
11/2/10

1

12-ConditionallyModifyingPixels 1

Conditionally Modifying Pixels

Barb Ericson
Oct 2010

12-ConditionallyModifyingPixels 2

Learning Goals
•  Understand at a conceptual and practical level

– How to conditionally execute a statement or a
block of statements using if

– How to use a conditional with two possible
results: if and else

– How to use a conditional with more than two
possible results: if, else if, and else

– How to use the not (!) operator
– How to combine Boolean expressions with

and and or

12-ConditionallyModifyingPixels 3

Conditionally Modifying Pixels
•  Up to now we have modified all the pixels in a

picture or in a range the same way
•  But, sometimes we want to modify only pixels

that meet a certain condition
•  Like when a person has "red eye"
•  We only want to modify the pixels in an area that have

a value close to red

12-ConditionallyModifyingPixels 4

Conditional Execution
•  Sometimes we want a

statement or block of
statements executed
only if some
expression is true
–  We can use the “if”

statement in Java

if (colorDistance < value)
Statement or block to

execute
next statement

statement

if (expression)

true

false

Statement
or block

12-ConditionallyModifyingPixels 5

Remove Red Eye
•  Red eye is when the

flash from the camera
is reflected from the
subject’s eyes

•  We want to change
the red color in the
eyes to another color
–  But not change the red

of her dress

12-ConditionallyModifyingPixels 6

Red Eye Algorithm

•  We can find the area around the eyes to
limit where we change the colors
– Using pictureObj.explore()
– But we still just want to change the pixels that

are “close to” red.
– We can find the distance between the current

color and our definition of red
•  And change the color of the current pixel only if the

current color is within some distance to the desired
color

11/2/10

2

12-ConditionallyModifyingPixels 7

Detailed Red Eye Algorithm

•  Loop with x staring at some passed start
value and while it is less than some
passed end value
– Loop with y starting at some passed start

value and while it is less than some passed
end value
•  Get the pixel at this x and y
•  Get the distance between the pixel color and red
•  If the distance is less than some value (167)

change the color to some passed new color

12-ConditionallyModifyingPixels 8

Blocks of Statements
•  The if statement will conditionally execute

–  the following statement or
–  A block of statements
–  if the Boolean expression is true

•  To conditionally execute a block of statements
–  Enclose them in ‘{‘ and ‘}’

•  Indent the following statement or block of
statements
–  To make it easier to read

•  It is good practice to always enclose conditional
statements in a block
–  Less likely to cause an error if the code is modified

12-ConditionallyModifyingPixels 9

Color Distance

•  The distance between two points is
computed as
– Square root of ((x1 – x2)2 + (y1 – y2)2)

•  The distance between two colors can be
computed
– Square root of ((red1 – red2)2 + (green1-

green2)2 + (blue1 – blue2)2)
– There is a method in the Pixel class to do this

•  double dist = pixelObj.colorDistance(color1);

Remove red eye method
public void removeRedEye(int startX, int startY, int endX,
 int endY, Color newColor)
 {
 Pixel pixel = null;

 /* loop through the pixels in the rectangle defined by the
 startX, startY, and endX and endY */
 for (int x = startX; x < endX; x++)
 {
 for (int y = startY; y < endY; y++)
 {
 // get the current pixel
 pixel = getPixel(x,y);

12-ConditionallyModifyingPixels 10

12-ConditionallyModifyingPixels 11

Remove Red Eye Method
 // if the color is near red then change it
 if (pixel.colorDistance(Color.red) < 167)
 pixel.setColor(newColor);
 }
 }
 }

12-ConditionallyModifyingPixels 12

Testing removeRedEye

•  Try the following to test removeRedEye
> String fileName =
 "c:/intro-prog-java/mediasources/jenny-red.jpg";
> Picture jennyPicture = new Picture(fileName);
> jennyPicture.removeRedEye(109,91,202,107,
 java.awt.Color.black);
> jennyPicture.explore();

11/2/10

3

12-ConditionallyModifyingPixels 13

Challenge

•  Take a picture of a friend or find a picture
on the web
– And try to change their eye color
– Try to change their hair color
– Try to change their clothing color

•  Can you write one method to do this?
– And call it several times with different

parameters?

