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Abstract—In addition to predictability, both reliability and
security are increasingly important for embedded systems. To
limit the scope of errant behavior in open and mixed criticality
systems, a common approach is to raise isolation barriers between
software components. However, this decentralizes memory man-
agement across all system components. Memory is often cached
and quickly accessible in each application.

This paper introduces the TMEM system for increasing
memory utilization while optimizing for application end-to-
end constraints such as meeting deadlines. In addition to the
traditional spatial multiplexing of memory, TMEM introduces
the predictable temporal multiplexing of memory within caches
in a system component, and memory scheduling to continually
reallocate memory between components to best benefit the
system. We find that TMEM is able to maintain the efficiency
of caches, while also lowering both task tardiness and system
memory requirements.

I. INTRODUCTION

Embedded and real-time systems are increasingly required
to provide not only predictability, but also increased reliability,
security, and isolation guarantees. Open real-time systems
in which hard real-time tasks execute along-side best effort
and untrusted applications require not only that the real-time
tasks meet their deadlines, but that they are isolated from the
possibly faulty or malicious programs. This motivates a class
of systems that provide fault-isolation at a finer granularity
than is typically provided by monolithic operating systems and
applications. Hardware techniques for memory isolation (e.g.
page tables) are commonly used to segregate the functionality
of the system into separate components. A fault in one com-
ponent cannot access or corrupt the memory in another (e.g.
if hardware constraints components to accessing disjoint sets
of physical memory), thus constraining the fault propagation
and the adverse effects of buggy or malicious components.
Examples of such systems include µ-kernels [1], component-
based OSes [2], [3], and middle-ware systems [4]. Here we use
“components” to broadly encapsulate all of these techniques
for decomposing the system. Section IV-A will refine these
definitions for our implementation.

The separation of memory into isolated components compli-
cates the memory management and allocation of the system.
Due to the high costs of mapping in and unmapping memory
from components, it is common for memory to be allocated
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to components that in turn use libraries to treat the memory
as a cache for finer grained memory allocations. The obvious
example is the implementation of malloc and free that uses
kernel sbrk or mmap system calls to request memory that
is then managed using data-structures defined by the specific
malloc implementation. Memory management libraries often
cache unused memory to speed up future allocations. We
denote the amount of memory in use and being requested at
any point by threads in component cj , rj , and the amount
of memory allocated to specific components by the system,
aj . Due to the caching of allocated memory, it is common
for
∑
∀i r

j <
∑
∀i a

j , or for the system to have low memory
utilization.

The distributed management of memory across components
leads to undesirable resource allocation properties. For exam-
ple, a real-time thread that requires memory in cj might be
unable to satisfy that request even though memory is unused in
other components (∃i 6= j|ri < ai). For this reason, it is com-
mon to pre-allocate and pin memory in real-time components.
This ensures that memory is available when requested in that
component, but conservative preallocation decreases average-
case memory utilization (rj � aj), thus requiring more
system memory. This negatively impacts system cost, size,
and power usage, all limiting factors in embedded systems.
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Fig. 1. System organizations for managing memory – memory caches
are grey. (a) Conventional OSes manage memory as decentralized
heaps that cache memory allocated from the kernel. (b) Centralized
memory management with expensive allocation and deallocation.
(c) TMEM with user-level caches for fast memory access with
predictable resource sharing within the cache, and memory scheduling
to move memory between caches to optimize for thread end-to-end
constraints.

Figure 1(a) depicts the traditional system design with
memory management distributed across system components.
Figure 1(b) depicts an alternative system design in which all
allocations and deallocations are requested from a centralized
manager. Allocations from the manager will be on a page
granularity and when a page is unused, it is returned im-
mediately to the centralized memory manager. Importantly,
when under memory pressure, this enables the centralized
and intelligent allocation of memory across the entire system.



However, the cost of mapping and unmapping pages from
the page-tables of each component is significant. Figure 1(c)
presents TMEM. Component caches provide fast, predictable
access to memory within that cache, and memory scheduling
is used to periodically move memory between components
to optimize for thread end-to-end constraints. TMEM is a
dynamic approach that adapts to observed deadline misses.
Therefore it is not appropriate for hard real-time systems.
Transient memory. This paper details the TMEM system
to achieve the benefits of both structures in Figure 1: low
worst-case overhead when memory is available, and with
bounded overheads when it is not to provide high system-
level memory utilization. In this paper, we focus on a specific
type of memory we call transient memory. Transient memory
is defined by the following properties:
P1. The memory is dynamically allocated.

P2. The interval between memory allocation and deallocation
is bounded. Functions with a bounded execution time
that use memory following a scoped allocation lifetime
(i.e. it is deallocated before leaving a lexical scope),
naturally satisfy this property. In real-time systems where
the worst-case execution time (WCET) of code in a
component is known, the WCET naturally places the
bound on TMEM hold time.

P3. The maximum allocation size is bounded a-priori. This
enables TMEM to ascertain how much memory will be
guaranteed to satisfy a single allocation.

P2 is the largest divergence from traditional memory man-
agement schemes, and gives transient memory its name.
The bounded lifetime property enables it to be treated as a
traditional shared resource, thus temporally multiplexing it
between different threads. For example, there might not be
enough memory in the system to concurrently satisfy two
thread’s requests. However, it is possible to allow one thread
to access the memory which will, within a bounded time, then
be deallocated. The system will then satisfy the other thread’s
request. We investigate how to apply the Priority Inheritance
Protocol (PIP) [5] to bound allocation time.

Transient memory enables temporal multiplexing of mem-
ory in addition to conventional spatial multiplexing, thus
introducing a form of CPU/memory co-scheduling. TMEM
uses both forms of resource multiplexing to optimize for thread
end-to-end constraints (e.g. by dynamically reducing task tar-
diness when it is observed). TMEM uses spatial multiplexing
(as in Figure 1(a)) to maintain lower task execution times.
In low-memory situations, TMEM mimics Figure 1(b) and
temporally multiplexes memory which maintains predictabil-
ity, but increases response times. The system uses memory
scheduling to allocate memory to components over windows
of time to explicitly optimize for thread end-to-end constraints.

