
11/2/10

1

10-ModifyingPicturesUsingLoops 1

Modifying Pictures Using Loops

Barb Ericson
Georgia Institute of Technology

Oct 2010

10-ModifyingPicturesUsingLoops 2

Learning Goals

•  Understand at a conceptual and practical
level
– How to manipulate digital pictures?
– How to work with one and two-dimension

arrays
– How to write object methods
– Review iteration using for-each, while, and for

loops
– What the scope is for a variable name

10-ModifyingPicturesUsingLoops 3

Digital Pictures
•  Represented by pixels (picture elements)

–  With a red, green, and blue value stored for each
pixel with 8 bits per color (a range of 0 to 255)

•  Stored in .jpg (JPEG) files
–  International standard
–  With lossy compression

•  Lossy means not all data is stored
–  But what is lost isn’t that important

•  Compression means made smaller

•  Other formats for storing digital pictures are
GIFF and BMP

Pixels – Picture Elements

•  Small dots of color that make up digital
pictures

10-ModifyingPicturesUsingLoops 4

10-ModifyingPicturesUsingLoops 5

Color Objects

•  There is a class defined in Java that
represents color
– The Color class in the package java.awt
– To use the class you must either

•  import java.awt.Color;
•  Use the full name java.awt.Color

•  You can create a color object by giving the
red, green, and blue values for it
– Color colorObj = new Color(255,10,125);

Mixing red, green, and blue

•  You can use a ColorChooser to see how
red, green, and blue mix to make all the
colors
– ColorChooser.pickAColor()
– Try to make different colors

•  Yellow
•  Green
•  Pink
•  Black
•  White
•  Brown

10-ModifyingPicturesUsingLoops 6

11/2/10

2

10-ModifyingPicturesUsingLoops 7

Predefined Colors
•  The Color class has defined

class constants for many
colors
–  Color.RED, Color.GREEN,

Color.BLUE, Color.BLACK,
Color.WHITE, Color.YELLOW,
Color.GRAY, Color.ORANGE,
Color.PINK, Color.CYAN,
Color.MAGENTA

–  Or you can use all lowercase
names

•  Color.red, Color.blue, Color.black,
…

10-ModifyingPicturesUsingLoops 8

Pictures have lots of Pixels

•  How can we refer to each pixel?
– pixel1, pixel2, pixel3, pixel4, pixel5, …

•  Do we really want to name each one?
– There are 640 x 480 = 307,200 pixels

•  How do we deal with lots of data of the
same type?
– Use an array
– Like a list but of a fixed size and with all the

data contiguous in memory

10-ModifyingPicturesUsingLoops 9

What is an Array?
•  Storage for a sequence of

items
–  Of the same type

•  You can access items by
using an index
–  int x = arrayRef[index];

•  The index starts at 0
–  The first item is at index 0
–  The last item is at index

(length – 1)
•  Arrays know their length

(have a public length
field)
–  arrayObj.length

3 7 9 2 1 5

8 3 2 6

0 1 2 3 4 5

0 1 2 3

Declaring and Creating an Array
•  Declare an array using

–  Type[] name or Type name[];
–  Pixel[] pixelArray = null;
–  double grades[];

•  Create an array using
–  new Type[numberOfElements];
–  new int[5];
–  int numArray = new int[5]; // all values are 0

•  Initialize array elements using
–  double[] gradeArray = {80, 90.5, 88, 92, 94.5};
–  int grade = gradeArray[2] // grade = 88

10-ModifyingPicturesUsingLoops 10

Two-Dimensional Arrays (Matrix)

•  Pictures are actually two-dimensional
arrays
– Have a horizontal (x or column) and vertical (y

or row) value for each pixel

10-ModifyingPicturesUsingLoops 11

2D Arrays in Java

•  Elements can be accessed with
– arrayRef[x][y] or arrayRef[col][row]
– arrayRef[y][x] or arrayRef[row][col]

•  It depends how the data was initialized
– We use arrayRef[x][y] in our Picture class

10-ModifyingPicturesUsingLoops 12

11/2/10

3

10-ModifyingPicturesUsingLoops 13

Manipulating a Picture

•  To manipulate a picture we need to
manipulate the pixels that make up the
picture
– Change the red, green, or blue values at the

pixel
•  Pixel is a class that we created at Georgia

Tech
– Each pixel object has a red, green, and blue

value that ranges from 0 to 255

10-ModifyingPicturesUsingLoops 14

What Data does a Picture Object Have?