12-ConditionallyModifyingPixels 14

A Conditional with 2 Outcomes

•  You might want to do one thing if a
 Boolean expression is true and another if
 it is false
–  int x = 30;
–  if (x < 30) System.out.println("x < 30");
–  if (x >= 30) System.out.println("x >= 30");

•  But, then you have to test 2 Boolean
 expressions
–  Instead you can use an if with an else

12-ConditionallyModifyingPixels 15

Use if and else for two possibilities
int x = 30
if (x < 30)
 System.out.println(“x<30”);
else

 System.out.println(“x>=30”);

statement

if (expression)

true

false

Statement
or block

Statement
or block

else

12-ConditionallyModifyingPixels 16

Edge Detection
•  Loop through all the

 pixels in the picture,
 except the last row
–  Calculate the average color

 for the current pixel and
 the pixel at the same x but
 y+1.

–  Get the distance between
 the two averages

–  If the absolute value of the
 distance is greater than
 some value turn the
 current pixel black

–  Otherwise turn the current
 pixel white

12-ConditionallyModifyingPixels 17

Edge Detection Algorithm

•  To find areas of high contrast
– Try to loop from y = 0 to y = height – 1

•  Loop from x = 0 to x = width
– Get the pixel at the x and y (top pixel)
– Get the pixel at the x and (y + 1) bottom pixel
– Get the average of the top pixel color values
– Get the average of the bottom pixel color values
–  If the absolute value of the difference between the

 averages is over a passed limit
»  Turn the pixel black
» Otherwise (else) turn the pixel white

Edge detection method
public void edgeDetection(double amount) {
 Pixel topPixel = null;
 Pixel bottomPixel = null;
 double topAverage = 0.0;
 double bottomAverage = 0.0;
 int endY = this.getHeight() - 1;

 /* loop through y values from 0 to height - 2
 * (since compare to below pixel) */
 for (int y = 0; y < endY; y++) {
 // loop through the x values from 0 to width
 for (int x = 0; x < this.getWidth(); x++) {

12-ConditionallyModifyingPixels 18

11/2/10

4

Edge detection method - cont
 // get the top and bottom pixels
 topPixel = this.getPixel(x,y);
 bottomPixel = this.getPixel(x,y+1);

 // get the color averages for the two pixels
 topAverage = topPixel.getAverage();
 bottomAverage = bottomPixel.getAverage();

 /* check if the absolute value of the difference
 * is less than the amount */
 if (Math.abs(topAverage - bottomAverage) < amount) {
 topPixel.setColor(Color.WHITE);

12-ConditionallyModifyingPixels 19

Edge detection method - cont
 // else set the color to black
 } else {
 topPixel.setColor(Color.BLACK);
 }
 }
 }
 }
Test with:
> String fileName = FileChooser.getMediaPath("butterfly1.jpg");
> Picture p = new Picture(fileName);
> p.explore();
> p.edgeDetection(10);
> p.explore();

12-ConditionallyModifyingPixels 20

Where to put the curly braces?

•  You may have noticed that in
 edgeDetection the opening curly brace '{'
 is at the end of the statement

 for (int y=0; y < endY; y++) {

•  rather than on a new line
 for (int y=0; y < endY; y++)
 {

•  It doesn't matter to Java
– The Java standard says put them at the end

 of the line
12-ConditionallyModifyingPixels 21 12-ConditionallyModifyingPixels 22

Challenge

•  Create another method for simple edge
 detection
– This time compare the current pixel with the

 one to the right (x+1)
– How do you need to change the nested loop?
– Do you get a different result?

12-ConditionallyModifyingPixels 23

Testing for not true

•  We usually use a conditional to do some
 action when a Boolean expression is true
– But, what about if we want to do some action

 when a Boolean expression is false?
–  If the contrast is not low then set it to black

 else set it to white
•  We can use an if with the Boolean

 expression negated using '!'
> !true
false

Challenge

•  You can use ! to check if something is not
 true
–  !(20 < x) will be true when 20 is greater than

 or equal to x
•  Modify the edgeDetection method to use !

