
11/2/10

1

11-ModifyingPixelsInAMatrix 1

Modifying Pixels in a Matrix

Barb Ericson
Oct 2010

11-ModifyingPixelsInAMatrix 2

Learning Goals
•  Understand at a conceptual and practical

level
– How to loop through a two-dimensional array

using a nested loop?
•  How do you get the pixel for a x and y location?

– How to use print statements to trace
execution

– How to simplify a problem
•  To make it easier to figure out the algorithm

– Revisit method overloading and returning a
value

11-ModifyingPixelsInAMatrix 3

What is a two-dimensional array?
•  The pixels in a picture

are really stored in a
two-dimensional array
–  Each pixel has a x

value (horizontal
location)

–  Each pixel has a y
value (vertical location)

–  pictureObj.getPixel(x,y)
returns the pixel at that
location

x

y

11-ModifyingPixelsInAMatrix 4

Example Two-Dimensional Arrays
•  Maps

–  That street is in D-5
•  Battleship

–  Try I-5
•  Hit or miss

•  Chairs at a theater or
game
–  Row C seat 20

11-ModifyingPixelsInAMatrix 5

Nested Loop

•  How would you get all the pixels in a
picture using their x and y values
– From left to right and top to bottom?
– x=0 and y=0, x=1 and y=0, x=2 and y=0, …
– x=0 and y=1, x=1 and y=1, x=2 and y=1, …
– x=0 and y=2, x=1 and y=2, x=2 and y=2, …

•  We need to have one loop inside another
– The outer loop counts y from 0 to height - 1
– The inner loop counts x from 0 to width - 1

11-ModifyingPixelsInAMatrix 6

Alternative Nested Loop

•  How would you get all the pixels in a
picture using their x and y values
– From top to bottom and left to right?
– x=0 and y=0, x=0 and y=1, x=0 and y=2, …
– x=1 and y=0, x=1 and y=1, x=1 and y=2, …
– x=2 and y=0, x=2 and y=1, x=2 and y=2, …

•  We need to have one loop inside another
– The outer loop counts x to width - 1
– The inner loop counts y from 0 to height - 1

11/2/10

2

Alice Nested Loop
•  In Alice we used a nested loop to turn the ferris wheel.

 The outer loop rolled the large double wheel to the right
 and the inner loop rolled the two smaller wheels to the
 left.

11-ModifyingPixelsInAMatrix 7

Example using nested loops
public void clearBlueNested()
{
 Pixel pixel = null;

 // loop through the columns (x direction)
 for (int x = 0; x < getWidth(); x++)
 {
 // loop through the rows (y direction)
 for (int y = 0; y < getHeight(); y++)
 {
 // get pixel at the x and y location
 pixel = this.getPixel(x,y);

 // clear the blue
 pixel.setBlue(0);
 }
 }
 }

11-ModifyingPixelsInAMatrix 10

Tracing clearBlueNested
pict.clearBlueNested()

–  Starts execution of the clearBlueNested method on
 the picture called pict

Pixel pixel = null
–  Set up a variable to refer to the current pixel, but there

 isn't a current pixel to start (set to null)
for (int x = 0; x < getWidth(); x++)

–  Loop with x starting at 0, stop when x equals the width
 of the picture and increment by 1 each time. This will
 loop through all the columns.

•  Notice that you don't have to use this.getWidth() the this is
 implied.

11-ModifyingPixelsInAMatrix 11

Tracing clearBlueNested - continued
for (y = 0; y < getHeight(); y++)

•  Loop with y starting at 0, stop when y equals the
 height of the picture and increment by 1 each
 time. This will loop through all the rows.

pixel = getPixel(x,y);
–  set the variable pixel to refer to the pixel at the current

 x and y location. The first time through the loop this is
 (0,0). The second time it is (0,1). The third time it is
 (0,2). This keeps on till we process all the pixels in the
 first column from top to bottom and then we move to the
 second column. We keep processing pixels till we are
 done with all of them.

pixel.setBlue(0) // set the blue value to 0

11-ModifyingPixelsInAMatrix 12

11-ModifyingPixelsInAMatrix 13

Vertical Mirroring
•  What if we want to

pretend to place a
mirror in the middle of
the picture
–  We would see the left

side of the picture
mirrored on the right
side

11-ModifyingPixelsInAMatrix 14

Thinking Through Vertical Mirroring
•  If we just think of a

number at each x
and y location
instead of a color
–  The mirroring

would look like
this:

•  Can you write the
algorithm to do
this?

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

1 2 3 2 1

6 7 8 7 6

11 12 13 12 11

0 1 2 3 4

0

1

2

11/2/10

3

11-ModifyingPixelsInAMatrix 15

What is the Vertical Mirror for this?