To demonstrate the TMEM subsystem, we focus on the im-
plementation and evaluation of two types of transient memory
in the COMPOSITE component-based OS [2]:
• IPC Execution stacks. When a server component is invoked

by another component (i.e. a service is requested via Inter-
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Fig. 2. Transient memory in COMPOSITE. IPC is conducted in
COMPOSITE using thread migration [6] between separate user-
level components. The same schedulable entity migrates between
components via invocation. Components are in separate memory pro-
tection domains, thus invocations require kernel mediation. Separate
C execution stacks must be used for the thread’s execution in each
component, and shared memory is allocated to pass data. Both forms
of transient memory (stacks and shared memory) are depicted in dark
grey.

Process Communication (IPC)), the invocation must exe-
cute using an execution stack (C code assumes a stack). The
memory for this stack is only needed for the extent of the
invocation. If multiple requests are made concurrently for
the same component, and the concurrency level outstrips
the amount of local memory, contention management on
the stacks is required.

• Efficient shared memory. IPC between components is of-
ten modeled as synchronous function calls and requires
some means to transfer data between components. Shared
memory is often used to avoid inefficient data copying.
The memory is required for the scope of the IPC, and
often not after (until the next invocation). As with stacks
if a component’s concurrency level outpaces the amount of
local shared memory available, contention management on
the shared buffers is required.

Execution stacks and shared memory in COMPOSITE are
depicted in Figure 2.

Importantly, the amount of these types of memory requested
in a component is a function of the concurrency in that
component. If only a single thread ever invokes a component,
there is no need for more than one stack. However, if ten
threads are invoking a component, it would request up to ten
stacks (if the invocations were sequential, and not concurrent,
then again, only a single stack is required). It is difficult
to predict the concurrency of all components in a system,
especially in an open system.

Example. If many threads wish to send data onto a network,
in a system with pervasive fault isolation, a number of com-
ponents including UDP, IP, and the networking device would
be involved. Before any packets are sent, shared memory
is allocated for the thread, and passed through all these
components. When the network processing is complete, the
allocation in the shared memory is no longer required. When
IPC invocations are made, a stack is used for execution in the
called component’s protection domain. When the processing is
complete, the stack is available for use for another invocation.
The bounds on the lifetime of memory allocations match the
lifetime of the function invocations (which is bounded in a
real-time system), thus satisfying P2.



More general memory management functions such as
scoped memory management [7] also follow the transient
memory allocation/deallocation pattern. Though we focus on
these two forms of transient memory, we discuss the generic
system interfaces that enable the addition of other types of
transient memory.
Contributions. This paper makes the following contributions.
(1) We introduce the scheduling of transient memory as a
novel and useful means for increasing the memory utilization
of the system, while still meeting the end-to-end constraints
of individual threads. We do not know of previous work to
provide efficient, predictable access to memory while opti-
mizing for thread end-to-end constraints. (2) We study two
forms of transient memory that represent novel mechanisms
for managing state in systems with fine-grained fault isolation
and frequent IPC. (3) We detail the design and implementation
of transient memory management and scheduling in the COM-
POSITE component-based OS. (4) We describe a scheduling
algorithm for mapping memory to components to optimize
for both high memory utilization, and the removal of tardiness
when it is observed. (5) We evaluate the proposed system and
find that it can maintain consistently low task tardiness, and
adapt memory allocations in open real-time systems to the
unpredictable execution of best-effort threads.

This paper is organized as follows. Section II discusses
related work. Section III discusses the organization and goals
of the TMEM subsystem for transient memory management.
Section IV covers the implementation of the two different
types of TMEM in COMPOSITE, and how they use the TMEM
mechanisms. Section V details the scheduling policy used to
split memory between components over each period of time.
We evaluate the transient memory infrastructure in Section VI.
Section VII discusses conclusions.

II. RELATED WORK

Conventional approaches for coping with memory short-
ages. Virtual memory is commonly used to extend memory by
swapping out less frequently accessed pages to disk. Due to
the unpredictable delays this can induce on memory accesses,
virtual memory is often disabled (by pinning memory) for
real-time processes. Preventing paging for soft real-time pro-
cesses requires conservative memory allocation, thus trading
predictability for memory utilization. Further, many embedded
systems do not have large enough storage devices to support
full virtual memory. Systems that experience memory pressure
that cannot support virtual memory either 1) return error codes
for memory allocations (i.e. NULL from malloc), or 2)
abruptly terminate system processes. TMEM is significantly
less general as it does not support arbitrary forms of memory.
However, TMEM ensures the predictable access to memory via
temporal multiplexing of memory within a component cache,
and intelligent memory scheduling between components to
attempt to remove any observed tardiness in the system.
Virtual memory and swapping. Redline [8] and both [9] and
[10] take a full-system approach toward the dynamic resource
management of CPU and memory in a commodity system.

They use swapping to increase effective memory capacity, and
allocate resources to meet application constraints. TMEM takes
a fundamentally different approach that makes specific trade-
offs.
• TMEM doesn’t require a disk to swap inactive memory to.

This is appealing for smaller embedded systems without
such access.

• TMEM memory allocations will always be fulfilled within
a bounded amount of time. When cached memory is
available, the bounds are less than if temporal multiplexing
is required. However, even in that case, allocation times
are bounded, though possibly large due to resource sharing
protocol overheads. In fact, TMEM could be used for
hard real-time systems that assume a worst-case memory
allocation overhead of contended access, but in such cases
there is little benefit to optimizing the uncontended, cached
case. In contrast to TMEM, it can be difficult to manage a
disk and swap predictably and put a reasonable bound on
memory access time.

• TMEM works only on a restricted subset of memory
whereas swapping works on all user-memory (and in some
systems, for some kernel memory as well).