– Set the pixel to black when the contrast is not
 low, else to white

12-ConditionallyModifyingPixels 24

11/2/10

5

12-ConditionallyModifyingPixels 25

Sepia-Toned Pictures

•  Have a yellowish tint, used to make things
 look old and western

12-ConditionallyModifyingPixels 26

Sepia-toned Algorithm
•  First make the picture grayscale.

– Calling the method you created
•  Loop through all the pixels in the picture

– Change the shadows (darkest grays) to be
 even darker (0 <= red < 60)

– Make the middle grays a brown color (60 <=
 red < 190)

– Make the highlights (lightest grays) a bit
 yellow (red >= 190)
•  Increase red and green
•  Or decrease blue

12-ConditionallyModifyingPixels 27

Conditionals with > 2 Choices
int y = 2;
if (y < 10)
 System.out.println(
 "y is less than 10");
else if (y == 10)
 System.out.println(
 "y is equal to 10");
else
 System.out.println(
 "y is greater than 10");

Sepia tint method
public void sepiaTint()
 {
 Pixel pixel = null;
 double redValue = 0;
 double greenValue = 0;
 double blueValue = 0;

 // first change the current picture to grayscale
 this.grayscale();

 // loop through the pixels
 for (int x = 0; x < this.getWidth(); x++)
 {

12-ConditionallyModifyingPixels 28

Sepia tint method - cont
 for (int y = 0; y < this.getHeight(); y++)
 {
 // get the current pixel and color values
 pixel = this.getPixel(x,y);
 redValue = pixel.getRed();
 greenValue = pixel.getGreen();
 blueValue = pixel.getBlue();

 // tint the shadows darker
 if (redValue < 60)
 {
 redValue = redValue * 0.9;
 greenValue = greenValue * 0.9;
 blueValue = blueValue * 0.9;
 } 12-ConditionallyModifyingPixels 29

Sepia tint method - cont
 // tint the midtones a light brown
 // by reducing the blue
 else if (redValue < 190)
 {
 blueValue = blueValue * 0.8;
 }
 // tint the highlights a light yellow
 // by reducing the blue
 else
 {
 blueValue = blueValue * 0.9;
 }

12-ConditionallyModifyingPixels 30

11/2/10

6

Sepia tint method - cont

 // set the colors
 pixel.setRed((int) redValue);
 pixel.setGreen((int) greenValue);
 pixel.setBlue((int) blueValue);
 }
 }
 }

12-ConditionallyModifyingPixels 31 12-ConditionallyModifyingPixels 32

Testing sepiaTint
> Picture picture =
 new Picture(Picture.getMediaPath("gorge.jpg"));
> picture.show();
> picture.sepiaTint();
> picture.repaint();

12-ConditionallyModifyingPixels 33

Posterize
•  Reducing the number

 of different colors in
 an image

•  Set all values in a
 range to one value
 (the midpoint of the
 range)
–  Set all < 64 to 31
–  Set all <128 to 95
–  Set all < 192 to 159
–  Set the rest to 223

12-ConditionallyModifyingPixels 34

Posterize Algorithm

•  Loop through all the pixels in an image
– Get the red value for the pixel

•  Find the right range and set the new red value
– Get the green value for the pixel

•  Find the right range and set the new green value
– Get the blue value for the pixel

•  Find the right range and set the new blue value

Posterize method
public void posterize()
 {
 Pixel pixel = null;
 int redValue = 0;
 int greenValue = 0;
 int blueValue = 0;

 // loop through the pixels
 for (int x = 0; x < this.getWidth(); x++) {
 for (int y = 0; y < this.getHeight(); y++) {

 // get the current pixel and colors
 pixel = this.getPixel(x,y);

12-ConditionallyModifyingPixels 35

Posterize method - cont
 redValue = pixel.getRed();
 greenValue = pixel.getGreen();
 blueValue = pixel.getBlue();