•  Try the solve the
problem for small
samples

•  If you can’t solve
it on a small
sample
– You can’t write a

program to solve
it

1 2 3

4 5 6

7 8 9

0 1 2

0

1

2

0 1 2

0

1

2

11-ModifyingPixelsInAMatrix 16

Mirror Vertical Algorithm
•  Loop through all the rows

(y starts at 0, increments
by 1, and is less than the
picture height)
–  Loop with x starting at 0

and x less than the
midpoint (mirror point)
value

•  Get the left pixel at x and y
•  Get the right pixel at width

– 1 - x
•  Set the color for the right

pixel to be the color of the
left pixel

1 2 3 4 5

5 4 3 2 1

1 2 3 4 5

1 2 3 2 1

5 4 3 4 5

1 2 3 2 1

11-ModifyingPixelsInAMatrix 17

Mirror Vertical Algorithm to Code

•  We are going to need the midpoint
 int midpoint = this.getWidth() / 2;

•  Loop through the rows (y values)
 for (int y = 0; y < this.getHeight(); y++) {

– Loop through half the x values (0 to midpoint)
 for (int x = 0; x < midpoint; x++) {

•  Set right pixel color to left pixel color
Pixel leftPixel = this.getPixel(x, y);
Pixel rightPixel = this.getPixel(this.getWidth() - 1 - x, y);
rightPixel.setColor(leftPixel.getColor());

Mirror Vertical Method
public void mirrorVertical() {
 {
 int width = this.getWidth();
 int mirrorPoint = width / 2;
 Pixel leftPixel = null;
 Pixel rightPixel = null;

 // loop through all the rows
 for (int y = 0; y < getHeight();
 y++)
 {

 // loop from 0 to the middle
 for (int x = 0; x < mirrorPoint; x++)
 {
 leftPixel = getPixel(x, y);
 rightPixel = getPixel(width - 1 - x, y);
 right Pixel.setColor(
 leftPixel.getColor()) ;
 }
 }
 }

11-ModifyingPixelsInAMatrix 18

11-ModifyingPixelsInAMatrix 19

Trying Mirror Vertical
•  Create the picture

–  Picture p1 = new Picture(

 FileChooser.getMediaPath(“caterpillar.jpg”);

•  Invoke the method on the picture
–  p1.mirrorVertical();

•  Repaint the picture
–  p1.repaint();

11-ModifyingPixelsInAMatrix 20

Mirror Horizontal
•  What about mirroring

around a mirror held
horizontally in the
vertical center of the
picture?
–  Like a reflection in a

lake?

11/2/10

4

11-ModifyingPixelsInAMatrix 21

Thinking Through Mirror Horizontal
•  Again think of a number

at each x and y location
–  Instead of a color
–  And try it with a small

sample
•  How can we write a

nested for loop to do this?

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

1 2 3

0 1 2

0

1

2

0 1 2

0

1

2

11-ModifyingPixelsInAMatrix 22

What is the Horizontal Mirror for this?
•  Try to solve the

problem for
several small
sample problems

•  See if you can
come up with the
algorithm to solve
it
–  Test it more small

samples

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 1 2 3 4

0

1

2

11-ModifyingPixelsInAMatrix 23

Mirror Horizontal Algorithm
•  Get the vertical midpoint

–  Picture height / 2
•  Loop through all the x

values
–  Loop from y=0 to y <

vertical midpoint
•  Get the top pixel

–  At x and y
•  Get the bottom pixel

–  Height - 1 - y
•  Set the bottom pixel’s color

to the top pixel color

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

1 2 3

11-ModifyingPixelsInAMatrix 24

Mirror Horizontal Exercise
•  Write the method to

mirror the top half of
the picture to the
bottom half.
–  This is a motorcycle

redMotorcycle.jpg
•  How about mirroring

bottom to top?
•  How would you mirror

on a diagonal line?

Mirroring part of a picture
•  Use the explorer to figure out the part to mirror

11-ModifyingPixelsInAMatrix 25

Mirror temple method
/**
 * Method to mirror part of the temple picture around a
 * vertical line at a mirror point
 */
 public void mirrorTemple()
 {
 int mirrorPoint = 276;
 Pixel leftPixel = null;
 Pixel rightPixel = null;
 // loop through the rows
 for (int y = 27; y < 97; y++)
 {
 // loop from 13 to just before the mirror point
 for (int x = 13; x < mirrorPoint; x++)

11-ModifyingPixelsInAMatrix 26

11/2/10

5

Mirror temple - continued
 {
 leftPixel = getPixel(x, y);
 rightPixel = getPixel(mirrorPoint +
 (mirrorPoint - x), y);
 right Pixel .setColor(leftPixel .getColor());
 }
 }
 }