Given the trade-off between the techniques, it is possible that
both techniques could be used collaboratively to achieve some
of the benefits of both.
System shared memory. Zero-copy data movement is es-
sential for system efficiency, especially in systems decom-
posed into separate protection domains. Techniques such as
Fbufs [11] have been proposed to use persistent shared map-
pings to move data. IOLite [12] extended this system to
include all system buffers. CBUFs, or COMPOSITE buffers
– our shared memory technique – use similar techniques
to FBufs to map buffers across components, but integrates
these facilities with the ability of TMEM to remove and
remap buffers to separate components. To avoid overhead,
remapping is done infrequently, and in the common case,
cached mappings are used. Miller et al. introduced methods
for minimally copying data streaming between interfaces [13],
and RAD-FLOWS [14] defines how large a buffer must be to
store data from asynchronous communication between real-
time threads. These approaches are complementary to TMEM
and can be used to determine hard reservations for worst-case
buffer size. TMEM focuses on a dynamic approach of memory
scheduling that makes it less suitable for hard real-time.
Execution context sharing. When a server component pro-
vides services to multiple clients, that server must allocate
resources to handle each request. These resources can take the
form of specific threads that are used to handle client requests
in middleware [4] and µ-kernels, or as memory to be used as
a C execution stack as in COMPOSITE [15]. The size of the
pool of these resources has an effect on the predictability of
the system, and the best size is a function of the concurrency
and nature of the requests. In [15], we compared different
resource sharing protocols to achieve system schedulability
with a static allocation of stacks to specific component caches.



In this paper, TMEM does not focus on hard real-time systems,
and instead adapts memory allocations of both stacks and
shared memory to dynamically remove task tardiness when
it is observed.
Predictable, efficient inter-process communication. Black-
ham et al. [16], [17] have researched the overheads of the ker-
nel interface, and of interrupt latency in a system that provides
component-based protection. TMEM focuses on predictable
access to memory resources used for communication between
components. Given a predictable kernel, this work provides
a foundation for predictable inter-component communication
(via RPC) while controlling memory usage. Specifically, invo-
cations in COMPOSITE are predictable in that they are bounded
if the execution time within the called function is bounded, and
both priorities and reservations are automatically inherited (via
thread migration [6]). This work provides the mechanisms for
controlling interference from lower-priority threads in system
components.
Predictable multi-unit resource sharing. When a thread
requests TMEM, a predictable resource sharing protocol must
arbitrate access to TMEM in a component’s cache. We use
PIP [5] as detailed in Section IV-B. Both the Stack Re-
source Protocol (SRP) [18] and the Priority Ceiling Protocol
(PCP) [19] also provide predictable resource sharing. We show
in [15] how these protocols can be used in a schedulability
analysis. This work shows that in COMPOSITE no one protocol
dominates the others for all system configurations. In this
paper, we choose PIP and focus on the main contributions of
TMEM in this paper. In some systems, SRP or PCP might
be more beneficial as PIP suffers from adverse scheduling
effects in the presence of nested resources. Regardless of the
protocol used, we show in Section VI that TMEM can be used
to control tardiness even in the absence of a predictable sharing
protocol. However, in such a case, each individual invocation
is no longer bounded.
Transcendental Memory. Another technology using the name
TMEM (for Transcendent Memory [20]) is used in Virtual Ma-
chines (VMs) to manage cached memory and avoid swapping
VM memory out to disk. This work focuses on increasing sys-
tem memory utilization to maximize performance (i.e. avoid
disk I/O). In contrast, this paper focuses on the predictable
sharing of memory within component caches for predictable
memory access, and memory scheduling to resize the caches
to optimize for task end-to-end constraints.

III. DESIGN OF TRANSIENT MEMORY MANAGEMENT

The TMEM subsystem for managing transient memory has
the following high-level goals related to obtaining the benefits
of both Figure 1(a) and (b):

G1 Per-component caching. When ri ≤ ai, TMEM must
enable efficient access to per-component cached transient
memory. If requests for transient memory can be guaran-
teed to be satisfied from within the cache, the worst-case
allocation time is low due to spatial multiplexing.

G2 Predictable cached transient memory contention. When
ri > ai, the concurrency of the component is greater than
the amount of memory in the component’s cache. TMEM
must either add spare memory into the cache, or block the
thread until memory is available, thus temporally multi-
plexing the memory. Importantly, the latency between the
request, and the eventual allocation must be bounded. We
refer to this as predictable access to memory in the cache.
This bounded property is due to a combination of the use
of a predictable resource sharing protocol (i.e. priority
inheritance, PI), and property P2.

G3 Transient memory scheduling toward end-to-end appli-
cation goals. When the

∑
∀ci r

i >
∑
∀ci a

i, TMEM
must partition the available memory between components,
thus forcing some contention and overhead on memory
in caches in some components. Over time, as work-
loads change, the optimal allocation to components will
change to meet their end-to-end constraints. This memory
scheduling requires a sub-goal: G3a. TMEM must be
able to remove transient memory from a component asyn-
chronously, and without the component’s involvement so
that it can be moved to another component to decrease
key thread’s end-to-end latencies.

The TMEM system design focuses on (i) maintaining effi-
cient and predictable access to memory within a component’s
cache (G1 and G2), and (ii) memory scheduling (G3) is
used relatively rarely to rebalance memory allocations between
component caches. This maintains the benefits of Figure 1(a)
and (b), while providing predictable memory access within a
component. We make this separation between the “fast (pre-
dictable) path”, and the memory scheduling because moving
a set of pages from one component to another is expensive
due to clearing the memory and page-table manipulations
(requiring TLB flushes). This design achieves the benefits of
having low-cost common-case allocations, predictable worst-
case allocation times, and the ability to balance memory
between components over time to adapt to thread end-to-end
constraints.

Global Memory Pool

����������������

�
�
�
�
�
�
�
�

������

������
������
������
������

�����
�����
�����
�����

Tmem 1 MgrTmem 0 Mgr

S
c
h
e
d

u
lin

g
P

o
lic

y

T
m
e
m

transient
memory 1

block list

transient
memory 0

Tmem

subsystem

application
component

component Tmem caches

����

Fig. 3. The TMEM system organization. Applications cache different
types of transient memory, which is allocated by different TMEM
managers. TMEM managers block application threads when more
memory is requested than can be handled by the cache. The managers
are allocated memory out of the global pool of memory, and the
policy dictates how much memory to allocate to each component.

Figure 3 shows the TMEM system organization. In a
monolithic system, a reasonable separation would place all of
TMEM in the kernel aside from the caches. Due to the focus



on fault isolation, COMPOSITE implements each as separate,
hardware-isolated components.