 // check for red range and change color
 if (redValue < 64)
 redValue = 31;
 else if (redValue < 128)
 redValue = 95;
 else if (redValue < 192)
 redValue = 159;
 else
 redValue = 223;

12-ConditionallyModifyingPixels 36

11/2/10

7

Posterize method - cont
 // check for green range
 if (greenValue < 64)
 greenValue = 31;
 else if (greenValue < 128)
 greenValue = 95;
 else if (greenValue < 192)
 greenValue = 159;
 else
 greenValue = 223;

12-ConditionallyModifyingPixels 37

Posterize method - cont
 // check for blue range
 if (blueValue < 64)
 blueValue = 31;
 else if (blueValue < 128)
 blueValue = 95;
 else if (blueValue < 192)
 blueValue = 159;
 else
 blueValue = 223;

 // set the colors
 pixel.setRed(redValue);

 pixel.setGreen(greenValue);
 pixel.setBlue(blueValue);
 }
 }
 }

Test with tammy.jpg

12-ConditionallyModifyingPixels 38

Is there a better way?
•  What posterize does is set up 4 levels

–  and set the pixel color to the midpoint of that level
•  We can make a more general method

–  Check if the value is in a range
–  Set the value to the midpoint of that range

•  How do you check if a value is in a range?
–  (bottomValue <= testValue < topValue)
–  if (bottomValue <= testValue &&
 testValue < topValue)

12-ConditionallyModifyingPixels 39

Logical And and Or

•  You can join two Boolean expressions with
– And

•  Then both expressions must be true for the
 combined expression to be true

•  Use && for a logical And in Java

– Or
•  Then just one of the expressions must be true for

 the combined expression to be true
•  Use || for a logical Or in Java

12-ConditionallyModifyingPixels 40

12-ConditionallyModifyingPixels 41

How many when there is an “Or”

•  You need to help clean the house
– You can clean the bathroom or the kitchen or

 the living room
– How many jobs do you have to do?

•  You want to get an ice cream
– The flavors you can pick from are chocolate,

 vanilla, strawberry, or orange sherbet
– How many flavors do you need to pick for a

 single scoop?

12-ConditionallyModifyingPixels 42

Truth Table
Conditional Operand 1 Operand 2 Result

And true true true

And true false false

And false true false

And false false false

Or true true true

Or true false true

Or false true true

Or false false false

Exclusive Or true true false

Exclusive Or true false true

Exclusive Or false true true

Exclusive Or false false false

11/2/10

8

12-ConditionallyModifyingPixels 43

Conditional Operators
•  We can check if several things are true - And

–  Using && (evaluation stops if the first item is false)
•  Called short circuit evaluation

–  Using & (to always evaluate both operands)
•  We can check if at least one of several things

 are true - Or
–  Using || (evaluation stops if the first item is true)
–  Using | (to always evaluate both operands)

•  We can check if only one and only one of the
 things is true – Exclusive Or
–  Using ^

12-ConditionallyModifyingPixels 44

Better Posterize Method
•  In our current posterize method we checked

 for a range and set the color to the middle of
 that range
–  if (redValue < 60)

•  But what if we want more or less ranges?
–  We would have to add or remove some of the

 conditionals
•  What if we calculate the endpoints of the

 ranges?
–  If the value is between a bottomValue and topValue

 set it to the middleValue

12-ConditionallyModifyingPixels 45

Better Posterize Method
public void posterize(int numLevels)
 {
 Pixel pixel = null;
 int redValue = 0;
 int greenValue = 0;
 int blueValue = 0;
 int increment = (int) (256.0 / numLevels);
 int bottomValue, topValue, middleValue = 0;
 // loop through the pixels
 for (int x = 0; x < this.getWidth(); x++) {
 for (int y = 0; y < this.getHeight(); y++) {
 // get the current pixel and colors
 pixel = this.getPixel(x,y);
 redValue = pixel.getRed();
 greenValue = pixel.getGreen();
 blueValue = pixel.getBlue();

