Making Time Make Sense in Robotic Simulation

James R. Taylor, Evan M. Drumwright, and Gabriel Parmer

Department of Computer Science, George Washington University, USA
{jrt,drum,gparmer}@gwu.edu

Abstract. Typical dynamic robotic simulators model the rigid body
dynamics of robots using ordinary differential equations (ODEs). Such
software libraries have traditionally focused on simulating the rigid body
dynamics robustly, quickly, and accurately toward obtaining consistent
dynamics performance between simulation and in situ. However, simula-
tion practitioners have generally yet to investigate maintaining temporal
consistency within the simulation: given that simulations run at variable
rates, how does the roboticist ensure the robot’s control software (con-
troller, planners, and other user-level processes) runs at the same rate
that it would run in the physical world? This paper describes an inter-
section of research between Robotics and Real-Time Operating Systems
that investigates mechanisms for addressing this problem.

Introduction

Dynamic robotic simulators are one of the most widely used software tools in the
field of Robotics today. Some of the recent focus on these simulations has been
making them faster (e.g., as with Gazebo in the DARPA Robotics Challenge),
but one ongoing goal for rigid body simulations in general has been greater phys-
ical accuracy. The desire is that the simulations should evince physical behavior
as close as possible to the real world, whether that closeness is measured quan-
titatively (as shown in recent experiments by Vose et al. [8]) or qualitatively
(as can be seen in the unusual behavior observed in rigid “toys” like the Rattle-
back [4]). Clearly, Robotics will benefit as the physical accuracy of these systems
becomes more faithful to reality: planning, optimization, and validation are just
a few areas that can reap substantial improvements with better physical fidelity.

Our recent work [7] has broached an issue that has been safely ignorable for
simulating dynamics for computer gaming and computer animation applications
(the original focus of some popular simulation libraries like Gazebo and ODE):
the temporal consistency between the simulation library and the “user level”
software (controllers, planners, perception loops) for directing the robot. This
issue arises because the simulation software does not simulate at the rate of
“wall clock” time; as a result, the user level software—which may be expected
to feed commands to and pull state from the simulation at roughly the same
rate it would perform those operations on a physically situated robot—can not
be expected to exhibit similar performance in simulation as in situ.

This paper continues investigating the issue of temporally consistent simu-
lation. In addition to the general scheduling mechanisms and accurate timing

of a controller interfaced with dynamics that we explored in our previous work,
we have further developed our infrastucture to ensure time consistent sharing of
system resources among multiple controllers and planning processes. Addition-
ally, we use a simple experiment to demonstrate the effect that neglect of this
issue can have on robotic systems.

1 Background

1.1 Conventional robotic simulation paradigm: the callback model

Current simulation architectures leverage a simple model whereby the dynamics
executes for steps of time, and after each step the simulator invokes a call-back
function which defines the planning and control for the system. This function
can access dynamics state and it can actuate the system by adding virtual forces
and torques. Importantly, the callback function can execute for an unbounded
amount of time, without the time in the simulator progressing at all. The im-
plication of this is that a significantly intelligent planner with correspondingly
large computation times will execute on the exact environment it used as input,
thus ignoring planner computation time. If this system were transplanted into a
real environment the physical state of the system would diverge from the plan,
possibly irreparably, by the time such a planner returned a sequence of controls
for the system.

1.2 Simulation components

Simulators integrate user defined client components together with dynamics li-
braries into a single framework such that a particular scenario may be evaluated.
We define client processes to be the set of controllers and planners evaluated in
such a system. Multiple robots might be simulated, each with sets of client pro-
cesses. Collections of robots and environmental obstacles form a scenario. Each
of the robots has a set of sensors and actuators that are controlled by the client
processes in the system.