IV. TMEM IMPLEMENTATION

A. COMPOSITE Background

We use the COMPOSITE [2] component-based OS as a test-
bed to study TMEM. COMPOSITE focuses on decomposing
system software into hardware-isolated, user-level compo-
nents. Components include the code and data associated with
some functionality, and export an interface of functions that
can be invoked by other components. In COMPOSITE, even
low-level system services such as scheduling [21], synchro-
nization [6], physical memory management, I/O handling,
and event management are defined by replaceable compo-
nents. This simple model enables complicated policies such
as hierarchical resource management [22]. Each component is
encapsulated and opaque behind this interface, enabling them
to be separated into different protection domains, provided by
hardware mechanisms (page-tables). A functional system is
the composition of a set of components. Each component has
caches of memory that are managed and sized by the TMEM
subsystem. Threads are the active entities in the system and
are executing at any point in time in a specific component. To
begin execution in another component, an invocation is made
on a function in its interface.
Component invocations. Both forms of transient memory
are used pervasively in COMPOSITE, and their management
is required for the overall system to be both efficient and
predictable. Component invocations are used to refer to syn-
chronous IPC between components as the main form of
communication between components is semantically identical
to function invocation. COMPOSITE uses thread migration [6]
for IPC: the same schedulable entity executes across many
components, and simply uses different execution contexts in
each component.

All arguments for an invocation are passed in registers.
To keep the kernel invocation path simple and efficient, the
kernel does not copy or map memory. If a function requires
more arguments than there are registers (i.e. there are only
6 general purpose registers on x86-32), or if the arguments
are pointers to data regions, an Interface Definition Language
(IDL) compiler generates stubs to pass the data in shared
memory using CBUFs. Thus, for the typical programmer, the
use of CBUFs and the management of execution stacks is
completely transparent.

Despite the decomposition of system software into
hardware-separated components which requires extensive IPC,
the efficiency of COMPOSITE is reasonable. In [23], we show
that a web-server implemented as more than 25 components
(causing over 70 component invocations per HTTP client
request) is competitive with traditional software (apache on
Linux). The COMPOSITE kernel is less than 6K lines of code
(compared to millions of lines of code for monolithic systems
such as Linux). All component code, including 3rd party
libraries, totals over 100K lines.

B. Component-Local Transient Memory Management
There is a TMEM manager for each type of transient

memory (in the paper, stacks and shared memory). Thus we
describe a stack manager, and a CBUF manager (CBUFs are
COMPOSITE shared-memory buffers). All TMEM managers
interact with the TMEM caches to (i) add memory to the
cache, (ii) remove memory from the cache (iii) and predictably
mediate contention on the memory in the cache. Toward
this, all TMEM managers and client cache code implement
protocols for the allocation and deallocation of memory. These
protocols involve an API the client calls when no memory is
available in the cache, or when the manager wants to reclaim
memory, and shared memory structures mapped into both the
client and the manager to track TMEM. The latter are used
by the manager to asynchronously remove unused transient
memory from the client (i.e. when it is required elsewhere).
Data-structures shared between managers and per-
component caches. The shared structures include:
• A relinquish bit is shared that is marked by the manager

when it wants the client to give up some memory, but it
is all currently allocated. This is used (i) to signal that
memory is required by a higher priority thread that is
blocked waiting for it (for G2), and (ii) if the manager
wishes to shrink the allocation of memory to the component
(for G3). When a thread in the client deallocates TMEM, it
checks this bit, and calls the manager if it is set to release
the memory.

• TMEM index tables that are used to identify and retrieve
pieces of transient memory. These indices include (i) in-
formation about transient memory addresses, and (ii) the
thread id of the thread using the transient memory – used
to perform priority inheritance (G2).

TMEM manager API. The main functions exported by the
TMEM managers include:
• tmem_get – When a TMEM allocation cannot be satisfied

by the client’s cache, this function is invoked. The manager
will set the relinquish bit in the client so the manager will
be notified of any TMEM deallocations within that com-
ponent. Then the manager performs predictable resource
sharing on the TMEM resources within the client. Though
the system could use any predictable protocol including
multi-unit SRP [18] or PCP [19], our implementation uses
a simple PIP. The thread requesting TMEM in the manager
will determine one of the threads holding TMEM in the
cache of client (chosen arbitrarily for simplicity). That
thread receives the priority of the higher-priority contend-
ing task. This implementation bounds the interference from
the lower-priority resource holding task to a single access
(G2) in a manner equivalent to single-unit PIP1.

1COMPOSITE uses a mechanism similar to shadow tasks in Shark [24]
to implement priority inheritance: instead of removing a contending thread
from the runqueue, a dependency is simply annotated in the thread structure.
When a scheduling decision is made, if the task has a dependency, then the
dependency target is dispatched instead. The dependency chain is bounded
by the maximum nesting of resources. A more traditional PI (or PCP)
implementation could be used instead.



• tmem_put – When a thread deallocates TMEM, and
the relinquish bit is set, it calls this function to inform
the manager to wake the higher-priority thread waiting
for TMEM. The manager will unset the relinquish bit
if no threads are left blocked waiting for memory, thus
preventing threads that release TMEM from unnecessarily
calling the manager.

Component TMEM usage meta-data. Each manager main-
tains meta-data about a component’s (cj) transient memory
usage that will be used by the memory scheduling policy:
(i) The policy needs to understand how much memory is
concurrently requested, rj . When threads call tmem_get, this
is updated to reflect aj plus the amount requested by threads
blocked waiting for an additional allocation. Additionally,
whenever TMEM is accessed in a component’s cache a used
bit is set in the TMEM index. To detect rj values less than
aj , TMEM that is unused between successive runs of the
policy is detected by observing unset used bits, thus lowering
the rj values. (ii) Each manager tracks bji , the amount of
time a thread τi spends blocked waiting for transient memory
in component cj , and the number of times it blocked. This
enables the policy to understand which components contribute
to an increased lateness (enabling G3).

C. TMEM Execution Stack Management
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freelist_next
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Stack
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Fig. 4. The stack manager and application cache data-structures. In
the application component, stacks are maintained in a freelist. When
a thread takes a stack, it places its id at the stack top. The stack
manager has access to the freelist head, the relinquish bit, and all
stacks, thus is able to add or remove stacks asynchronously. Shades
are coded as in Figure 3.