12-ConditionallyModifyingPixels 46

Better Posterize Method - cont
 // loop through the number of levels
 for (int i = 0; i < numLevels; i++)
 {
 // compute the bottom, top, and middle values
 bottomValue = i * increment;
 topValue = (i + 1) * increment;
 middleValue = (int) ((bottomValue + topValue - 1) / 2.0);

 /* check if current values are in current range and
 * if so set them to the middle value
 */
 if (bottomValue <= redValue &&
 redValue < topValue)
 pixel.setRed(middleValue);
 if (bottomValue <= greenValue &&
 greenValue < topValue)
 pixel.setGreen(middleValue);
 if (bottomValue <= blueValue &&
 blueValue < topValue)
 pixel.setBlue(middleValue);
 }
 }
 }
 }

12-ConditionallyModifyingPixels 47

Challenge

•  What are the values for bottomValue,
 topValue and middleValue when the
 numLevels is 2? What are the values
 when the numLevels is 4?

•  Try the new posterize method out on a
 picture with 2 levels and with 4 levels.
– What happens to the picture when you

 increase the number of levels?

12-ConditionallyModifyingPixels 48

Overloading
•  We now have two posterize methods

– One that takes no parameters
– And one that takes the number of levels as an

 integer value
•  It is okay to have more than one method

 with the same name
– As long as the parameter list is different

•  Number of parameters
•  Types of parameters
•  Order of the types

11/2/10

9

12-ConditionallyModifyingPixels 49

Highlight Extremes Challenge

•  Radiologists often miss things in x-rays
 that are too bright or too dark.

•  Let's highlight all pixels in a picture that
 are close to black or white
– Using a logical 'or' (||)
– Using pixelObj.colorDistance

12-ConditionallyModifyingPixels 50

Using and to stop going out of bounds
•  Did you get an

java.lang.ArrayIndexOutOfBoundsException?
–  This means you tried to access an element of an array that was

 past the bounds of the array: like past the width or height of the
 picture

•  You probably tried to work with two different size
 pictures
–  But only checked that the sourceX or targetX was in

 the range of one of the pictures
–  Modify the code to use && to check that the value is

 within the range of both pictures
•  sourceX < this.getWidth() && sourceX < pict2.getWidth()
•  sourceY < this.getHeight() && sourceY < pict2.getHeight()

12-ConditionallyModifyingPixels 51

Example Out of Bounds Error
> String fileName = FileChooser.getMediaPath("caterpillar.jpg");
> Picture p = new Picture(fileName);
> System.out.println(p.getWidth());
329
> System.out.println(p.getHeight());
150
> p.getPixel(330,160); // 330 is past the width of the picture and 160 is past the height of the picture
java.lang.ArrayIndexOutOfBoundsException: Coordinate out of
bounds!
 at sun.awt.image.ByteInterleavedRaster.getDataElements
 (Unknown Source)
 at java.awt.image.BufferedImage.getRGB(Unknown Source)
 at SimplePicture.getBasicPixel(SimplePicture.java:247)
 at Pixel.setValuesFromPictureAndLocation(Pixel.java:137)
 at Pixel.<init>(Pixel.java:57)
 at SimplePicture.getPixel(SimplePicture.java:270)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke
 (Unknown Source)
 at java.lang.reflect.Method.invoke(Unknown Source)

12-ConditionallyModifyingPixels 52

Challenge

•  Modify the general copy method in the last
 chapter to work even if where you are
 trying to copy the source picture past the
 width or height of the target picture
– Fix the for loop to stop when you reach the

 width or height of either picture

12-ConditionallyModifyingPixels 53

Blurring a Picture
•  When we scale a picture up the picture

 can become pixelated
–  Jagged edges instead of smooth edges
–  We can smooth out the picture by setting a

 pixel's color values to the average of the
 surrounding pixels
•  All pixels surrounding the current pixel

–  We need to be careful that we don't end up
 outside the array
•  Guard using x >= 0 && x < this.getWidth &&
 y >= 0 && y < this.getHeight()

12-ConditionallyModifyingPixels 54

Blur Method
public void blur(int numPixels)
 {
 Pixel pixel = null;
 Pixel samplePixel = null;
 int redValue = 0;
 int greenValue = 0;
 int blueValue = 0;
 int count = 0;

