when it is created
•  Numbers = 0
•  Objects = null (not referring to any object yet)
•  boolean = false

public class SlideShow
{
 //////////////// fields ///
 private int waitTime = 2000;
 private Picture[] pictureArray;
}

Initial value will
be null

All objects know what type they are

•  Objects keep a reference to the class that
 created them
– All methods are first looked for first in this

 class

13-CreatingClasses 12

11/2/10

3

13-CreatingClasses 13

Testing the SlideShow Class

•  Add the fields to the class definition and
compile it

•  Try the following in the interactions pane
– SlideShow slideShowObj = new SlideShow();
– System.out.println(slideShowObj);
– SlideShow show2 = new SlideShow();
– System.out.println(show2);

•  What happens?

13-CreatingClasses 14

What Happened? (Inherited Methods)
•  When you executed

–  System.out.println(slideShowObj);
•  The class SlideShow was checked for a toString

method
–  Since it didn’t have one the parent class was checked

for a toString method
•  The one in Object was executed

–  Which prints the hash code for the object
–  The hash code is a hex number that is unique for the object

•  The SlideShow class inherited the toString
method from the Object class

13-CreatingClasses 15

How Inheritance Works

•  When a method is invoked on an object
•  We first check for that method in the object

that defines the object’s class
•  If it isn’t there we look in the parent of that

class

13-CreatingClasses 16

All Classes Inherit from Object
•  If you don’t specify the parent class when you

declare a class
–  The class with inherit from java.lang.Object

•  You can specify the parent class
–  Add extends Parent to the class declaration

 public class SlideShow extends Object
•  A declaration of

 public class SlideShow
•  Is the same as

 public class SlideShow extends Object

13-CreatingClasses 17

Getting the Class
•  An object keeps a reference to the class that

created it
–  You can get this class with

•  Class currClass = obj.getClass();
•  Each class keeps a reference to its parent class

–  You can get this class with
•  Class parentClass = currClass.getSuperclass();

•  Try the following:
SlideShow showObj = new SlideShow();
Class showClass = showObj.getClass();
System.out.println(showClass);
Class parentClass = showClass.getSuperclass();
System.out.println(parentClass);

13-CreatingClasses 18

Overriding an Inherited Method

•  If a class defines a method with the same
name, parameter list, and return type as
an inherited method
– This method will be called instead of the

parent method
•  To override Object’s toString add this one to SlideShow:
public String toString()
{
 return "SlideShow object with a wait time of " + this.waitTime;
}

11/2/10

4

13-CreatingClasses 19

Testing toString

•  Compile SlideShow.java
•  Type the following in the interactions pane

SlideShow showObj = new SlideShow();
System.out.println(showObj);

•  What do you get this time?
– And why?

CreatingClasses-SlideShow-part2 20

Constructors
•  Are used to initialize the fields of an object

–  To other than the default values or assigned values
•  You can have more than one constructor

–  As long as the parameter lists are different
–  This is called overloading constructors

•  Syntax
–  visibility ClassName(paramList) {}

•  Example
 public SlideShow(int theTime)
 {
 this.waitTime = theTime;
 }

Trying the new constructor
> System.out.println(new SlideShow(5000));
SlideShow object with a wait time of: 5000

Try the no-argument constructor as well:
> System.out.println(new SlideShow());
What happens?

13-CreatingClasses 21 CreatingClasses-SlideShow-part2 22

Why did you get an Error?
•  We hadn’t declared any constructors before we

 added this one
–  But a constructor is called each time a new object is

 created
–  We didn’t provide one so the compiler added a no

-argument constructor
•  One that takes no parameters and leaves the fields with their

 default or assigned values

•  But once you add a constructor
–  The compiler will not add any for you

•  So now you get an error when you try to use a no-argument
 constructor

Add a no-argument constructor
 //////////// constructors ///////////
 public SlideShow() {}

 public SlideShow(int theTime)
 {
 this.waitTime = theTime;
 }

13-CreatingClasses 23 CreatingClasses-SlideShow-part2 24

Adding a No-Argument Constructor
•  Add the following constructor to the SlideShow class