•  It knows the picture width
 pictureObj.getWidth()

•  It knows the picture height
 pictureObj.getHeight()

•  It knows how to return an array of pixels
 Pixel[] pixelArray = pictureObj.getPixels()

•  It knows how to return a pixel at a location (x,y)
 Pixel p = pictureObj.getPixel(0,0);

10-ModifyingPicturesUsingLoops 15

Pixel Objects
•  Each pixel has a red, green, and blue value

–  getRed(), getGreen(), getBlue()
–  setRed(int v), setGreen(int v), setBlue(int v)

•  Each pixel knows the location it was in the
picture object
–  getX(), get(Y)

•  You can also get and set the color at the pixel
–  Color currColor = pixelObj.getColor()
–  pixelObj.setColor(Color theColor)

Modifying the Pixels in a Picture
•  We can get a 1D array of pixel objects from a

 picture
–  Pixel[] pixelArray = this.getPixels();
–  This gets all the pixels in the first row followed by all

 the pixels in the second row and so on.
•  We can use a for-each loop to loop through all

 the pixels in a picture
–  Like looping through an Alice list

10-ModifyingPicturesUsingLoops 16

Increase Red Algorithm

•  How do we increase the amount of red in
 a digital picture?
– By twice the original amount?

•  Loop through all the pixels in the picture
– Get a 1D array of pixels in the picture
– Loop through all the pixels

•  Get the current red at the current pixel
•  Set the red at the current pixel to twice the original

 value

10-ModifyingPicturesUsingLoops 17

Increase Red Method
public void increaseRed()
{
 Pixel[] pixelArray = this.getPixels();
 int value = 0;

 // loop through all the pixels in the array
 for (Pixel pixelObj : pixelArray)
 {
 // get the current red value
 value = pixelObj.getRed();

 // double the red
 value = value * 2;

 // set the red value of the current pixel to the new value
 pixelObj.setRed(value);
 }
}

10-ModifyingPicturesUsingLoops 18

11/2/10

4

Testing the Increase Red Method

String fName =
 “mediasources/caterpillar.jpg”;
Picture pict = new Picture(fName);
pict.explore();
pict.increaseRed();
pict.explore();

10-ModifyingPicturesUsingLoops 19

How it works
•  When we execute pict.increaseRed()

–  The this keyword refers to the same picture object as
 pict

–  We get a one dimensional array of pixels from the
 current picture and refer to it as pixelArray

–  The first time through the loop pixelObj will refer to the
 first pixel in the picture

•  pixelArray[0] or getPixel(0,0)
–  The last time through the loop pixelObj will refer to the

 last pixel in the picture
•  pixelArray.length – 1 or getPixel(328,149)

10-ModifyingPicturesUsingLoops 20

Challenge

•  Write a method to decrease the amount of
 red in a picture
– Call it decreaseRed()
– Divide the current red value by 2 for each

 pixel in the picture
•  Write a method to set all the blue values in

 a picture to 0
– Call it clearBlue()

10-ModifyingPicturesUsingLoops 21 ManipulatingPictures-part2 22

Loop Exercise

•  Ask a person to clap 12 times
– How does s/he know when to stop?
– What changes each time s/he claps?

•  If you are following a recipe that asks you
to stir the ingredients 50 times how would
you do this?

•  What if you were trying to break a sit-up
record
– How would you know if you did break it?