1.3 Temporal requirements

Temporally consistent simulation attempts to ensure temporal consistency be-
tween different software components, and a simulation environment (cf. the no-
tion of consistency for real-time aware, distributed shared memory accesses in
Singla et al. [6]). The goal of temporally consistent simulation is not adhering ex-
ecution to real-time, but rather ensuring consistency between the virtual progress
of the dynamics, and the computational progress of the robotics software.
Real-time operating systems (RTOS) could be used to provide the same func-
tionality as our temporally consistent simulation design on Linux, but would sur-
prisingly not provide many additional assurances. The focus of RTOSes is often

to control and bound latency for I/O. As temporally consistent simulation re-
places traditional I/O with interfaces for coordinator and dynamics interactions,
such RTOS facilities are superfluous.

A difficulty in providing a temporally consistent simulation infrastructure
is that the timing requirements for the client processes vary significantly, and
that they require accurate timing from the system. A system’s sensors and ac-
tuators often have a natural frequency at which they provide environmental
data or take actuation commands. Correspondingly, controllers are often exe-
cuted at a rate closely tied to those sensor and actuator frequencies (i.e. their
rates of input/output), and thus execute in a periodic manner. Specifically, they
are activated by the OS every N milliseconds, at which points they do their
computation, and block waiting for the next periodic activation. Note that if
a controller overruns its computation, it might finish execution only after an
activation. This is often called missing a deadline, and can result in instabil-
ity. In contrast, planners often execute irregularly, do as much computation as
is required, and provide their output as fast as they can, but not on a tight
schedule as with controllers. These computations are often called best-effort.
Planners often also provide higher-level sets of commands to the controllers via
Inter-Process Communication (IPC) channels.

In a temporally consistent simulation, the activations of periodic controllers
must be as time-accurate as possible, and the computation for the planners
must not interfere adversely with the controller’s ability to meet deadlines. The
most difficult timing requirements, however, derive from the interactions between
client processes and the external world, and between client processes. If the
simulated time within the dynamics gets too far ahead of the amount of time
that the client processes have executed, then sensor data will reference data “in
the future”. Alternatively, if the simulated time in the dynamics lags behind
computation, then actuator commands will be sent to stale dynamics state.
Comparably, the planner and controllers must be temporally kept in sync for
the same reason. This is at the core of temporal consistency: all aspects of the
simulation environment must proceed at rates that are realistic, and in sync.

1.4 System Scheduling Toward Temporally Consistent Simulation

In attempting to address temporally consistent simulation, this research requires
an infrastructure that can control not only the rate of progress of a dynamics
engine (which is often provided naturally by it’s API), but also of the exe-
cution progress of multiple client process computations. Put another way, the
temporally consistent system infrastructure requires control over the scheduling
of the system. Unfortunately, there is a semantic gap between what scheduling
facilities the kernel of the system provides (often a black-box), and what is re-
quired by the simulation architecture. Many previous research projects in the
area of operating systems have attempted to solve this problem. For example,
[5] and [3] provide system infrastructures that are extensible, enabling normal
user-level processes to define their own scheduling policies. However, they both
require drastic system changes to provide these infrastructures. Alternatively,

[2] and [1] attempt to create an environment in existing systems in which some
of the timing characteristics can be controlled by user-level code. Our research
continues with this trend by creating a multi-process simulation environment in
which the coordinator plays the role that the kernel traditionally takes: it con-
trols system scheduling (i.e. the interleaving of different client processes, and the
dynamics), and communication. However, it is designed to execute at user-level
using only the facilities and APIs provided by a POSIX-compliant OS such as
Linux. Thus, users need not modify their underlying systems at all.

The coordinator must address three main challenges: (1) how can Linux’s
POSIX-like API be leveraged to control scheduling and communication; (2) how
can abstractions be provided to client processes so that they read sensor data,
send actuator commands, and communicate via IPC normally; and (3) how can
client computation be scheduled alongside the dynamics engine’s virtual time?