Figure 4 depicts the shared data-structures between the
TMEM stack manager and each component, and the structure
of the cache. The TMEM index table used to retrieve stacks
is a simple freelist. This structure provides efficient caching
toward G1.
Client stack management. When a thread upcalls into a
component (i.e. to invoke a function in the component’s
interface), it first checks to see if a stack exists on the freelist
(rj ≤ aj). If so, it is removed from the list atomically.
Otherwise (rj > aj), it calls tmem_get in the manager.
Upon return from this component, it places the stack back
on the freelist (to be reused in the future), and checks if the
relinquish bit is set. If so, the stack manager’s tmem_put is
called. This simple protocol satisfies both G1 and G2.
Stack manager asynchronous removal of stacks from
components. The stack manager component is able to add

stacks to the component’s freelist, and remove them, at will
(G3a). COMPOSITE uses a hierarchical resource management
strategy described in [22] in which memory in a component
can be mapped into a “child”, and removed in the future.
The stack manager uses this support to map stacks into each
component, and also to map in the initial freelist head. It
can walk the freelist, and remove specific stacks by simply
inspecting the memory it has mapped into the component (after
translating addresses in the freelist into virtual addresses local
to the stack manager). Accordingly, when the TMEM policy
determines that stacks should be allocated into a component cj ,
they can be asynchronously removed from another component
and mapped into cj .

D. TMEM Shared Memory Management
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Fig. 5. The CBUF manager and application component data-
structures. Memory is mapped into components, and can be shared
between components (as in the 3rd mapping). Both the application
and manager can access CBUFs through their cbid that indices
into the CBUF table. Thus, CBUFs can be added and removed
asynchronously by the manger. This diagram omits the slab metadata.
Shades are coded as in Figure 3.

Efficient movement of data between components is essential
for reasonable end-to-end performance. Shared memory is
used to avoid copying data between protection domains. Due
to the cost of constructing shared memory mappings, efficient
shared memory systems [11] cache mappings and reuse them
across multiple instances of IPC. CBUFs are designed with
this in mind, and cache shared memory allocations in each
component.

CBUFs currently assume that a component will both allocate
and deallocate its buffers, and that the mappings into other
components are valid for the scope of component invocations.
Thus, shared memory follows the transient memory allocation
pattern: a CBUF is allocated, used to transfer data to other
components with an invocation, and when the invocation
returns, the CBUF is deallocated. CBUFs could be extended
to enable more general lifetimes to support caching [12], but
we leave this as future work.

Operation Description
void * allocate a cbuf from the cache
cbuf_alloc(size, *cbid)
void cbuf_free(void*) deallocate a cbuf
void * get a possibly cached mapping
cbuf2buf(cbid, size) for cbid

TABLE I
MAIN CBUF OPERATIONS.

CBUF cache implementation. Each individual CBUF has a
unique identifier, its cbid. As data can only be passed in a



limited number of registers between components, CBUFs are
designed such that only the cbid and size of the data need be
passed, and in the invoked component, these can be converted
into the appropriate shared memory mapping. Table I lists
the operations components perform on CBUFs. These include
allocation and deallocation (which will be done from the
component’s cache of transient memory), and cbuf2buf
which is called in an invoked component and converts between
the passed in cbid to the actual shared memory mapping.
These mappings are cached across invocations to avoid the
high cost of mapping and unmapping the memory for each
invocation.

Figure 5 depicts the CBUF manager, and its shared data
structures with components. In each component, the CBUF
cache is managed using slab allocation [25] (toward G1). Slab
meta-data is stored separately from the CBUF memory, to
avoid its corruption by another component.

Two index tables are maintained in each component. (i) The
TMEM index table associates cbids with the actual transient
memory buffers in the component, and contain meta-data such
as the owner thread id of a thread currently accessing the
CBUF, and the size of allocations within the CBUF. This
table is implemented using shared memory between each
component, and the CBUF manager. (ii) A table is used to
map the address of the buffer to the slab descriptor containing
meta-data about it. When a buffer is freed, this enables the slab
meta-data to be updated. Both of these tables are implemented
as radix trees with a fixed depth of 2, thus enabling predictable
and efficient lookups.

When cbuf_alloc is called, and there is no CBUFs
available, then tmem_get is invoked to perform priority
inheritance with a thread currently allocated a CBUF in
the component. This is done by setting the relinquish bit
in the component, obtaining the thread id from the first
table (that is shared with the CBUF manager), and invoking
sched_block with a dependency.

Whenever cbuf_free is called and all memory in a page
is deallocated, then the relinquish bit for CBUFs is checked. If
it is set, then tmem_put is invoked. This enables the CBUF
transient memory manager to remove the memory from the
component, and move it to another component as dictated by
the transient memory scheduling policy.
cbuf2buf uses the TMEM index table in an invoked com-

ponent to find the shared memory passed with an invocation.
If the mapping is cached (i.e. it is in the table), then this
operation is fast. However, if the component has not mapped
in that cbid, then it must call the CBUF manager to map
it in. The manager will add the mapping into the component,
and into the TMEM index so that future cbuf2bufs will find
the cached mapping.
CBUF manager asynchronous memory reclamation. To
remove CBUF memory from components so that it can be allo-
cated elsewhere according to the transient memory scheduling
policy (G3a), the CBUF manager iterates through CBUFs
within the component, finds any that are not in use, and
removes them from the TMEM index tables of all components

they have been mapped into before actually unmapping the
memory.

E. System-Wide Transient Memory Management

When
∑
∀cj r

j >
∑
∀cj a

j , the TMEM scheduling policy
must decide how large the TMEM allocations should be to
each component. Essentially, this policy must minimize the
end-to-end costs that blocking waiting for TMEM has on
threads to best utilize system memory. It does so by setting a
desired transient memory allocation, δj , for each component,
cj , in the TMEM manager. If the desired allocation to a
component is less than its current allocation (δj < aj), then
the manager first attempts to asynchronously remove memory
from the component. If it cannot remove enough memory
because threads are actively using it, the relinquish bit for
that component is set so that currently used allocations will
be returned when deallocated. In such a case, aj > δj for a
period of time bounded by the amount of time a thread keeps
the memory (i.e. a bounded extent due to P2). Thus there can
be a lag, in the worst case, between when the policy wishes to
move TMEM to a different component, and when it is actually
moved (i.e. until when aj = δj).