–  public SlideShow() {}
•  Now test it again with:

SlideShow showObj = new SlideShow();
System.out.println(showObj);

•  Also try:
Picture[] pictArray = new Picture[5];
pictArray[0] = new Picture(FileChooser.getMediaPath("beach.jpg"));
pictArray[1] = new Picture(FileChooser.getMediaPath("blueShrub.jpg"));
pictArray[2] = new Picture(FileChooser.getMediaPath("church.jpg"));
pictArray[3] = new Picture(FileChooser.getMediaPath("eiffel.jpg"));
pictArray[4] = new Picture(FileChooser.getMediaPath("greece.jpg"));
SlideShow vacShow = new SlideShow(pictArray);
System.out.println(vacShow);

11/2/10

5

CreatingClasses-SlideShow-part2 25

Tracing Execution

•  One way to trace what is happening in
 your program is
– To add System.out.println() statements

•  Add these in the constructor to print out
 the value of the wait time both before and
 after it is set

System.out.println(this.waitTime
this.waitTime = theTime;
System.out.println(this.waitTime);

CreatingClasses-SlideShow-part2 26

Debuggers
•  You can use a debugger to find the cause

 of bugs (errors in your program)
– A moth caused one bug
– http://www.jamesshuggins.com/h/tek1

/first_computer_bug.htm
•  And to trace execution to see what is

 happening
– Which constructor is executed or what method

 is executed
– What values are in the fields

DrJava’s Debugger

•  You can turn on the debugger in DrJava
– Click on Debugger and then check Debug

 Mode
•  DrJava will add new windows to the bottom of the

 window

CreatingClasses-SlideShow-part2 27

Watches
and
Breakpoints
Area

Stack and
Threads
Area

Check values here

CreatingClasses-SlideShow-part2 28

Setting a Breakpoint
•  When you use a debugger you often want

 to set places to stop execution
– Each place to stop at is a breakpoint

•  Once execution has stopped there
– You can check the value of parameters and

 fields
•  To set a breakpoint

– Right click on a line of code
– Pick “Toggle Breakpoint”
–  It will be highlighted in red

CreatingClasses-SlideShow-part2 29

Showing a Breakpoint

•  Lines with breakpoints are highlighted in
 red in DrJava

•  Set a breakpoint at the line that sets the
 picture array

CreatingClasses-SlideShow-part2 30

Testing a Breakpoint
•  Try the constructor again that takes an integer

 wait time
•  Execution should stop at the breakpoint

–  And the color will change to blue

11/2/10

6

CreatingClasses-SlideShow-part2 31

Checking Values

•  Execution stops before the breakpoint line
 is executed
– So the array hasn't been set yet
– Check this by printing out the value of it in the

 interactions pane
> this.waitTime;
> this.pictureArray;

– Then click on the Step Over button
•  To let the current line of code be executed

– And check the values again
CreatingClasses-SlideShow-part2 32

Debugging Options
•  Step Over

–  Execute the current line of code and then stop again before you
 execute the next line of code

•  Step Into
–  If the line of code that we are stopped at has a method call in it

 stop at the first line in the called method
•  Resume

–  Continue execution at the current point
•  Until the next breakpoint
•  Or the program ends

•  Step Out
–  Execute the rest of the current method and stop at the first line

 after the call to this method
•  You can quit debugging by clicking on the X

CreatingClasses-SlideShow-part2 33

Adding a Constructor Exercise

•  Create another constructor in the
 SlideShow class
– One that takes the array of pictures

 public SlideShow(Picture[] pictArray)
 {
 this.pictureArray = pictArray;
 }

•  We need to create an array of pictures to
 pass in to this constructor

 }

CreatingClasses-SlideShow-part2 34

Creating 1D Arrays
•  You can declare an array using

–  Type[] arrayName;
•  You can create an array using

–  new Type[size];
•  You can declare an array and create it at the

 same time
–  Type[] arrayName = new Type[size];

•  You can add an element to an array using
–  name[index] = Object;