2 OS Facilities for Temporally Consistent Simulation

2.1 Timing facilities

The goal of the temporally consistent system is to ensure that for a number
of client processes, and the dynamics, time progresses consistently for all. A
key concept for temporally consistent systems is the maximum deviation in this
progress, which we define in the following. We denote each of the client processes
and dynamics as {pg,...,pn} € P. p; € P has executed (or had simulated time
progress) an amount of time e} by time ¢ within a given simulation infrastructure.
Each periodic process blocks waiting for its next activation, thus essentially
moving its own computational progress forward by the amount of time it waits,
wt. This wait time is common for controllers that activate periodically, but don’t
use all execution time until their next activation. Thus we define the temporal
drift of the system, A, as such:

A = max{ max (e + w;) — min (e +w;)}

Intuitively, A is the maximum deviation in temporal progress between any two
parts of a simulation. A perfectly temporally consistent system is one in that
A = 0, while a traditional callback-driven simulator with a planner that always
executes for more time than a step in the dynamics has A = co as t — oo.

Commodity hardware features timing facilities that are based on somewhat
granular units of time. For example, timer ticks provide preemptive execution
to prevent system starvation from a single process, which occur at a minimum
fixed interval (for example, 100 or 1000 times a second). POSIX-based operating
systems provide APIs for accessing timers and execution accounting facilities.
Thus, the granularity for executing processes on modern systems is somewhat
large. If this is bounded by 10ms (the timer inter-arrival on our system), then
A > 10ms. Thus our temporally consistent system attempts to minimize A
within the confines of the hardware and OS provisions. However, we have found

that the choice of the OS facility used for this timing has a large impact on the
accuracy of timing in the system.

Accounting for execution time. To track the execution progress of a client
process, traditional OS facilities (such as those used in the time and top pro-
grams) have a very large granularity, and an unbounded error. Instead of relying
on these very coarse grained mechanisms, we use the cycle-accurate time stamp
counter register that is available on most processors. It is a 64 bit value that
counts the number of cycles elapsed in the processor, and is accessible on x86
and x86-64 processors through the rdtsc instruction. To maintain accurate time
using rdtsc, the system must (1) know the processor speed; (2) maintain a con-
sistent processor speed (or, alternatively use “invariant time stamps” in modern
processors); and (3) all client processes and the coordinator must remain active
on only one, shared processor core. For (1), we read the processor speed from
the /proc file-system, for (2), we disable all power saving and throttling fea-
tures, and for (3), we confine the measured process to run on a single processor
core using the sched_setaffinity(.) system-call family. Thus our system can
cycle-accurately account for the execution time (e!) of each client process.

Accounting for wait time. To track the wait-time (w!) for a process, our
system provides an API similar to setitimer which enables recurring, periodic
activations. Controllers use our API to schedule periodic activations, and after
their computation for a specific activation is complete, they become inactive
waiting for the next activation. The system tracks this elapsed wait time until
the process is again executed. Notably, this wait time does signal some temporal
progress for those controllers, even though it does not include computation time,
thus why we consider it in the calculation of A.

Granularity of preemption. For any scheduling system to control the execu-
tion of unknown computation (that might, for example, contain an infinite loop),
preemption is required. A significant flaw of the callback model is that it executes
the planner non-preemptively — the simulator cannot stop the planner when it
has executed for too long. The hardware provides timer interrupts as its basic
mechanism for preemption. POSIX provides a number of facilities for notification
of timer interrupts. Our coordinator uses signals associated with the timer to
receive these notifications. When the hardware causes a timer tick, the OS vec-
tors it into a user-level signal that switches away from the previously executing
client process (e.g., planner), and to the coordinator, where scheduling decisions
can be made. This, combined with the accurate execution time explained above,
provides the temporally consistent system with the main facilities it requires to
manage timing.

2.2 System scheduling

The default scheduling policy in Linux is SCHED_OTHER that makes no guarantees
on when any thread in the system will make progress. In contrast, it also includes
two real-time policies for first-in-first-out, non-premptive, fixed priority schedul-
ing, and preemptive (round-robin), fixed priority scheduling—SCHED_FIFO and
SCHED_RR, respectively. These policies are predictable in that if two processes

both want to run on the CPU, the higher priority one will always be chosen to
execute. A process can be set to be scheduled using any of these policies via the
sched_setparam system call.