Removed pages are added into a global pool in the TMEM
manager. If δj > aj , then when threads call tmem_get, the
manager will pull pages out of the TMEM manager’s pool
and add them into the component (also adding them into the
component’s TMEM index).

If
∑
∀cj δ

j 6=
∑
∀cj a

j for a TMEM manager (stack or
CBUF), then memory is either retrieved from or given to
the global memory pool. This global memory pool holds all
memory allocated to transient memory in the system, and it is
partitioned between different TMEM managers by the policy
by setting δj for each component.
Ensuring predictable progress. If a thread invokes a compo-
nent with no transient memory and attempts an allocation,
the thread will be blocked without the ability to perform
predictable resource sharing with another thread (i.e. no other
thread has TMEM in the component’s cache). It will have to
wait for the memory scheduling policy to move TMEM to the
component. Instead of suffering this latency, P3 enables us to
know the largest allocation required, and we preallocate this
to each component.
Deadlock prevention. Deadlock is generally possible as
threads might hold transient memory resources in one compo-
nent, while waiting for them in another. If these components
were arranged such that communication between them could
be cyclic, deadlock could occur. To prevent this, we make the
assumption that the synchronous invocation pattern between
components is not cyclic. This is an assumption of COMPOS-
ITE unrelated to TMEM, as it is difficult with invocation cycles
between components to bound execution.
Multi-core support. TMEM currently only works on a uni-
processor. We envision a multi-core adaption of this system
using TMEM pools partitioned across cores. Not only does
this make management of the memory easier, but also it
is important for performance to avoid cache migrations for



memory shared across cores. Thread migrations might result
in TMEM that was allocated on one core, being deallocated
on another. Such inconsistencies would have to be dealt with
by the managers (similar to how heap memory allocators often
do local allocations, and balance between cores).
Security concerns. TMEM relies on clients following the
specified protocols for interaction with the managers. If the
clients do not do so, they might attempt to obtain, or retain
more than their due share of memory. This is generally a
problem in any system that relies on client behavior to drive
allocation decisions. For example, in a virtual memory system,
processes can frequently access all of their memory to give
the kernel the impression that all the process’s memory is
“hot”, and should not be swapped out. TMEM provides a large
benefit here: due to P2, TMEM managers can track if memory
hasn’t been deallocated within the bounded amount of time.
If it hasn’t then either the process is maliciously attempting
to avoid giving up the memory, or it is accidentally doing so.
In either case, remedial action is required, perhaps restarting
the client.

V. TRANSIENT MEMORY SCHEDULING

We separate the TMEM scheduling policy from the mecha-
nism of each individual TMEM manager. The policy interacts
with each manager through a well-defined interface that is
used to gather information about thread performance, and to
manipulate the amount of transient memory given to each
component. Specifically, the policy wishes to determine the
amount of time specific threads spend blocked contending a
transient memory allocation (bji ), and how much those threads
deviate from an execution target (e.g. meeting deadlines).
System model. To optimize for the end-to-end constraints of
system threads, we use a simple system model. The system
has a number of periodic tasks, τ0, . . . , τn, each of which
is released at a periodicity pi, and executes for a worst
case execution time of ei each period, thus its utilization
is ui = ei/pi. The deadline, di,j , of the jth release of
task τi is its release time + pi. The tardiness of a task is
ti,j = max(0, ci,j − di,j) where ci,j is the completion time
of the jth release for τi. We assume an open real-time, or
mixed-criticality system in which a number of less critical or
best effort threads τB0 , . . . , τ

B
m invoke the same components

as the real-time threads, thus share the same pools of transient
memory. A central goal of TMEM is to observe any tardiness
that occurs due to interference from lower-priority threads, and
allocate memory to alleviate that tardiness in the future.

The TMEM system of this paper strictly makes no assump-
tions about knowledge of component worst-case execution
time, invocation patterns between components, and other a-
priori system characteristics (e.g. in [15]). Instead, the sys-
tem requires the means for measuring each thread’s end-
to-end tardiness, and information about thread block times
in components, and TMEM utilization levels in components
(provided via II). However, we do assume that other means
are used to prevent the system’s overload from real-time thread
execution. Specifically, if the tardiness cannot be removed

given a hypothetically infinite amount of TMEM, the system
design presented here will attempt to minimize, but cannot
eliminate tardiness.

A. Interface Between the TMEM Scheduler and Managers

Operation Description
unsigned int Get an estimate of the amount of
get_estimated_requests(c) concurrently requested transient memory
unsigned int Get the amount of time a thread spent
get_thd_blk_time(c,t) blocked on contention for tmem in c, (bji )
unsigned int Get the number of times t
get_thd_blk_cnt(c,t) blocked on contention in c

void set_desired(c,amnt) Change the desired amount of transient
memory, δj , for a component

TABLE II
MANAGER OPERATIONS USED BY THE SCHEDULING POLICY.

Each of the transient memory managers provides a number
of functions that summarize per-component execution data
about threads since the last time the policy was executed. This
data is used by the policy to schedule memory. These functions
are summarized in Table II.

B. Transient Memory Scheduling Policy

Algorithm 1: Transient memory scheduling policy
Input: T : Set of real-time threads, C: Set of components
while true do1

foreach cj ∈ C do2
rj = get_estimated_requests (cj )3
ssj = get_thd_ss_requests (cj )4
foreach τi ∈ T do5

bji = get_thd_blk_time (cj , τi)/6
get_thd_blk_cnt (cj , τi)7

end8
end9
repeat // While memory can be productively moved10

cmin = ∅11
cmax = find_max_tardiness_component (C, T )12
if cmax then13

if cmax ∧ available memory > 0 then14
available memory = available memory − 115
add_tmem_update_tardiness (cmax)16

else17
cmin = find_min_tardiness_component (C, T )18
if cmin then19

remove_tmem_update_tardiness(cmin)20
add_tmem_update_tardiness (cmax)21

else22
cmax = ∅23

until ¬cmax24
foreach cj ∈ C do25

set_desired (cj , δj )26
end27
// Run policy periodically
periodic_block ()28

end29

We investigate a number of policies, but the most intelligent
one attempts to set ∀cjδj to optimize for min(max∀τi ti) given
each bji .