•  You can initialize the contents of an array when
 you create it
–  type[] name = {elem1,elem2,elem3,...};

Creating an array of pictures
> Picture pict1 =

 new Picture(FileChooser.getMediaPath("beach.jpg"));
> Picture pict2 =

 new Picture(FileChooser.getMediaPath("church.jpp"));
> Picture pict3 =

 new Picture(FileChooser.getMediaPath("horse.jpg"));
> Picture[] pictArray = {pict1, pict2, pict3};

13-CreatingClasses 35

Another way to set-up the array
•  You can also create the array first and

 then fill in the references to the pictures
> Picture[] pictArray = new Picture[3];
> pictArray[0] =

 new Picture(FileChooser.getMediaPath("beach.jpg"));
> pictArray[1] =

 new Picture(FileChooser.getMediaPath("church.jpg"));
> pictArray[2] =

 new Picture(FileChooser.getMediaPath("horse.jpg"));
> System.out.println(new SlideShow(pictArray);
SlideShow object with a wait time of: 2000

13-CreatingClasses 36

11/2/10

7

What does this look like?

13-CreatingClasses 37

Adding a getNumPicts() method
•  We might want

 to also print out
 the number of
 pictures in the
 slide show
–  This is

 something other
 classes might
 want to know

–  So let's add it as
 a public method

 public int getNumPicts()
 {
 // if no picture array then there are no pictures
 if (this.pictureArray == null)
 {

 return 0;
 }
 // else return the number of pictures in the

 array
 else
 {
 return pictureArray.length;
 }
 }

13-CreatingClasses 38

Modifying toString

•  Now we can modify toString to tell us how
 many pictures are in the slide show

 public String toString()
 {
 return "SlideShow object with a wait time of: " +
 this.waitTime + " and " +
 this.getNumPicts() + " pictures";
 }

13-CreatingClasses 39

Challenge

•  Set a breakpoint in the toString method
 and use the Step Into to follow the call to
 getNumPicts
– Step into will take you into the called method
– Step over will execute the method and stop

 before the next line

13-CreatingClasses 40

CreatingClasses-SlideShow-part3 41

Showing the Slide Show
•  Now that a slide show has an array of

 slides we would like to
– Show the pictures in the array

•  We can loop through the elements of the
 array
– And show the current picture
– And wait for the wait time
– Then hide the current picture

•  We need to be careful of
– A null pictureArray

CreatingClasses-SlideShow-part3 42

Thread.wait

•  Use Thread.sleep(waitTime) to wait for
 waitTime number of milliseconds
– 1000 milliseconds is one second

•  This can cause an exception
– exceptional event - like if someone hits the

 reset button in DrJava while we are waiting
– write the method to throw Exception by adding

 throws Exception
 public void show() throws Exception

11/2/10

8

The show method
Add this method to the SlideShow class
public void show() throws Exception
 {
 for (Picture pictObj : this.pictureArray)
 {
 pictObj.show();
 Thread.sleep(this.waitTime);
 pictObj.hide();
 }
 }

13-CreatingClasses 43

Testing SlideShow
> Picture pict1 =

 new Picture(FileChooser.getMediaPath("beach.jpg"));
> Picture pict2 =

 new Picture(FileChooser.getMediaPath("church.jpp"));
> Picture[] pictArray = {pict1, pict2};
> SlideShow show1 = new SlideShow(pictArray);
> show1.show();

13-CreatingClasses 44

CreatingClasses-SlideShow-part3 45

Accessing Fields from Other Classes
•  Fields are usually declared to be private

– So that code in other classes can’t directly
 access and change the data

•  Try this in the interactions pane
– System.out.println(showObj.pictureArray);

•  You will get an exception
– Short for exceptional event – error

•  Outside classes can not use object.field to
 access the field value
– Unless it is declared with public visibility