Context switching. We take advantage of the predictable behavior afforded
by these kernel scheduling policies to implement our own scheduling policy in
the coordinator. The coordinator itself always executes at the highest priority.
The client process it wants to switch to will be given the next highest prior-
ity. To finish the switch to that process, the coordinator will block waiting for
timer interrupts, actuator commands, blocking notifications, and IPC (block-
ing on multiple sources in POSIX can be done with select). If any of these
are detected, it will wake, and immediately activate (as it is highest priority).
Whenever the coordinator executes, it makes a scheduling decision about which
client process/dynamics should run next to optimize for a minimal A.

Process blocking. In attempting to override the scheduling policies of the
kernel, the coordinator must consider the case when a client process blocks. For
simplicity, in this work, we assume that the client processes only block waiting for
timeouts (periodic controllers), or waiting for sensor data. Without accounting
for blocking, the coordinator might lose control of the system: if the process
that is supposed to be executing instead blocks, then the kernel will take over
and choose the next highest thread to execute, which might not be in the time
consistent system, thus invalidating the coordinator’s execution accounting.

2.3 Interprocess communication

Communication between client processes (e.g., the planner sending commands
to the controller), sensor data requests, and actuator commands require the
coordinator to mediate the communication. Each client process is given access
to two pipes that are used to (1) block the process waiting for an event (e.g,.
IPC, sensor data), or (2)send a notification to the coordinator that the process
is sending data (e.g., IPC, actuator commands). The coordinator is awakened
by such notifications and can decide where to copy the data (it is in shared
memory) or how to manipulate the dynamics.

3 Time Consistent Simulator Design

The time consistent simulator must manage multiple conflicting goals. On the
one hand, the timing requirements of controllers require the meeting of dead-
lines (i.e., an accurate activation time), and on the other, temporal consistency
is required to have a clear mapping between actual system execution, and sim-
ulated execution. As the simulated environment must support multiple robots
and varied software infrastructures with rich communication structures, it must
be highly flexible. This section covers the implementation of the infrastructure,
and details how it integrates with the OS facilities from Section 2.

3.1 Hierarchical Scheduling and Threads

To handle the required generality, we use a hierarchical scheduling framework [5].
Such systems define a tree of schedulers. The leaves of the tree are client pro-
cesses, and the dynamics. When activated, the root scheduler determines from
its children which to execute (i.e. it makes a scheduling decision), and does so
using a polymorphic method invocation to dispatch the child. If the child is
a leaf, then the dispatch function will either (1) use the context switch mecha-
nism described in Section 2.2, or (2) make an invocation into the dynamics to
step the simulated time forward. However, as the system is hierarchical, the dis-
patched child could be a scheduler itself. The key insight here is that each of the
schedulers in the hierarchy can define different scheduling policies.

Scheduling policies. There are two policies we use in the system, one to main-
tain minimal temporal consistency, and the another to do strict priority-based
scheduling. As a general rule, the schedulers close to the root are concerned with
temporal consistency, while those that represent an actual scheduler on a robot
are concerned with maintaining accurate timing for the system controllers, thus
placing them at a higher priority than the planners. Though more scheduling
policies could be added, we found that these are sufficient.

Ezample use of hierarchical scheduling. The system set-up we use in Section 4
includes a dynamics engine and two robots, one with both a planner and a
controller, and the other with a simple controller. All of the three threads for
the robots, and the dynamics must be scheduled. Thus, we organize the system
with a single root scheduling for consistent timing between each robot, and the
dynamics. The robot with both the planner and the controller has each under a
scheduler with the fixed-priority policy, with priority going to the controller. The
hierarchical arrangement of schedulers and the dynamics and client processes is
essential to properly schedule given the different goals of different parts of the
system, and to enable the simulation of complex, possibly multi-robot systems.

Maintaining proper accounting in the hierarchy. Just as scheduling decisions
follow a chain from the root to a leaf, the accounting for execution time and
progress must go from leaves down toward the root, so that scheduling decisions
can be made at each scheduler based on an accurate rendition of how much tem-
poral progress all of its children have made. For this, we aggregate the execution
times of all children, unless they are all blocked waiting for sensor data, in which
case we determine that child’s progress to be the minimum of those block times.