Algorithm 1 is a greedy algorithm based on this optimiza-
tion to determine how much transient memory should be
assigned to each component, thus fulfilling G3. This algorithm
attempts to find the component with the thread that could
benefit most (i.e. largest decrease in tardiness) from a single



unit of transient memory, and the component that would cause
the least effect on end-to-end constraints, and moves memory
from the second to the first.

To do so, the policy maintains for each component an
estimate of what effect adding or removing one unit of
transient memory will have on the block time of each thread
in that component, thus the effect on their tardiness. We base
this estimate for τi in cj on the formula:

t estji (∆) = ti −∆ ∗
{
bji/(r

j − aj) if rj − aj > 0
0 otherwise

We use ti to denote the average tardiness of all jobs that
complete since the last time the policy ran. Given a change
in memory allocation (δj − aj = ∆), the policy estimates
that the thread’s block time will decrease by the an amount
proportional to the change in the difference between allocated
and requested. Note that when rj ≤ aj , the thread will have
no bj , thus t est = 0. Note also, that we assume ∆ ≤ rj−aj .
find_max_component_tardiness finds

the component with the maximum estimated
tardiness, max∀cj max∀τi t est

j
i (1), while

find_min_component_tardiness finds the
component with the minimum, min∀cj max∀τi t est

j
i (1).

Both remove_tmem_update_tardiness and
add_tmem_update_tardiness change aj and δj

recompute t est for each thread that blocked in cj .
The code shown and described here is simplified to schedule

only one type of transient memory. Our general implementa-
tion simply treats the number of virtual components in the
system as |C| ∗ x where is x is the number of different types
of transient memory.

The algorithm can move at maximum the number of
transient memory units, and the inner loops must find the
component, and update tardiness estimates for each thread
that blocks in it. Thus the complexity is O(M |C||T |), where
M is the number of transient memory units. In practice, we
found the overheads in an actual system are small – 0.2%
of execution time in our experiments when the policy is
run periodically every quarter second. There is a trade-off
in determining the policy’s periodicity: larger periods mean
less overhead due to policy execution, and smaller periods
mean the system can more quickly adapt to changes in TMEM
requirements throughout the system. We leave this evaluation
for future work.

VI. EVALUATION

Unless otherwise noted, all experiments in this section are
run on a 3.4 Ghz Intel i7 processor with access to 1GB of
RAM. Only one SMT thread (and only one core) is active.
We use the hijack [26] technique to boot into COMPOSITE.

A. Microbenchmarks

We report microbenchmarks for our TMEM implementation
in Table III. We execute the operations 2000 times, and
report the average and standard deviation. Given interrupt
interference, it is difficult to obtain a true worst-case – we

Operation i7 Avg Stddev Atom Avg Stddev
Pre-TMEM Invocation 831 (0.24) 2 1291 (0.80) 8
Thread block/wakeup 1740 (0.51) 11 3706 (2.31) 15
Invocation w/ 860 (0.25) 4 1362 (0.85) 9

cached stack
Invocation w/ PI 7194 (2.11) 20 13881 (8.67) 49
Cached cbuf_alloc 245 (0.07) 6 344 (0.21) 15
Cached cbuf_free 317 (0.09) 8 507 (0.31) 31
cbuf2buf 304 (0.08) 7 269 (0.16) 10
cbuf_alloc w/ PI 7605 (2.23) 37 15180 (9.48) 82

TABLE III
COMPOSITE MEASUREMENTS REPORTED AS “CYCLES
(µ-SECONDS)” ON INTEL I7 AND ATOM PROCESSORS.

find worst-case measurements to usually reflect the worst-case
interrupt processing path, thus we report the standard deviation
of each operation. Invocations include the full call and return
path. The thread block and wakeup cost includes a component
invocation to the scheduler component to access its interface
for thread control. We report results additionally for an Intel
Atom 300 series processor running at 1.6 Ghz with only a
single core and SMT thread activated.

Discussion. We compare the cost of a normal invocation in
COMPOSITE (pre-transient memory) that uses a preallocated
array of stacks with the cost using the stack caching mecha-
nism, and find the overhead to be 29 cycles. An invocation that
includes a cbuf_alloc, cbuf2buf in the invoked compo-
nent, and cbuf_free upon return takes 1553 cycles (0.45µ-
seconds). cbuf2buf might be called in many components as
the buffer is passed along. We believe that the current costs
are reasonable for zero-copy RPC.

The operations for performing priority inheritance upon
transient memory contention are more expensive. These costs
are mitigated in many cases using memory scheduling.

B. System Evaluation

In this section, we investigate (i) the effectiveness of TMEM
to reduce task tardiness when it is observed while in con-
strained memory situations, (ii) and TMEM’s ability to sched-
ule memory for real-time threads while best effort threads
interfere and contend the transient memory. We compare the
following system configurations:
min allocation – Give each component only the minimal
allocation. This demonstrates frequent memory contention, but
also the minimal memory configuration.
max allocation – Execute the system with no memory
limits on transient memory and ensure that ∀cj , δj � aj . This
avoids contention, but uses maximal memory.
fair – Each component is given an equal proportion of the
available transient memory.
greedy – When threads call tmem_get, they are always
given available memory, until it runs out. We investigate
both PI and non-PI variants to compare against a naive
implementation.
TMEM alg – The memory scheduling algorithm of Section V.
System setup. To tightly control the worst-case execution
times of threads (ei), we specially construct a set of compo-
nents to accurately measure deadline misses and tardiness for
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Fig. 6. Transient memory management effectiveness using different algorithms for memory scheduling. The minimum memory allocation
(0 in the graph) to the real-time and shared subsystems is 48 pages.
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Fig. 7. An open real-time system with best effort threads interfering with and contending for transient memory with real-time threads. Best
effort threads execute between 20 and 40 seconds. The minimum memory allocation is 74 pages (0 in the graph).
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Fig. 8. Experimental setup. The system is configured to consist of
three parts: a real-time subsystem with components only invoked
by real-time threads, a best-effort subsystem with only best-effort
threads, and a set of components shared by both. Components
are setup as shown with invocations going downwards. At each
component, with a 75% chance, it will invoke toward the dotted line,
and 25% away. The three components on the line make invocations
with a 50/50 probability. This random factor makes it more difficult
to schedule memory compared to a more deterministic system with
well-defined heavily used components.

worst-case execution. Figure 8 depicts our experimental setup.
Eight real-time threads invoke the two components at the top
of the real-time subsystem. When evaluating an open system,
eight best effort threads invoke the best effort subsystem.