CreatingClasses-SlideShow-part3 46

Accessors and Modifiers
•  Accessors

–  Are public methods that return data
•  In such a way as to protect the data for this object
•  Syntax

public fieldType getFieldName()
•  Example

public String getName() { return this.name;}

•  Modifiers or Mutators
–  Are public methods that modify data

•  In such a way as to protect the data for this object
•  Syntax

public returnType setFieldName(type name);
•  Example

public void setName(String theName)
{this.name = theName; }

CreatingClasses-SlideShow-part3 47

Naming Conventions
•  Accessors – also called Getters

– Use getFieldName for non boolean fields
– Use isFieldName for boolean fields

•  Modifiers – also called Setters and
 Mutators
– Use setFieldName
– Sometimes return a boolean value to indicate

 if the value was set successfully
•  Examples

– getName and setName
CreatingClasses-SlideShow-part3 48

Creating SlideShow Accessors

•  Add a method to get the wait time
 public int getWaitTime() { return this.waitTime; }

•  What about a method to get the array of
 pictures?
–  If someone gets the array s/he can directly

 change the pictures in the array
–  It is safer to return the picture at an index

•  Then other classes can’t directly change the array
 of pictures

11/2/10

9

CreatingClasses-SlideShow-part3 49

Exercise

•  Create a method that returns the picture at
 a given index in the array
–  If the array is null return null
–  If the index isn't valid return null

CreatingClasses-SlideShow-part3 50

Creating Slide Show Modifiers
•  We need public methods

–  That let other classes change the fields
–  Our class is responsible for making sure this only

 happens in such a way
•  as to keep the data valid and not cause errors

•  Changing a picture in the slide show
–  The picture array can't be null and the picture can't be null

•  Setting the picture array
–  Only if it is currently null

•  Setting the wait time
–  The wait time must be > 0

setPicture method
 public boolean setPicture(int index, Picture pict)
 {
 if (pict == null || this.pictureArray == null)
 return false;
 else
 {
 this.pictureArray[index] = pict;
 return true;
 }
 }

13-CreatingClasses 51

Challenge

•  Is there anything else that setPicure
 should be checking to make sure that the
 data is valid?

13-CreatingClasses 52

CreatingClasses-SlideShow-part3 53

Set Picture Array Modifier
•  Setting the array of pictures only if it is currently null
public boolean setPictureArray(Picture[] theArray)
 {
 boolean result = false;

 if (this.pictureArray == null)
 {
 this.pictureArray = theArray;
 result = true;
 }
 return result;
 }

CreatingClasses-SlideShow-part3 54

Wait Time Modifier
public boolean setWaitTime(int theTime)
 {
 boolean result = false;
 if (theTime >= 0)
 {
 this.waitTime = theTime;
 result = true;
 }
 return result;
 }

11/2/10

10

CreatingClasses-SlideShow-part3 55

Add a Field Exercise

•  Add a title field to the SlideShow class
•  Add an accessor to get the value of this

 field
•  Add a modifier to set the value of this field
•  Modify the show method to first create a

 blank picture with the title on it and show
 that as the first picture in the slide show

CreatingClasses-SlideShow-part3 56

Adding a Main Method
•  We have been typing stuff in the interactions pane in

 DrJava
–  To try out Java code and to try methods

•  Most development environments make you write a main
 method to start execution
–  DrJava allows this too

•  Each class can have a main method declared as follows:
–  public static void main(String[] args)

•  It is public so that it can be called by other classes
•  It is static because no object of the class exists when it is executed
•  It doesn’t return anything so the return type is void
•  You can pass several arguments to the main method and these are

 put in an array of strings

CreatingClasses-SlideShow-part3 57

Main Method
•  Add a main method to SlideShow

–  Put the statements that you have been doing in the interactions pane in
 the main method

public static void main(String[] args) throws Exception
 {
 Picture p1 =
 new Picture(FileChooser.getMediaPath("beach.jpg"));
 Picture p2 =
 new Picture(FileChooser.getMediaPath("church.jpg"));
 Picture[] pictArray = {p1,p2};
 SlideShow show1 = new SlideShow(pictArray);
 System.out.println(show1);
 show1.show();
 }

CreatingClasses-SlideShow-part3 58

Execute the Main Method
•  In DrJava you can run the main method in

 the class that is displayed in the
 definitions pane
– By clicking on Tools then Run Document’s