3.2 Coordinator Design

The coordinator is the heart of the system and orchestrates all execution. The
hierarchical scheduling policy is executed in the coordinator, and when a dispatch
is made to a client process, the coordinator goes through the following steps:
(1) swap the priorities of the previously active client process, and the one we
want to switch to (Section 2.2), (2) take a time-stamp reading (Section 2.1),
and (3) block the coordinator (on select) waiting for an event (timer tick or
request for sensor data). As the coordinator (which is highest priority) blocks,

the system naturally switches to the new process, thus completing a context
switch. Unblocking the coordinator (and subsequent blocking of the active client)
is accomplished by writing notifications to the pipes that will wake the main
coordinator thread of execution. Client processes explicitly notify the coordinator
of servicing needs and scheduling demands by sending read, write, and idle
notifications including timestamp to the coordinator which result in yielding by
the client process and rescheduling per their scheduling policy. The coordinator
also implements a real-time monotonic timer via timer_create that periodically
sends a timer notification including timestamp. The timer notification ensures
the coordinator interrupts a long running (typically best-effort) client process
such that all client processes (especially periodic) are given fair access to the
processor on a regular basis and no client process can starve all others.

Priority|Level |Process Description

De lo |coordinator highest real-time priority for the OS

pe— 1 {1 |active client the currently dispatched client

Pe—2 02 |block detection|reserved for a block detection process

Pe—3 l3 |waiting clients |all other waiting (or blocked) clients
Table 1. Process Priority Assignment.

Coordinator initialization. System boot-up is a delicate process that we detail
here. Upon initialization, the coordinator is bound to the CPU, set as a real-
time process with highest priority ¢y (Table 1), opens pipes for IPC, opens the
shared memory, intializes the dynamics system, creates all client processes, and
initializes the timer. Creation of a client process involves wrapping the process
with a client thread, forking a new process, scheduling with the system as a
real-time process and with real-time priority /3, binding to the same CPU as
the coordinator, disabling console interaction, and launching the executable file
via execl. Console interaction is disabled after the fork by forwarding stdin,
stout, and stderr to /dev/null to minimize blocking system calls within these
processes, which might disturb the coordinator’s control over timing. When a
client process is dispatched, the coordinator raises the client system priority
from ¢35 to /1, and yields to the dispatched child by blocking via select. When
the client process publishes any notification to the coordinator, the coordinator
unblocks, preempts the client process, and lowers the client system priority from
61 to 63.

3.3 Client process

A client process is an external main function program that must provide facili-
ties for opening the shared buffer, for sending read, write, and idle notifications
on prescribed channels, and for executing its own computation code. A client
process must be preregistered with the simulation such that it is linked to the

corresponding dynamic body, is described as a controller or planner, is classi-
fied as either periodic or best-effort, and has IPC facilites prepared. Forking
the coordinator and executing the external program, inserts the external pro-
gram into the process space of the coordinator as a child process and inherits
the established ITPC channels. Notifications of process reads indicate requests
for simulation state (e.g., reading sensor data). The coordinator services these
reads using shared memory to pass data. Client process writes correspond to
either a controller sending commands to actuators, which are correspondingly
interpreted to manipulate dynamics state, or they correspond to a planner send-
ing the plan to the controller via the coordinator. Finally, client processes send
idle notifications to the coordinator to yield until the next activation (e.g., for
periodic controllers).

4 Experimental validation

Our experiments aim to illustrate the performance discrepancy between systems
using callback functions and our time consistent system. The experiments have
been designed to reflect our experience with building software for both simu-
lated and physically situated robots; this decision results in a few discrepancies
between the time consistent and callback-based systems that will be noted below.

Our experimental scenario uses a predator-prey scenario with two identical
“space ships” (i.e., rigid bodies moving freely in SE(3) via application of forces).
The ships are constrained to move within a cubic region of space; when a ship
attempts to move out of this region, a spring-like penalty force pushes it back
toward the free region.