11-ModifyingPixelsInAMatrix 27

Testing the mirrorTemple method
> String fileName =
 "C:/intro-prog-java/mediasources/temple.jpg";
> Picture picture = new Picture(fileName);
> picture.explore();
> picture.mirrorTemple();
> picture.explore();

11-ModifyingPixelsInAMatrix 28

How many pixels were changed?
•  We could put print statements in the code

–  to see the x and y values, but that would take a long
time to print out each value

•  We can also just keep a count
–  And print the value of the count after the loop ends

•  We can calculate the number of times a loop will
run using end – start + 1 = number of times
–  numOuter = 96 – 27 + 1 = 70
–  numInner = 275 – 13 + 1 = 263
–  Total for a nested loop is numInner * numOuter

•  70 * 263 = 18,410

11-ModifyingPixelsInAMatrix 29 11-ModifyingPixelsInAMatrix

Copying Pixels to a New Picture
•  Need to track the

source picture x and y
–  And the target picture

x and y
•  We can use a blank

picture
–  As the target picture

•  Several blank pictures
are available
–  640x480.jpg
–  7inX95in.jpg

1 2
3 4

1 2
3 4

30

11-ModifyingPixelsInAMatrix

Copy Picture Algorithm

•  Copy a picture to the 7 by 9.5 inch blank
picture
– Create the target picture object
–  Invoke the method on the target picture

•  Create the source picture object
•  Loop through the source picture pixels

– Get the source and target pixels
– Set the color of the target pixel to the color of

the source pixel

31 11-ModifyingPixelsInAMatrix

Copy Algorithm to Code
•  Loop through the source pixels

 // loop through the columns
 for (int sourceX = 0, targetX = 0;
 sourceX < sourcePicture.getWidth();
 sourceX++, targetX++)
 {

 // loop through the rows
 for (int sourceY = 0, targetY = 0;
 sourceY < sourcePicture.getHeight();
 sourceY++, targetY++)
 {

32

11/2/10

6

11-ModifyingPixelsInAMatrix

Copy Algorithm to Code – Cont

•  Get the source and target pixels

 sourcePixel = sourcePicture.getPixel
(sourceX,sourceY);

 targetPixel = this.getPixel(targetX,targetY);

•  Set the color of the target pixel to the
color of the source pixel
targetPixel.setColor(sourcePixel.getColor());

33

Copy Method
public void copyKatie()
 {
 String sourceFile =
 FileChooser.getMediaPath("KatieFancy.jpg");
 Picture sourcePicture = new Picture(sourceFile);
 Pixel sourcePixel = null;
 Pixel targetPixel = null;

 // loop through the columns
 for (int sourceX = 0, targetX=0;
 sourceX < sourcePicture.getWidth();
 sourceX++, targetX++)
 {

11-ModifyingPixelsInAMatrix 34

11-ModifyingPixelsInAMatrix

Copy Method - Continued
 // loop through the rows
 for (int sourceY = 0, targetY =0;
 sourceY < sourcePicture.getHeight();
 sourceY++, targetY++)
 {
 // set the target pixel color to the source pixel color
 sourcePixel = sourcePicture.getPixel(sourceX,sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }
}

35 11-ModifyingPixelsInAMatrix

Trying the copyKatie Method
> String fileName = FileChooser.getMediaPat

h("7inx95in.jpg");
> Picture targetPicture = new Picture(fileName);
> targetPicture.show();
> targetPicture.copyKatie();
> targetPicture.show();

36

Tracing copyKatie
•  The first two lines create the sourcePicture
•  Next we declare variables we will need in the loop

–  sourcePixel and targetPixel

•  Next the outer loop declares and initializes variables for
 keeping track of the x values and loops while the
 sourceX is less than the width of the sourcePicture
–  sourceX and targetX

•  The inner loop declares and initializes variables for
 keeping tack of the y values and loops while the
 sourceY is less than the height of the sourcePicture
–  sourceY and targetY

•  In the loop set the color in the target pixel to the color in
 the source pixel

11-ModifyingPixelsInAMatrix 37 11-ModifyingPixelsInAMatrix

Copying Pixels to a New Picture
•  What if we want to

copy the target to a
different location in
the source
–  Than 0,0
–  Say startX and startY

•  What is an algorithm
that will do this?

1 2
3 4

1 2
3 4

0

1

0

1

0 1 2 3

0

1

2

3

38

11/2/10

7

11-ModifyingPixelsInAMatrix

Copy to Position Exercise
•  Write a method copyRobot

to copy
–  robot.jpg
–  To location

•  100, 100 in 7inx95in.jpg

•  Test with
String file = FileChooser.getMediaPath

(“7inx95in.jpg”);

Picture p = new Picture(file);
p.copyRobot();
p.show();

39

Cropping

•  We can copy just part of a picture to a new
 picture
– Just change the start and end source x and y

 values to the desired values
– Use pictureObj.explore() to find the x and y

 values
– What are the x and y values to get the face of

 the girl in KatieFancy.jpg?