Each thread makes invocations to “lower” components, and
at each, 10% of its ei is consumed in a tight loop, and the

next component is invoked, passing the remaining time left
for execution minus the cost of an invocation as an argument
to the next component. Threads allocate a pages of CBUFs
in each component, and pass one to be mapped into the next
component. Once the execution time has been expended, the
thread returns to its initial component, and blocks till its next
release. The worst-case execution time of a thread is calculated
assuming that all TMEM allocations are satisfied from the
cache (i.e. no contention). Because of this, contention can
cause deadline misses and tardiness.

Real-time thread parameters are assigned by first assuming
that

∑
∀τi ui = 0.8. pi is chosen for each thread using an

exponential distribution around 100ms. ui is chosen by also
using an exponential distribution around (

∑
∀τi ui)/|T |. ei is

determined as ei = pi ∗ ui. The system has a fixed prior-
ity preemptive scheduler and uses a rate-monotonic priority
assignment. Each experiment is run ten times with different
generated task sets, and the averages are reported.
Effectiveness of transient memory scheduling. This ex-
periment executes a system with only real-time threads for
60 seconds. It takes the average of per-second deadlines
missed and maximum tardiness of all threads over the run.



Figures 6(a) and (b) plot the maximum tardiness and dead-
lines missed of the different transient memory management
schemes for different maximum amounts of available transient
memory. This demonstrates how effectively the algorithms are
at meeting real-time targets given limited memory.

Discussion. Memory usage is lower-bounded by 48 due to
the minimum allocation required to ensure progress (see
Section IV-B). The TMEM algorithm consistently decreases
the maximum tardiness of real-time threads for the same max-
imum amount of memory, compared to the other approaches
that don’t consider thread end-to-end constraints. A linear
regression of the TMEM algorithm and the greedy approach
show that the slope of the TMEM algorithm is 4 times steeper.
Thus, for each unit of transient memory it is given, it is able
to reduce the maximum tardiness by a factor of 4 more than
the more naive alternatives. The priority inheritance support
provided by the TMEM managers is essential to control the
thread’s tardiness as is demonstrated by the large gap between
the algorithms and their “w/o PI” variants.
Memory scheduling in an open real-time system. Fig-
ures 7(a) and (b) plot the different transient memory man-
agement methods as the system executes over time. At 20
seconds, the best effort threads are introduced into the system,
and at 40 seconds, they complete execution. The best effort
threads contend for transient memory in the shared subsystem,
complicating the memory scheduling, and making it more
difficult to minimize the tardiness of real-time threads. This
shows how the memory scheduling policies are able to adjust
to changing component concurrency, thus different rj over
time, and attempt to prevent interference of the best-effort
threads on the real-time threads.

Discussion. The interference from the best-effort thread sig-
nificantly impacts not only the memory consumption, but also
the maximum latency and deadlines missed of all scheduling
algorithms but the TMEM algorithm. When the best-effort
threads arrive, they do cause an increase in both the memory
consumption, and the tardiness, but the TMEM algorithm is
able to both maintain a low memory consumption, and dynam-
ically move memory to components to reduce the tardiness. In
contrast, the other algorithms either experience high tardiness
or memory usage, and do not as effectively manage the trade-
off between the two.
Evaluation of a network RPC service. We evaluate the
use of TMEM in a realistic setting. We use a service that
answers requests off of a network, processes them, and returns
a reply. We configured the system to specifically handle HTTP
requests, and return results from a ram-based file system. The
system is relatively small, consisting of only 23 specialized
components. 13 of these requires stacks from the stack man-
ager, and 7 require CBUFs. Eight threads are used to handle
requests on different ports, and one of them, τqos, is treated as
requiring higher quality of service. Here we relax the periodic
model used so far, and instead take advantage of the fact
that the TMEM policy simply requires thread + component
block times, and a thread’s tardiness. We interpret any positive

variation from the average processing time as the tardiness for
τqos. Table IV shows the resulting response time for τqos, and
the amount of TMEM used in the system. The static item
denotes a static allocation of all required memory for stacks
and shared memory. Such a static allocation is common in
many embedded systems.

Policy Response time (µ-sec) TMEM above minimum
min 38.8 35
max 10.1 48
static 10.1 140
tmem alg 12.7 42

TABLE IV
THREAD RESPONSE-TIME TO GENERATE A REPLY.

Though not detailed here, TMEM deals with task self-
suspension, a requirement when threads block waiting for
requests off the network.

Discussion. This application shows the generality of the
TMEM system. Though requests to such a system are sporadic,
the system observes response time variation, and uses memory
scheduling and predictable access to TMEM in component
caches to control the jitter. A system that scaled larger and
required more threads would also require more TMEM.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents the TMEM system for scheduling tran-
sient memory to increase effective memory capacity while
optimizing for end-to-end application constraints. TMEM em-
ploys spatial multiplexing of memory between components to
enable efficient access to memory, and predictable temporal
multiplexing of memory to reduce the amount of required
memory. TMEM focuses on increasing the effective capacity
of RAM, while explicitly ensuring predictability in contrast
to traditional techniques such as virtual memory. We present
an implementation in COMPOSITE with two different forms
of transient memory – execution stacks and shared memory
buffers – and evaluate the ability of the system to dynamically
manage and reduce thread tardiness, and memory require-
ments. We find that TMEM is able to maintain the efficiency of
caches, while lowering both task tardiness and system memory
requirements.

In the future we wish to apply the TMEM infrastructure to
all memory allocations in the system including those that do
not adhere to P2 and the bounded latency between allocation
and deallocation. This will enable even malloced memory to
be scheduled along-side execution stacks and shared memory.

Source code for the system can be found on the COMPOSITE
webpage at www.seas.gwu.edu/∼gparmer/composite.
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