ManipulatingPictures-part2 23

Loops often need Counters

•  If you want to do something x times you
often need a counter
– That starts at 0
– And you add 1 to it each time you finish doing

the thing you are repeating
– When the counter reaches the number you

are trying to do you stop the loop
•  What is the value of the counter the last time the

statements of the loop are executed?

ManipulatingPictures-part2 24

While Loops
•  In Java one way to repeat

a block of statements
while an expression is
true is to use a while loop

•  Create a counter and set
it to the start value

•  Check that the counter is
less then the stop value

•  If it is less than execute
the statements in the loop

•  Add one to the counter
and go back to check that
the counter is less than
the stop value

11/2/10

5

ManipulatingPictures-part2 25

Total the Numbers from 1 to 100
•  What if you want to add all the numbers

from 1 to 100?
– You will need something to hold the total

•  What type should it be?
•  What value should it start out with?

– You will need something that counts from 1 to
100
•  And add that value to the total
•  Stop when you get to 100
•  What type should it be? What value should it start

with?

ManipulatingPictures-part2 26

While Loop Syntax

•  Adding up the numbers from 1 to 100
int total = 0;
int num = 1;
while (num <= 100)
{

total = total + num;
num = num + 1;

}
System.out.println(total);

ManipulatingPictures-part2 28

While Loop Syntax
•  Adding up the numbers from 1 to 100

int total = 0; // declare and initialize the total
int num = 1; // declare and init the number

while (num <= 100) // do while num <= 100
{

total = total + num; // add num to total
num = num + 1; // increment the num

}
System.out.println(total); // print the total

ManipulatingPictures-part2 29

Parts of a While Loop

•  Adding up the numbers from 1 to 100
int total = 0;
int num = 1;
while (num <= 100)
{

total = total + num;
num = num + 1;

}
System.out.println(total);

Declaration and initialization of variables

This test is done each time and when
It is true the loop body will be executed

This is the body of the loop. It
Starts with a ‘{‘ and ends with
a ‘}’. If there is just one statement
In a loop body the ‘{‘ and ‘}’ aren’t
needed.

ManipulatingPictures-part2 30

Exercise

•  Have students walk through this flowchart
int count = 0;

int diceValue = rollDice();

while (diceValue > count)

System.out.println("My name is " + name);

Sytem.out.println("The count is " + count);

Roll a die to get this value

count = count + 1
;

System.out.println("After the loop the count is " + count);

true

false

ManipulatingPictures-part2 31

Changing from For-each to While

•  In a for-each loop something needs to
keep track of the current pixel
– And change each time through the loop
– To sure that we have gone through all of the

pixels
•  We can loop through all elements in an

array by starting with index 0, then index
1, and so on till index (length – 1)
– And get the pixel at the current index value

11/2/10

6

ManipulatingPictures-part2 32

Decrease Red Algorithm
•  Get the array of Pixel objects from the current

picture
•  Declare a variable to hold the red value
•  Declare the index variable and set it to 0
•  Declare a variable to refer to the current pixel
•  Loop while index is less than the length of the

array
–  Get the pixel at the index value
–  Get the current red value from the pixel
–  Divide the current red value by 2

•  Or multiply by 0.5 and change back to integer
–  Set the red for the current pixel to the changed value
–  Increment the index

ManipulatingPictures-part2 33

Loop Algorithm to Code
•  How to write (code) the loop?

–  Use a while loop with a counter for the index starting
at 0

int index = 0;

–  Add a variable to refer to the current pixel
Pixel pixelObj = null;

–  Loop while the index is less than the length of the
array

while (index < pixelArray.length)

–  Get the current pixel from the array of pixels for the
current index

pixelObj = pixelArray[index];

ManipulatingPictures-part2 34

Loop Algorithm to Code - Continued
– Get the red value at the pixel

value = pixelObj.getRed();
– Multiply by 0.5 and convert back to integer

value = (int) value * 0.5;

– Set the pixel red value
pixel.setRed(value);

– Add one to (increment) the index
•  index = index + 1;