40 11-ModifyingPixelsInAMatrix

Copy Face Method
public void copyKatiesFace()
 {
 String sourceFile =
 FileChooser.getMediaPath("KatieFancy.jpg");
 Picture sourcePicture = new Picture(sourceFile);
 Pixel sourcePixel = null;
 Pixel targetPixel = null;

 // loop through the columns
 for (int sourceX = 70, targetX = 100;
 sourceX < 135; sourceX++, targetX++)
 {

41 11-ModifyingPixelsInAMatrix

Copy Face Method - Continued
 // loop through the rows
 for (int sourceY = 3, targetY = 100;
 sourceY < 80; sourceY++, targetY++) {
 {
 // set the target pixel color to the source pixel color
 sourcePixel = sourcePicture.getPixel(sourceX,sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }
 }

42 11-ModifyingPixelsInAMatrix

Testing Copy Katie’s Face
> String fileName = FileChooser.getMediaPat

h("7inx95in.jpg");
> Picture targetPicture = new Picture(fileName);
> targetPicture.copyKatiesFace();
> targetPicture.show();

43 11-ModifyingPixelsInAMatrix

How does that work?
•  We start by copying from sourceX=0, sourceY=0 to

 targetX = 3 and targetY = 1

•  Increment both the sourceY and targetY and copy again

11-ModifyingPixelsInAMatrix 44

11/2/10

8

How does that work? - continued
•  We continue down the column, incrementing both the

 source and target index variables

•  When we finish one column we increment both the
 source and target X values and continue with next
 column until we copy every pixel

11-ModifyingPixelsInAMatrix 45

Creating a Collage
•  You can create a

 collage by copying
 several pictures to a
 blank picture
–  You can use

 flower1.jpg and
 flower2.jpg

–  You can even negate
 the picture or clear
 blue on it before you
 copy it

46 11-ModifyingPixelsInAMatrix

Create Collage Method
/**
 * Method to copy flower pictures to create a
 * collage.
 * All the flower pictures will be lined up near the
 * top of the current picture
 */
 public void copyFlowersTop()
 {
 // create the flower pictures
 Picture flower1Picture = new Pictur

e(FileChooser.getMediaPath(
 "flower1.jpg"));
 Picture flower2Picture = new Pictur

e(FileChooser.getMediaPath(
 "flower2.jpg"));

 // declare the source and target pixel variables
 Pixel sourcePixel = null;
 Pixel targetPixel = null;

 // copy the first flower picture to the top left
// corner
 for (int sourceX = 0, targetX = 0;
 sourceX < flower1Picture.getWidth();
 sourceX++, targetX++)
 {
 for (int sourceY = 0, targetY = 0;
 sourceY < flower1Picture.getHeight();
 sourceY++, targetY++)
 {
 sourcePixel = flower1Picture.getPixe

l(sourceX,sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }

47 11-ModifyingPixelsInAMatrix

Create Collage Method - cont
// copy the flower2 picture starting with x =
// 100
 for (int sourceX = 0, targetX = 100;
 sourceX < flower2Picture.getWidth();
 sourceX++, targetX++)
 {
 for (int sourceY = 0, targetY = 0;
 sourceY < flower2Picture.getHeight();
 sourceY++, targetY++)
 {
 sourcePixel = flower2Picture.getPixe

l(sourceX,
 sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }

 // copy the flower1 negated to x = 200
 flower1Picture.negate();
 for (int sourceX = 0, targetX = 200;
 sourceX < flower1Picture.getWidth();
 sourceX++, targetX++)
 {
 for (int sourceY = 0, targetY = 0;
 sourceY < flower1Picture.getHeight();
 sourceY++, targetY++)
 {
 sourcePixel = flower1Picture.getPixe

l(sourceX,
 sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }

48 11-ModifyingPixelsInAMatrix

Create Collage Method - cont
// clear the blue in flower 2 picture and add at
// x=300
flower2Picture.clearBlue();
for (int sourceX = 0, targetX = 300;
 sourceX < flower2Picture.getWidth();
 sourceX++, targetX++)
{
 for (int sourceY = 0, targetY = 0;
 sourceY < flower2Picture.getHeight();
 sourceY++, targetY++)
 {
 sourcePixel = flower2Picture.getPixe

l(sourceX,sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
}

// copy the negated flower 1 to x=400
for (int sourceX = 0, targetX = 400;
 sourceX < flower1Picture.getWidth();
 sourceX++, targetX++)
{
 for (int sourceY = 0, targetY = 0;
 sourceY < flower1Picture.getHeight();
 sourceY++, targetY++)
 {
 sourcePixel = flower1Picture.getPixe

l(sourceX,
 sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }
}

49 11-ModifyingPixelsInAMatrix

That is one long method!