4.1 Predator and prey behavior

The prey is driven by a simple control policy, which enacts either a random walk
(we save the seed so that we can reproduce the walk across trials) or a fleeing
behavior, depending on the distance of the predator. The prey flees by moving
directly away from the predator using limited force.

The predator uses kinodynamic planning to chase the prey by exploiting the
latter’s deterministic behavior when the predator gets sufficiently close. Indeed,
given ample planning time, the predator should be able to plan to intercept the
prey by using the prey’s deterministic movement model and an inverse dynamics
model (that determines the requisite forces to achieve a target acceleration).

Planning and control We instituted our own kinodynamic planning mecha-
nism which applies controls, integrates its models of the predator and prey for-
ward in time, and finds a plan that brings the predator closer to the prey. Our
initial efforts used OMPL, but the inherent multi-threaded nature of the library
and its use of wall-clock time for determining when the planner should termi-
nate confounded our system’s efforts to schedule the planning process. Using
wall-clock for process timing assumes that the process will not be scheduled-out,

10

so the planning time parameter in running OMPL in the context of a real-time
system can only be considered an idealized upper bound. The planner is allowed
to execute for a maximum time (1.0s) and the resulting plan is not executed
beyond a maximum duration (0.1s); beyond this point the open loop execution
of the plan by the predator tends to lead to it becoming dynamically unstable.
The planner is called differently on the time consistent and callback-based
systems. On the callback-based system, the planner is called only when all of the
commands from a previous plan have been executed (or the plan has become stale
by going over the maximum allowable duration). The time consistent system calls
a planner in a manner analogous to operation on a real robot: (1) before a plan
arrives, the predator executes “no-op” commands (i.e., it applies no force and
no torque); (2) the planner attempts to find a plan (the predator continues to
execute “no-op”’s at this time); (3) when a plan is found, the predator begins
executing the plan and immediately calls the planner to begin planning again;
(4) the planner keeps executing that plan until the sequence of commands is
complete or the planner notifies the controller that a new plan is available.
The predator controller uses a composite feedforward (i.e., the planned com-
mands) and negative-feedback controller to account for error between its current
state and the desired outcome. The prey uses a simple control policy only.

4.2 Time consistent system and callback-based-systems

The time consistent system was built on top of an otherwise unmodified version
of Moby. For comparison we used two callback-based systems, “vanilla” Moby and
Gazebo/0DE. Each simulation was run with a 0.01s dynamics time step, a max-
imum planning time of 1.0s, a planning step size of 0.01s, and both controllers
running at a frequency of 100Hz. Our experiments were run on Linux kernel
3.2.0 (“vanilla” Ubuntu 12.04) using a 2.80GHz Intel Xeon quad-core processor.

4.3 Experimental specifications

All scenarios start in the same configuration with the predator and prey halted
and separated by ten meters and a flee triggering distance of five meters. Scenar-
ios were simulated for twenty seconds of simulation time, and each experimental
trial consisted of running the scenario with identical random seed for the prey
using the three systems: Gazebo, “vanilla” Moby, and modified Moby (the time
consistent system).

4.4 Experimental results

The results of our experiments, depicted in Figure 1, show that the simulations
based on the callback model yield virtually identical statistical behavior while
the time consistent simulation exhibits dissimilar behavior. Because the sim-
ulation state is frozen during planning in the callback model simulations, the
predator is consistently able to plan from its current state to the current state

11

of the prey, which allows it to maintain close proximity at nearly all times. The
statistical distributions for the callback-based systems are centered within the
flee triggering distance with a maximum distance equal to the initial distance.
In the time consistent simulations, the predator is able to approach the prey
for only short durations and the statistical distribution is centered more closely
to the starting distance and exhibits high variance. Animated renderings of the
simulations show that the predator tracks the prey very closely in the Gazebo
and “vanilla” Moby simulations while the predator generally undershoots or over-
shoots the prey’s position in the time accurate system.