ManipulatingPictures-part2 35

decreaseRed Method Result
•  Before method

•  After method

ManipulatingPictures-part2 36

Decrease Red Method
public void decreaseRedWhile()
{
 Pixel[] pixelArray = this.getPixels();
 Pixel pixel = null;
 int value = 0;
 int index = 0;

 // loop through all the pixels
 while(index < pixelArray.length)
 {
 // get the current pixel
 pixel = pixelArray[index];

 // get the value
 value = pixel.getRed();

 // decrease the red value by 50%
 value = (int) (value * 0.5);

 // set the red value of the current
 // pixel to the new value
 pixel.setRed(value);

 // increment the index
 index = index + 1;
 }
 }

Tracing the code
•  If you test this with

> String fName =
 "C:/intro-prog-java/mediasources/caterpillar.jpg";
> Picture picture = new Picture(fName);
> picture.explore();
> picture.decreaseRedWhile();
> picture.explore();

•  How does that work?
–  picture.decreaseRedWhile() means execute the

 decreaseRedWhile method in the Picture class
 passing in the picture of the caterpillar as this

10-ModifyingPicturesUsingLoops 37

11/2/10

7

Tracing the code – continued
•  Pixel[] pixelArray = this.getPixels();

–  Set pixelArray to refer to a one dimensional array of pixels from
 the current picture

•  Declare some variables we will need in the loop: index,
 value, and pixel

10-ModifyingPicturesUsingLoops 38

Tracing the code - continued
•  Start the loop. Index is 0 which is less than the length of

 the array.
–  Set pixel to the Pixel object at the current index in the array

–  Set value to the red value in that pixel

10-ModifyingPicturesUsingLoops 39

Tracing the code - continued
•  Set value to the result of multiplying the current value by

 0.5 which returns a double result and throw away the
 fractional part by casting to integer
–  value = (int) (value * 0.5);

•  Set the red in the pixel to the new value
–  pixel.setRed(value);

10-ModifyingPicturesUsingLoops 40

Tracing the code - continued
•  Increment the index by 1

–  index = index + 1

•  Check if index is less than the array length and if so
 repeat the body of the loop
–  This time for the 2nd pixel

10-ModifyingPicturesUsingLoops 41

ManipulatingPictures-part2 42

Memory Map of decreaseRed()
•  What does memory

look like the 3rd time
through?

•  What does memory
look like the 4th time
through?

•  How about the last
time through?

this

pixelArray R=252,

G=254,

B=251,

X=0,

Y=0

R=253,

G=255,

B=254,

X=1,

Y=0

R=254,

G=254,

B=254,

X=2,

Y=0
pixel

value = 252
index = 0

…

width=329
height=150 Picture: Class

getPixels()

…

Pixel: Class

getRed()

setRed()…

Clearing the blue value

•  You can even set
 all the blue to 0 in
 the whole picture
– Which makes the

 white areas turn
 yellow

10-ModifyingPicturesUsingLoops 43

11/2/10

8

clearBlue method
public void clearBlue()
{
 Pixel[] pixelArray = this.getPixel

s();
 Pixel pixel = null;
 int index = 0;

 // loop through all the pixels
 while (index < pixelArray.length)
 {
 // get the current pixel
 pixel = pixelArray[index];

 // set the blue on the pixel to 0
 pixel.setBlue(0);

 // increment index
 index++;
 }
}

10-ModifyingPicturesUsingLoops 44

Testing clearBlue

> String fName =
 "C:/intro-prog-java/mediasources/caterpillar.jpg";

> Picture picture = new Picture(fName);
> picture.explore();
> picture.clearBlue();
> picture.explore();

10-ModifyingPicturesUsingLoops 45

ManipulatingPictures-part3 46

Faking a Sunset
•  If you want to make an

outdoor scene look like it
happened during sunset
–  You might want to increase

the red
•  But you can’t increase

past 255
–  Another idea is to reduce

the blue and green
•  To emphasize the red
•  Try to reduce the blue and

green by 30%

ManipulatingPictures-part3 47

Faking a Sunset Algorithm
•  Reduce the blue and green by 30%

1. Get the array of pixels from the picture
2. Set up an index to start at 0
3. Loop while the index is less than the length of the

array
1. Get the pixel at the current index from the array of pixels
2. Set the blue value at the pixel to 0.7 times the original value
3. Set the green value at the pixel to 0.7 times the original value
4. Increment the index and go back to step 3