•  Isn't there a better way to do that?
– Much of the code is repeated

•  You can make a new method with just the
 repeated code
– Use parameters to pass in the values that

 change
•  Picture to copy
•  X location to start the copy at in the target

11-ModifyingPixelsInAMatrix 50

11/2/10

9

General Copy Method
public void copyPicture(Picture sourcePicture, int xStart)
{
 Pixel sourcePixel = null;
 Pixel targetPixel = null;

 // loop through the columns
 for (int sourceX = 0, targetX = xStart;
 sourceX < sourcePicture.getWidth();
 sourceX++, targetX++)
 {
 // loop through the rows
 for (int sourceY =0, targetY = 0;
 sourceY < sourcePicture.getHeight();
 sourceY++, targetY++)

11-ModifyingPixelsInAMatrix 51

General Copy Method - continued
 {
 sourcePixel = sourcePicture.getPixel(sourceX,sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }
}

11-ModifyingPixelsInAMatrix 52

Better Collage Method
public void copyFlowersBetter()
{
 // create the flower pictures
 Picture flower1Picture =
 new Picture(FileChooser.getMediaPath("flower1.jpg"));
 Picture flower2Picture =
 new Picture(FileChooser.getMediaPath("flower2.jpg"));

 // copy the first flower picture
 this.copyPicture(flower1Picture,0);

11-ModifyingPixelsInAMatrix 53

Better Collage Method - continued
 // copy the flower2 picture starting with x = 100
 this.copyPicture(flower2Picture,100);

 // copy the flower1 negated to x = 200 in the canvas
 flower1Picture.negate() ;
 this.copyPicture(flower1Picture,200);

 /* clear the blue in flower 2 picture and add at x=300 in the canvas */
 flower2Picture.clearBlue();
 this.copyPicture(flower2Picture,300);

 // copy the negated flower 1 to x=400
 this.copyPicture(flower1Picture,400);
}

11-ModifyingPixelsInAMatrix 54

Challenge

•  Create your own collage
– Copy at least two different pictures to the

 collage
– Do at least 3 different picture manipulations to

 the pictures
•  Reduce red
•  Negate
•  Clear blue

– Mirror the collage

55 11-ModifyingPixelsInAMatrix

Adding more Parameters
public void copyPicture(Picture sourcePicture,
 int xStart,
 int yStart)
 {
 Pixel sourcePixel = null;
 Pixel targetPixel = null;

 // loop through the columns
 for (int sourceX = 0, targetX = xStart;
 sourceX < sourcePicture.getWidth();
 sourceX++, targetX++)
 {

11-ModifyingPixelsInAMatrix 56

11/2/10

10

Adding more Parameters - continued
 // loop through the rows
 for (int sourceY = 0,
 targetY = yStart;
 sourceY < sourcePicture.getHeight();
 sourceY++, targetY++)
 {
 sourcePixel = sourcePicture.getPixel(sourceX,sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }
}

11-ModifyingPixelsInAMatrix 57

Method Overloading

•  Notice that you have two copyPicture
 methods
– One takes a Picture object and an integer
– One takes a Picture object and two integers

•  This is called method overloading
– Having methods with the same name
– But with a different number, kind, or order of

 parameter types

11-ModifyingPixelsInAMatrix 58

11-ModifyingPixelsInAMatrix 59

Blend Pictures
•  If we want to blend

 two pictures we need
 to take 50% of the
 color from one
 picture and add it to
 50% of the color from
 the other picture
–  So 50% of the red,

 green, and blue from
 each

11-ModifyingPixelsInAMatrix 60

Blend Pictures Algorithm
•  Create the two pictures to blend
•  Copy the pixels from the first part of picture1

–  First 150 columns from picture1
•  X loops from 0 and stops when equal to 150
•  Y loops from 0 and stops when equal to the picture1 height

•  Copy the rest of the columns from picture1 blended with
 the pixels from picture2
–  Set the color to a new color that is a combination of half of the

 red from each pictures, half of the green from each picture and
 half of the blue from each picture

–  X loops from 150 to the width of picture1
–  Y loops from 0 to the height of picture1

•  Copy the rest of the pixels from picture2

11-ModifyingPixelsInAMatrix 61

Blend Pictures Method
public void blendPictures()
 {
 // create the sister pictures
 Picture katiePicture =
 new Picture(FileChooser.getMediaPath("KatieFancy.jpg"));
 Picture jennyPicture =
 new Picture(FileChooser.getMediaPath("JenParty.jpg"));