 Main Method (or press key F2)
•  It will do

–  java SlideShow
–  In the interactions pane
– Which executes the main in the SlideShow

 class

CreatingClasses-SlideShow-part4 59

Comments
•  You should add comments to your code

– To make it easier to read and change
•  Comments are ignored by the complier

– Not added to the byte codes
•  Java has 3 kinds of comments

–  // comment ends at the end of this line
–  /* multi-line comment ends with next */
–  /** Javadoc comment that ends with */

•  can be used by the javadoc utility to create HTML
 documentation

CreatingClasses-SlideShow-part4 60

Javadoc Comments
•  Add a comment before the class definition

–  That explains the purpose of this class
–  And says who wrote it

•  @author Barb Ericson
/**
 * Class that defines a slide show. A slide show
 * has pictures and a time to wait between showing the
 * pictures
 * @author Barb Ericson
 */
public class SlideShow

11/2/10

11

CreatingClasses-SlideShow-part4 61

Multiple Authors
•  Simply add a @author tag for each author

/**
 * Class that represents a slide show. A slide show has
 * an array of pictures, a time to wait between pictures,
 * and a title that is shown at the beginning of the show.
 *
 * @author Mark Guzdial
 * @author Barb Ericson
 */
public class SlideShow

CreatingClasses-SlideShow-part4 62

Method Comments
•  Add a comment before each method
•  What the parameters are

–  @param name info
•  What is returned

–  @return info
 /**
 * Method to set a picture at the passed
 * index
 * @param index which one to change
 * @param thePict the picture to use
 * @return true if success else return false
 */
 public boolean setPicture(int index,
 Picture thePict)

CreatingClasses-SlideShow-part4 63

Previewing Javadoc HTML

•  Click on Tools
•  Click on Preview Javadoc for Current

 Document
– This will generate the HTML from the javadoc

 comments and display it
•  The HTML document will display

CreatingClasses-SlideShow-part4 64

Generating HTML for a Directory

•  In DrJava click on the Javadoc button
–  to create the HTML documentation
– based on the Javadoc comments

•  This will generate HTML for all files in the
 same directory as all open files

•  Generates an index.html as a starting
 point

CreatingClasses-SlideShow-part4 65

Javadoc Exercise

•  Add Javadoc comments to the SlideShow
 and Student classes
– Add a class comment with @author tag
– Add method comments
– Add comments to the constructors

•  Execute Javadoc and check out the
 created documentation

CreatingSubclasses 66

Creating an Inherited Class

•  Let's create a class ConfusedTurtle that
 inherits from the Turtle class
– But when a ConfusedTurtle object is asked to

 turn right it will turn left and vice versa
•  To inherit from another class

– Add extends ClassName to the class
 declaration
•  To call a method in a parent class use

super.method(arguments);

11/2/10

12

CreatingSubclasses 67

ConfusedTurtle class
public class ConfusedTurtle extends Turtle
{
 /**
 * Method to turn right (but a confused
 * turtle will actually turn left)
 */
 public void turnRight()
 {
 super.turnLeft();
 }
}

ConfusedTurtle class - cont
 /**
 * Method to turn left (but a confused
 * turtle will actually turn right)
 */
 public void turnLeft()
 {
 super.turnRight();
 }
}

13-CreatingClasses 68

CreatingSubclasses 69

Compile Error?

•  If you try to compile ConfusedTurtle you
 will get a compiler error
– Error: cannot resolve symbol
– symbol: constructor Turtle()
–  location: class Turtle

•  Why do you get this error?