ManipulatingPictures-part3 48

Faking a Sunset Method
public void makeSunset()
{
 Pixel [] pixelArray = this.getPixels();
 Pixel pixel = null;
 int value = 0;
 int i = 0;

 // loop through all the pixels
 while (i < pixelArray.length)
 {
 // get the current pixel
 pixel = pixelArray[i];

 // change the blue value
 value = pixel.getBlue();
 pixel.setBlue((int) (value * 0.7));

 // change the green value
 value = pixel.getGreen();
 pixel.setGreen((int) (value * 0.7));

 // increment the index
 i++;
 }
}

ManipulatingPictures-part3 49

Testing makeSunset
String file =

“c:/intro-prog-java/mediasources/beach-smaller.jpg”;
Picture pictureObj = new Picture(file);
pictureObj.explore();
pictureObj.makeSunset();
pictureObj.explore();

11/2/10

9

Variable Scope

•  In makeSunset we used i for the index
– Programmers often use short names like i to

 stand for an index
•  Scope – where a variable name is

 understood and can be used
– Variables declared inside of a method have

 scope only inside that method
•  The same name can be used by different methods

– Variables declared in the interactions pane
 are only known in the interactions pane

ManipulatingPictures-part3 50 ManipulatingPictures-part3 51

For Loops
•  Programmers like shortcuts

–  Especially those that reduce errors
–  And mean less typing

•  We have been using a while loop with an index
–  We had to declare the index variable and initialize it

 before the loop
•  If you forget this there will be a compiler error

–  We had to increment the index in the loop
•  If you forget this it will be an infinite loop

•  The shortcut for this is a for loop

ManipulatingPictures-part3 52

For Loop Syntax

•  for (initialization area; continuation test;
 change area)
–  Initialization area

•  Declare variables and initialize them

– Continuation test
•  If true do body of loop
•  If false jump to next statement after the loop

– Change area
•  Change the loop variables

–  Increment or decrement them

For loop in Alice

•  We used a for loop to make a bunny hop 8
 times

10-ModifyingPicturesUsingLoops 53

ManipulatingPictures-part3 54

Comparison of While and For Loops
int index = 0;
while (index <

 pixelArray.length)
{

statements
.
.
.
index++;

}

for (int i=0;
 i < pixelArray.length;
 i++)
{

 statements
 .

 .
 .

}

ManipulatingPictures-part3 55

clearBlue() using a For Loop
public void clearBlueFor()
{
 Pixel [] pixelArray = this.getPixels();

 // loop through all the pixels
 for (int i=0; i < pixelArray.length; i++)
 pixelArray[i].setBlue(0);
}

11/2/10

10

ManipulatingPictures-part3 56

Change to For Loop Exercise

•  Edit makeSunset() and change it from
 using a while loop to using a for loop
– Move the declaration of the index to the for

 loop initialization area
– Move the index increment to the for loop

 change area
– Execute the code to make sure it still works

ManipulatingPictures-part3 57

Negating an Image
•  How would you turn a

 picture into a
 negative?
–  White should become

 black
•  255,255,255 becomes

 0,0,0

–  Black should become
 white

•  0,0,0 becomes
 255,255,255

ManipulatingPictures-part3 58

Negate Algorithm
•  Subtract current value from 255 for red, green,

 and blue
1. Get the array of pixels from the picture
2. Declare variables to hold the current pixel and the

 red, green, and blue values
3. Loop starting an index at 0 and incrementing by 1 and

 loop while the index is less than the length of the
 array

1. Get the pixel at the current index from the array of pixels
2. Set the red value to 255 – current red value
3. Set the blue value to 255 – current blue value
4. Set the green value to 255 – current green value
5. Increment the index and go back to step 3