 // declare the source and target pixel variables
 Pixel katiePixel = null;
 Pixel jennyPixel = null;
 Pixel targetPixel = null;

 /* declare the target x and source x since we will need
 * the values after the for loop
 */
 int sourceX = 0;
 int targetX = 0;

11-ModifyingPixelsInAMatrix 62

blendPictures() continued
 // copy the first 150 pixels of katie to the canvas
 for (; sourceX < 150; sourceX++, targetX++)
 {
 for (int sourceY=0, targetY=0;
 sourceY < katiePicture.getHeight();
 sourceY++, targetY++)
 {
 katiePixel = katiePicture.getPixel (sourceX,sourceY) ;
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(katiePixel.getColor());
 }
 }

 /* copy 50% of katie and 50% of jenny till the end of katie’s width */
 for (; sourceX < katiePicture.getWidth();
 sourceX++, targetX++)
 {

11/2/10

11

11-ModifyingPixelsInAMatrix 63

blendPictures() continued
for (int sourceY=0,targetY=0;
 sourceY < katiePicture.getHeight();
 sourceY++, targetY++)
 {
 katiePixel = katiePicture.getPixel(sourceX,sourceY);
 jennyPixel =
 jennyPicture.getPixel(sourceX - 150,sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(
 new Color((int) (katiePixel.getRed() * 0.5 +
 jennyPixel.getRed() * 0.5),
 (int) (katiePixel.getGreen() * 0.5 +
 jennyPixel.getGreen() * 0.5),
 (int) (katiePixel.getBlue() * 0.5 +
 jennyPixel.getBlue() * 0.5)));
 }
 }

11-ModifyingPixelsInAMatrix 64

blendPictures() continued
 // copy the rest of Jenny
 sourceX = sourceX - 150;
 for (; sourceX < jennyPicture.getWidth();
 sourceX++, targetX++)
 {
 for (int sourceY = 0, targetY = 0;
 sourceY < jennyPicture.getHeight();
 sourceY++, targetY++)
 {
 jennyPixel = jennyPicture.getPixel(sourceX,sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(jennyPixel.getColor());
 }
 }
}

11-ModifyingPixelsInAMatrix 65

Trying out blendPictures()

> String fileName =
 FileChooser.getMediaPat
h("640x480.jpg");

> Picture picture = new Picture(fileName);
> picture.blendPictures();
> picture.show();

11-ModifyingPixelsInAMatrix 66

For Loop Syntax

•  The general for loop syntax is:
for (init area ; continuation test; change area) {

•  Each part of this loop is optional
– But the semicolons are required

•  You can only have 2 semicolons

•  We didn't put anything in the init area
 since we wanted to keep using the values
 of sourceX and targetX

11-ModifyingPixelsInAMatrix 67

Challenge

•  Write a method to blend two pictures
 together
– And only use 25% of one picture's color

 added to 75% of the other picture's color
•  Also blend the entire pictures together

– Best to use two pictures of the same size

11-ModifyingPixelsInAMatrix 68

Left Rotation
•  How can you copy

 one picture onto
 another so that the
 first picture is rotated
 to the left 90
 degrees?

11/2/10

12

11-ModifyingPixelsInAMatrix 69

Left Rotation
•  First simplify the

 problem by thinking
 about how to copy
 when each pixel has
 just a number at it

•  Can you come up
 with an algorithm for
 this?

1 2 3

4 5 6

3 6

2 5

1 4

0 1 2

0

1

0

0

1

1

2

11-ModifyingPixelsInAMatrix 70

Left Rotation
•  Try out your algorithm

 on another example
–  Does it work?

•  Can you translate it
 into code?

5 6 7 8

1 2 3 4

0 1 2

0

1

0

0

1

1

2

3

3

11-ModifyingPixelsInAMatrix 71

Left Rotation
•  To rotate an image

 left 90 degrees still
 copy all the pixels
–  But they go to different

 locations in the target
•  Column values become

 row values
•  target x = source y
•  target y = source width

 -1 – source x

1 2 3

4 5 6

3 6

2 5

1 4

0 1 2

0

1

0

0

1

1

2

11-ModifyingPixelsInAMatrix 72

Left Rotation Algorithm
•  Create the target picture object
•  Invoke the method on the target picture

–  Create the source picture object
–  Loop through the source x

•  Loop through the source y
– Get the source pixel at the x and y values
– Get the target pixel with the x equal the source y value

 and the y equal the source picture width – 1 minus the
 source x

– Copy the color from the source pixel to the target pixel

11-ModifyingPixelsInAMatrix 73

Left Rotation Method
public void copyKatieLeftRotation()
 {
 String sourceFile =
 FileChooser.getMedi aPath("KatieFancy.jpg");
 Picture sourcePicture = new Picture(sourceFile);
 Pixel sourcePixel = null;
 Pixel targetPixel = null;