 // loop through the pixels
 for (int x=0; x < this.getWidth(); x++)
 {
 for (int y=0; y < this.getHeight(); y++)
 {
 // get the current pixel
 pixel = this.getPixel(x,y);
 // reset the count and red, green, and blue values
 count = 0;
 redValue = greenValue = blueValue = 0;

11/2/10

10

12-ConditionallyModifyingPixels 55

Blur Method - cont
 /* loop through pixel numPixels before x to
 * numPixels after x
 */
 for (int xSample = x - numPixels;
 xSample <= x + numPixels;
 xSample++) {
 for (int ySample = y - numPixels;
 ySample <= y + numPixels;
 ySample++) {
 /* check that we are in the range of acceptable
 * pixels
 */
 if (xSample >= 0 && xSample < this.getWidth() &&
 ySample >= 0 && ySample < this.getHeight()) {
 samplePixel = this.getPixel(xSample,ySample);
 redValue = redValue + samplePixel.getRed();
 greenValue = greenValue + samplePixel.getGreen();
 blueValue = blueValue + samplePixel.getBlue();
 count = count + 1;

Blur Method - cont
 }
 }
 }
 // use average color of surrounding pixels
 Color newColor = new Color(redValue / count,
 greenValue / count,
 blueValue / count);
 pixel.setColor(newColor);
 }
 }

12-ConditionallyModifyingPixels 56

12-ConditionallyModifyingPixels 57

Testing the Blur Method

> Picture p = new Picture(
 FileChooser.getMediaPath("flower1.jpg"));
> p = p.scaleUp(2);
> p.explore();
> p.blur(2);
> p.explore();

12-ConditionallyModifyingPixels 58

Challenge
•  The blur method modifies the pixels that

 are used in later calculations
– Affecting the result

•  Instead create a new picture the same
 width and height of the original picture
 and set the color in that picture based on
 the colors in the original picture
– Remember to return the resulting picture
– Remember to save a reference to the

 resulting picture

12-ConditionallyModifyingPixels 59

Background Replacement
•  If you have a picture

 of a person in front of
 some background

•  And a picture of the
 background itself

•  Can you replace the
 pixel colors for the
 background to be
 from another image?

12-ConditionallyModifyingPixels 60

Replace Background
•  Replace the colors at

 all the pixels in the
 source image
–  That are within some

 range of the
 background color

–  Use pixels from
 another background
 image

11/2/10

11

12-ConditionallyModifyingPixels 61

Replace Background Algorithm

•  Works on the source picture
– Pass in the original background and the new

 background pictures
•  Loop through all the pixels in the source

 image
– Check if the distance from the source pixel

 color is within 15.0 of the background picture
 pixel color
•  If so replace it with the color at the new

 background pixel

12-ConditionallyModifyingPixels 62

Replace Background Method
public void swapBackground(Picture oldBackground,
 Picture newBackground)
 {
 Pixel currPixel = null;
 Pixel oldPixel = null;
 Pixel newPixel = null;

 // loop through the columns
 for (int x = 0; x < getWidth(); x++)
 {
 // loop through the rows
 for (int y = 0; y < getHeight(); y++)
 {

12-ConditionallyModifyingPixels 63

Swap Background - Cont
 // get the current pixel and old background pixel
 currPixel = this.getPixel(x,y);
 oldPixel = oldBackground.getPixel(x,y);

 /* if the distance between the current pixel color
 * and the old background pixel color is less
 * than the 15 then swap in the new background pixel
 */
 if (currPixel.colorDistance(oldPixel.getColor()) < 15.0)
 {
 newPixel = newBackground.getPixel(x,y);
 currPixel.setColor(newPixel.getColor());
 }
 }
 }
 }

12-ConditionallyModifyingPixels 64

Testing swapBackground
> String fileName =
 FileChooser.getMediaPath("kid-in-frame.jpg");
> Picture p = new Picture(fileName);
> fileName = FileChooser.getMediaPath("bgframe.jpg");
> Picture oldBg = new Picture(fileName);
> fileName = FileChooser.getMediaPath("moon