ManipulatingPictures-part3 59

Negate Method
public void negate()
{
 Pixel[] pixelArray = this.getPixels();
 Pixel pixel = null;
 int redValue = 0, blueValue = 0;
 int greenValue = 0;

 // loop through all the pixels
 for (int i = 0; i < pixelArray.length; i++)
 {
 // get the current pixel
 pixel = pixelArray[i];

 // get the current red, green, and blue values
 redValue = pixel.getRed();
 greenValue = pixel.getGreen();
 blueValue = pixel.getBlue();

 // set the pixel's color to the new color
 pixel.setColor(new Color(
 255 - redValue,
 255 - greenValue,
 255 - blueValue));
 }
}

ManipulatingPictures-part3 60

Changing to Grayscale

•  Grayscale ranges from black to white
– The red, green, and blue values are the same

•  How can we change any color to gray?
– What number can we use for all three values?

•  The intensity of the color

– We can average the colors
•  (red + green + blue) / 3

– Example
•  (15 + 25 + 230) / 3 = 90

ManipulatingPictures-part3 61

Grayscale Algorithm
•  Set color values to the average of the original values

1.  Get the array of pixels from the picture
2.  Declare variables to hold the current pixel and the

 red, green, and blue values
3.  Loop starting an index at 0 and incrementing by 1

 and loop while the index is less than the length of
 the array
1.  Get the pixel at the current index from the array of pixels
2.  Calculate the average of the current values

1.  (redValue + greenValue + blueValue)/ 3
3.  Set the red value to the average
4.  Set the blue value to the average
5.  Set the green value to the average
6.  Increment the index and go to step 3

11/2/10

11

ManipulatingPictures-part3 62

Grayscale Method
 public void grayscale()
{
 Pixel[] pixelArray = this.getPixels();
 Pixel pixel = null;
 int intensity = 0;

 // loop through all the pixels
 for (int i = 0; i < pixelArray.length; i

++)
 {
 // get the current pixel
 pixel = pixelArray[i];

 // compute the intensity of the pixel
 // (average value)
 intensity = (int) ((pixel.getRed() +
 pixel.getGreen() +
 pixel.getBlue()) / 3);

 // set the pixel color to the new color
 pixel.setColor(new Colo

r(intensity,intensity,intensity));
 }
}

ManipulatingPictures-part3 63

Testing Grayscale

String file =
 “c:/intro-prog-java/mediasources/caterpillar.jpg”;

Picture pictureObj = new Picture(file);
pictureObj.explore();
pictureObj.grayscale();
pictureObj.explore();

ManipulatingPictures-part3 64

Grayscale Result

ManipulatingPictures-part3 65

Luminance

•  We perceive blue to be darker than red,
 and green
– Even when the same amount of light is

 reflected
•  A better grayscale model should take this

 into account
– Weight green the highest (* 0.587)
–  red less (* 0.299) and
– blue the very least (* 0.114)

ManipulatingPictures-part3 66

Grayscale with Luminance Exercise
•  Create a new method

 grayscaleWithLuminance

•  Using the new
 algorithm for
 calculating intensity

•  intensity = (int) (red *
 0.299 + green *
 0.587 + blue * 0.114)

ManipulatingPictures-part3 67

Testing Grayscale with Luminance

String file =
 “c:/intro-prog-java/mediasources/caterpillar.jpg”;

Picture pictureObj = new Picture(file);
pictureObj.explore();
pictureObj.grayscaleWithLuminance();
pictureObj.explore();

11/2/10

12

10-ModifyingPicturesUsingLoops 68

Summary
•  Pictures have pixels

– You can change the picture by changing the
color of the pixels

•  Arrays let you store and retrieve values of
the same type using an index

•  You can ask a picture for it’s width, height,
and an array of pixels

•  You can get and set the color of a pixel
•  You can use for-each, while, and the

general for loop to iterate