 // loop through the columns
 for (int sourceX = 0;
 sourceX < sourcePicture.getWidth();
 sourceX++)
 {

11-ModifyingPixelsInAMatrix 74

Copy Katie Left Rotation
 // loop through the rows
 for (int sourceY = 0;
 sourceY < sourcePicture.getHeight();
 sourceY++)
 {
 // set the target pixel color to the source pixel color
 sourcePixel = sourcePicture.getPixel(sourceX,sourceY);
 targetPixel = this.getPixel(sourceY,
 sourcePicture.getWidth() - 1 - sourceX);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }
 }

11/2/10

13

11-ModifyingPixelsInAMatrix 75

Testing Left Rotation
String fileName = FileChooser.getMediaPath(
 "7inX95in.jpg");
Picture picture = new Picture(fileName);
picture.show();
picture.copyKatieLeftRotation();
picture.repaint();

11-ModifyingPixelsInAMatrix 76

Challenge

•  Create a general left rotation method that
– Works on any picture

•  Call the method on the picture to be rotated left
– Returns a new picture that is just the right size

 to hold the rotated picture
•  Make the new picture's width the same as the old

 picture's height and the new picture's height the
 same as the old picture's width

–  You can use new Picture(width,height) to create a picture
 of a given width and height

11-ModifyingPixelsInAMatrix 77

Scaling

•  You can make a picture smaller
– Faster to download on the web

•  Increment the source x and y by a number larger
 than 1

– Don’t use all the source pixels in the target picture

•  You can make a picture larger
– Show more detail

•  Copy the same source x and y to more than one
 target x and y

– Use source pixels more than once in target

11-ModifyingPixelsInAMatrix 78

Scaling Down a Picture
•  jakita.jpg is 768 pixels

 wide and 768 pixels
 high

•  If we copy every other
 pixel we will have a
 new picture with
 width and height
 (768 / 2 = 384)

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

0 2
8 10

11-ModifyingPixelsInAMatrix 79

Scaling Down Algorithm
•  Create the target picture
•  Invoke the method on the target picture

– Create the source picture
– Loop with source x starting at 0 and target x

 starting at 0 as long as < source width
•  Increment the source x by 2 each time through the

 loop, increment the target x by 1
•  Loop with source y starting at 0 and target y

 starting at 0 as long as < source height
–  Increment the source y by 2 each time through the loop,

 increment the target y by 1
» Copy the color from the source to target pixel

11-ModifyingPixelsInAMatrix 80

Scaling Down Method
public void copyJakitaSmaller()
 {
 Picture jakitaPicture =
 new Picture(FileChooser.getMediaPath("jakita.jpg"));
 Pixel sourcePixel = null;
 Pixel targetPixel = null;

 // loop through the columns
 for (int sourceX = 0, targetX=0;
 sourceX < jakitaPicture.getWidth();
 sourceX= sourceX + 2, targetX++)
 {

11/2/10

14

11-ModifyingPixelsInAMatrix 81

Scaling Down Method - Continued
 // loop through the rows
 for (int sourceY=0, targetY=0;
 sourceY < jakitaPicture.getHeight();
 sourceY= sourceY + 2, targetY++)
 {
 sourcePixel = jakitaPicture.getPixel(sourceX,sourceY);
 targetPixel = this.getPixel(targetX,targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }
 }

11-ModifyingPixelsInAMatrix 82

Trying copyJakitaSmaller
> Picture p =
 new Picture(FileChooser.getMediaPath("640x480.jpg"));
> p.copyJakitaSmaller() ;
> p.show();

11-ModifyingPixelsInAMatrix 83

Thinking Through Scaling Up
•  Copy each pixel in the

 source multiple times to
 the target
–  Source (0,0) Target (0,0)
–  Source (0,0) Target(1,0)
–  Source (1,0) Target(2,0)
–  Source (1,0) Target(3,0)
–  Source (2,0) Target(4,0)
–  Source (2,0) Target(5,0)
–  Source (0,0) Target(0,1)
–  Source (0,0) Target(1,1)

1 1 2 2 3 3

1 1 2 2 3 3
4 4 5 5 6 6
4 4 5 5 6 6

1 2 3
4 5 6

0

0

1

1 2

0

0

1

1

2

2

3

3

4 5

11-ModifyingPixelsInAMatrix 84

Scaling Up Algorithm
•  Create the target picture
•  Invoke the method on the target picture