CreatingSubclasses 70

Inherited Constructors

•  When one class inherits from another all
 constructors in the child class will have an
 implicit call to the no-argument parent
 constructor as the first line of code in the
 child constructor
– Unless an explicit call to a parent constructor

 is the first line of code in the constructor
super(argumentList);

CreatingSubclasses 71

Why is an Implicit Call to Super Added?
•  Object fields are inherited from a parent

 class
– But object fields should be declared private

•  Not public, protected, or package visibility
–  Lose control over field at the class level then

– But then subclasses can’t directly access
 inherited object fields

– How do you initialize inherited fields?
•  By calling the parent constructor that initializes

 them
– Using super(paramList);

CreatingSubclasses 72

Explanation of the Compile Error
•  There are no constructors in

 ConfusedTurtle
– So a no-argument one is added for you

•  With a call to super();
– But, the Turtle class doesn’t have a no

-argument constructor
•  All constructors take a world to put the turtle in

•  So we need to add a constructor to
ConfusedTurtle
– That takes a world to add the turtle to

•  And call super(theWorld);

11/2/10

13

CreatingSubclasses 73

Add a Constructor that takes a World
 /**
 * A constructor that takes a ModelDisplay object
 * @param modelDisplayObj the thing that does the

 display
 */
 public ConfusedTurtle(ModelDisplay modelDisplayObj)
 {
 // use parent constructor
 super(modelDisplayObj);
 }

Try out ConfusedTurtle

> World world = new World();
> ConfusedTurtle fred = new ConfusedTurtl

e(world);
> fred.forward();
> fred.turnLeft();
> fred.forward();
> fred.turnRight();
> fred.forward();

13-CreatingClasses 74

CreatingSubclasses 75

Method Resolution

•  You can set the value of an object
 reference to be of the declared type
 ConfusedTurtle fred = new ConfusedTurtle(world);

– Or any subclass of the declared type
Turtle fred = new ConfusedTurtle(world);

•  Methods are executed at run-time
– Based on the actual type of the object

•  The class that created it
–  So the turtle fred will act like a confused turtle

CreatingSubclasses 76

Override Methods
•  Children classes inherit parent object

 methods
– The confused turtle knows how to go forward

•  Inherited from Turtle which inherits from
 SimpleTurtle

•  Children can override parent object
 methods
– Have a method with the same name and

 parameter list as a parent method
•  This method will be called instead of the parent

 method
–  Like turnLeft or turnRight

CreatingSubclasses 77

What is Happening?

•  Each time an object is asked to execute a
 method
– Check the class that created the object to see

 if the method is defined in that class
•  If it is, it will execute that method
•  If it isn’t, next check the parent class of the class

 that created it
–  that method will execute if one is found
–  If no method with that name and parameter list is found,

 check that classes parent
»  Keep going until you find the method

CreatingSubclasses 78

Method Overloading

ConfusedTurtle: Class

turnLeft

turnRight fred

Turtle: Class

drawSquare()

tina

SimpleTurtle: Class

-----------------------------------forward
()

forward(int amount)

turnLeft()

turnRight()
Obj: Turtle

class

Obj: ConfusedTurtle

class

11/2/10

14

CreatingSubclasses 79

Exercise

•  Create a StubbornTurtle class
– That has a 50% chance of doing what you ask
– You can use Math.random() to get back a

 number from 0 to not quite 1 (not inclusive)
– You can check if the random number is

 greater than .5 and if so call the parent
 method to do the action

CreatingSubclasses 80

Adding Fields and Methods to a Subclass

•  What if we want to play music while the slide
 show is playing?
–  Create a MusicalSlideShow that inherits from

 SlideShow
•  Add a field for a sound clip (using the Sound

 class).
•  We can override the show method to first start

 playing the sound and then call the parent's
 show method

•  We can add methods to get and set the sound

CreatingSubclasses 81

Challenge

•  What if the music is too long for the slide
 show?

•  What if the music is too short for the slide
 show?

•  Can you make the music match the length
 of the slide show?

13-CreatingClasses 82

Summary
•  Object-oriented programs

–  Have interacting objects
•  To decide what classes to create

–  Identify the objects doing the action or being acted upon
•  And classify them (what type of thing are they?)

•  All classes inherit from Object
–  Inherit the toString() method

•  Add a toString() method to your own classes
–  To override the inherited method

•  You can create classes that specify the parent class
–  public class ConfusedTurtle extends Turtle

•  Using a debugger can help you figure out what your
program is doing