12000
Gazebo with ODE

['vanilla’ Moby

10000 Il Moby with Time Consistent Framework

8000

6000

Samples

4000

-]JJ'
0-.] IIIIIIlll-.-_
5 10 15 20

25 30 35 40
Signed Distance Between Predator and Prey

Fig. 1. Histogram showing the instantaneous distances between predator and prey over
ten trials (2,000 samples per trial). Systems based on the callback model are effectively
able to plan while the predator and prey are frozen in time, while the time consistent
system must plan and act in real time. Consequently, the predator is able to stay much
closer to the prey in the systems based on the callback model.

The predator in the callback-based systems is able to maintain much smaller
distances to the prey solely because the predator’s planner is able to execute
proportionally for much longer without the danger of plans becoming stale. At
the end of 20 simulated seconds, the planner in the traditional callback-based
systems consumed on average 188 seconds, thus yielding A = 168.01 seconds.
The ratio of planner execution time (1.0s) to planner frequency (0.1s) indicates
that the planner runs for 10 times longer per second than the simulated time pro-
gresses and approximates A = 10¢. In contrast, A = 0.003 seconds for the time
consistent system; though A is non-zero (due to intrinsic hardware limitations),
its value is independent of the time that the simulation runs.

In a follow-up experiment, we measured the overhead of our components
for enforcing temporal consistency. For a single trial, the overall system ran
twenty seconds of simulation time in a real-time of 21.22 seconds during which

12

the system spent 0.42 seconds coordinating, 20.21 seconds running planners and
controllers, and 0.59 seconds stepping dynamics. From this result, we estimate
our framework adds 2% of overhead, which we argue is acceptable.

5 Future work

For future work, we will investigate augmenting our system to increase time
accounting accuracy by detecting unconstrained blocking system events (which
most non-real-time software triggers) and client process unblocking events, which
will allow us to better support existing libraries like OMPL without requiring
modifications to the libraries themselves. To take full advantage of current system
architectures, we will also scale the coordinator scheduling system to utilize
multiple cores and multiple processors. We will support simulations for which
time does not proceed monotonically (like those that use adaptive integration).

6 Acknowledgements

This work was partially supported by NSF CMMI-110532.

References

1. J. H. Anderson and M. S. Mollison. Bringing theory into practice: A userspace
library for multicore real-time scheduling. In Proc. IEEE Real-Time and Embedded
Technology and Applications Symp. (RTAS), pages 283-292, 2013.

2. T. Aswathanarayana, D. Niehaus, V. Subramonian, and C. Gill. Design and perfor-
mance of configurable endsystem scheduling mechanisms. In Proc. IEEE Real-Time
and Embedded Technology and Applications Symp. (RTAS), pages 32-43, 2005.

3. B. Ford and S. Susarla. Cpu inheritance scheduling. In Proc. USENIX Symp. on
Operating Systems Design and Implementation (OSDI), pages 91-105, 1996.

4. B. Mirtich. Impulse-based Dynamic Simulation of Rigid Body Systems. PhD thesis,
University of California, Berkeley, 1996.

5. G. Parmer and R. West. HiRes: A system for predictable hierarchical resource
management. In Proc. IEEE Real-Time and Embedded Technology and Applications
Symp. (RTAS), 2011.

6. A. Singla, U. Ramachandran, and J. Hodgins. Temporal notions of synchroniza-
tion and consistency in beehive. In Proc. ACM Symp. on Parallel Algorithms and
Architectures, SPAA ’97, pages 211-220, New York, NY, USA, 1997. ACM.

7. J. R. Taylor, E. M. Drumwright, and G. Parmer. Temporally consistent simulation
of robots and their controllers. In Proc. ASME Intl. Design Engr. Tech. Conf. and
Comput. and Inform. in Engr. Conf., Buffalo, NY, 2014.

8. T. Vose, P. Umbanhowar, and K. M. Lynch. Friction-induced velocity fields for
point parts sliding on a rigid oscillated plate. Intl. J. of Robotics Res., June 2009.