– Create the source picture
– Loop with source x starting at 0 and target x

 starting at 0 as long as < source width
•  Increment the source x by 0.5 each time through

 the loop, increment the target x by 1
•  Loop with source y starting at 0 and target y

 starting at 0 as long as < source height
–  Increment the source y by 0.5 each time through the

 loop, increment the target y by 1
» Copy the color from the source to target pixel

Method to scale up a flower
public void copyFlowerLarger()
{
 Picture flowerPicture =
 new Picture(FileChooser.getMediaPath("rose.jpg"));
 Pixel sourcePixel = null;
 Pixel targetPixel = null;

 // loop through the columns
 for (double sourceX = 0, targetX=0;
 sourceX < flowerPicture.getWidth();
 sourceX = sourceX + 0.5, targetX++)
 {

11-ModifyingPixelsInAMatrix 85

Method to scale up a flower - continued
 // loop through the rows
 for (double sourceY=0, targetY=0;
 sourceY < flowerPicture.getHeight();
 sourceY = sourceY +0.5, targetY++)
 {
 sourcePixel =
 flowerPicture.getPixel((int) sourceX,(int) sourceY);
 targetPixel = this.getPixel((int) targetX,(int) targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }
}

11-ModifyingPixelsInAMatrix 86

11/2/10

15

Trying out the method

> String fileName =
 FileChooser.getMediaPat
h("640x480.jpg");

> Picture picture = new Picture(fileName);
> picture.copyFlowerLarger();
> picture.show();

11-ModifyingPixelsInAMatrix 87

How does that work?

•  This is similar to the copyPicture method
– But we declare sourceX and sourceY to be of

 type double and increment by 0.5 each time
– X and y values can't be double so we truncate

 by casting to integer
•  Throws away any fractional part
•  So a value of 0.5 results in 0

–  A value of 1.5 results in 1

•  Would this algorithm work for scaling up
 by a factor of 3?

11-ModifyingPixelsInAMatrix 88

Making a more general scaling method

•  You can create a blank new picture
– By specifying the desired width and height
– new Picture(width,height)

•  You can then copy to the new picture
– And return it
– Be sure to save a reference to the returned

 picture when you call the method

11-ModifyingPixelsInAMatrix 89

General Scale Up Method
public Picture scaleUp(int numTimes)
{
 Picture targetPicture =
 new Picture(this.getWidth() * numTimes,
 this.getHeight()* numTimes);
 Pixel sourcePixel = null;
 Pixel targetPixel = null;
 int targetX = 0;
 int targetY = 0;

 // loop through the source picture columns
 for (int sourceX = 0;
 sourceX < this.getWidth();
 sourceX++)
 {

11-ModifyingPixelsInAMatrix 90

General Scale Up Method – cont 1
 // loop through the source picture rows
 for (int sourceY=0;
 sourceY < this.getHeight();
 sourceY++)
 {
 // get the source pixel
 sourcePixel = this.getPixel(sourceX,sourceY);

 // loop copying to the target y
 for (int indexY = 0; indexY < numTimes; indexY++)
 {
 // loop copying to the target x
 for (int indexX = 0; indexX < numTimes; indexX++)
 {

11-ModifyingPixelsInAMatrix 91

General Scale Up Method – cont 2
 targetX = sourceX * numTimes + indexX;
 targetY = sourceY * numTimes + indexY;
 targetPixel = targetPicture.getPixel(targetX,
 targetY);
 targetPixel. setColor(sourcePixel .getColor());
 }
 }
 }
 }
 return targetPicture;
}

11-ModifyingPixelsInAMatrix 92

11/2/10

16

Trying out the scaleUp method
> Picture p =
 new Picture(FileChooser.getMediaPath("flower1.jpg"));
> p = p.scaleUp(2); // change what p refers to
> p.explore();
Or create a new variable to refer to the returned

 picture
> String fileName = FileChooser.getMediaPat

h("flower1.jpg") ;
> Picture origPicture = new Picture(fileName);
> Picture scaledPicture = origPicture.scaleUp(2);
> scaledPicture.show();
> origPicture.show();

11-ModifyingPixelsInAMatrix 93

Challenge

•  Write a general scale down method
– That returns the resulting picture
– Remember that you can use

•  new Picture(width, height) to create a blank picture
 of a given width and height

•  And use the return statement to return a value
 from a method

•  You will need to save the result from calling the
 method

11-ModifyingPixelsInAMatrix 94

11-ModifyingPixelsInAMatrix 95

Summary

•  Nested loops can be used to loop through
a two-dimensional array
– And keep track of the current x and y values

•  Create several small versions of a problem
– And solve those before you try to code a

programming solution
– Try to determine the general algorithm from

the concrete small versions
– Translate the algorithm into code