-surface.jpg");
> Picture newBg = new Picture(fileName);
> p.swapBackground(oldBg,newBg);
> p.show();

12-ConditionallyModifyingPixels 65

Replace Background Result

•  The background color was too close to the
 shirt color

12-ConditionallyModifyingPixels 66

Chromakey – Blue Screen
•  For TV and movie

 special effects they
 use a blue or green
 screen
–  Here just a blue sheet

 was used
–  Professionally you

 need an evenly lit,
 bright, pure blue
 background

•  With nothing blue in the
 scene

11/2/10

12

Chromakey Algorithm

•  Loop through all the pixels in the current
 picture
–  If the current pixel color is close to blue
– Replace that pixel color with the pixel at the

 same location on the new background picture
•  the new background picture must be at least as big

 as the current picture

12-ConditionallyModifyingPixels 67

Chromakey method
public void chromakey(Picture newBg)
 {
 Pixel currPixel = null;
 Pixel newPixel = null;

 // loop through the columns
 for (int x = 0; x < getWidth(); x++)
 {
 // loop through the rows
 for (int y = 0; y < getHeight(); y++)
 {
 // get the current pixel
 currPixel = this.getPixel(x,y);

12-ConditionallyModifyingPixels 68

Chromakey method - cont
 /* if the color at the current pixel is mostly blue
 * (blue value is greater than red and green
 * combined), then use new background color
 */
 if (currPixel.getRed() + currPixel.getGreen() <
 currPixel.getBlue())
 {
 newPixel = newBg.getPixel(x,y);
 currPixel.setColor(newPixel.getColor());
 }
 }
 }
 }

12-ConditionallyModifyingPixels 69 12-ConditionallyModifyingPixels 70

Testing chromakey
> String fileName = FileChooser.getMediaPath("blue-mark.jpg");
> Picture mark = new Picture(fileName);
> fileName = FileChooser.getMediaPath("moon-surface.jpg");
> Picture newBg = new Picture(fileName);
> mark.chromakey(newBg);
> mark.explore();
> mark = new Picture(
 FileChooser.getMediaPath("blue-mark.jpg"));
> newBg = new Picture(FileChooser.getMediaPath("beach.jpg"));
> mark.chromakey(newBg);
> mark.explore();

12-ConditionallyModifyingPixels 71

Put an Alice Character on a Picture
•  Position an Alice

 character in a world
 in Alice

•  Change the screen
 grab to use png
 format instead of jpg
–  png is not a lossy

 compression format
 and jpg is

–  Edit – Preferences –
 Screen Grab – image
 format

12-ConditionallyModifyingPixels 72

Setting up the Picture (cont)
•  Delete the ground in the

 Alice world
–  Right click on it and select

 delete

•  Click on World in the
 Object tree and then
 click on the Property tab
–  Change the atmosphere

 color to green (or blue if
 the Alice character has
 green in it)

11/2/10

13

12-ConditionallyModifyingPixels 73

Save a Picture from Alice
•  Click the Play button
•  Drag to make the window

 smaller or you can also
 set the window size
 using
–  Edit – Preferences –

 Rendering – Width or
 Height

•  Click the "Take Picture"
 button
–  This writes a picture to the

 desktop: capture00.png
 then capture01.png, etc

–  Rename the picture and
 put it in mediasources

–  Copy just the non-green
 pixels to another picture

12-ConditionallyModifyingPixels 74

Challenge
•  Create a method that copies just the pixels

 in a picture that aren't close to a particular
 color to another picture
– Use this to copy an Alice character to a

 normal picture
– You can specify where to copy it to on the

 resulting picture
– You can specify the upper left corner in the

 source to start the copy from
– You can specify the bottom right corner in the

 source to stop at

Summary
•  You can conditionally execute code

–  using an if
•  You can have two outcomes

–  using if and else
•  You can have more than two outcomes

–  using if, else if, and else
•  You can test for a condition being false

–  using !
•  You can combine Boolean expressions

–  using && for a logical "And" and || for "Or"

12-ConditionallyModifyingPixels 75

