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Abstract—Predictable reliability is an increasingly important
aspect of embedded and real-time systems. This includes the
ability to recover from unknown faults in a manner that
maintains system timing guarantees, even when these faults occur
within system components. This paper presents the C> system,
which is the first system implementation we know of for pre-
dictable, system-level fault tolerance that doesn’t require physical
redundancy. We introduce both the system design, and two
timing analyses that enable the predictable recovery from faults
in operating system components, and identify recovery inversion
as a main impediment to schedulable recovery. C> provides fault-
tolerance for low-level system components using a combination
of efficient p-reboots, and an interface-driven mechanism to
recreate component state. C> introduces on-demand recovery
that properly prioritizes aspects of the recovery process to avoid
this inversion and not inhibit system timeliness. We compare
this system to both eager recovery, and to checkpointing of a
paravirtualized real-time OS.

I. INTRODUCTION

Real-time and embedded systems must often meet conflict-
ing demands including predictability, efficiency, and reliabil-
ity. As these systems control more of the physical world,
system reliability is an increasingly important dimension of
a system’s correctness. Environmental effects such as Single-
Event Upsets (SEUs) caused by radiation can cause corruption
of transistor state leading to bit-flips in chip structures [1].
Additionally, as chips continue toward smaller processes (e.g.
down to a 22nm feature size and beyond), micro-architectural
effects will increasingly deviate from their specified behavior
due to manufacturing error, heat damage, and other physical
effects. In fact to surmount these challenges, a call for a
“concerted effort on the part of all the players in a system
design” was made [2].

Dependable systems are those that are able to avoid service
failures that are more frequent or severe than is acceptable, in
spite of erroneous hardware and software [3]. Toward depend-
ability, fault tolerance is an important component of system
design. Upon detection of an error, the system is recovered to a
state without the erroneous behavior. Software infrastructures
for fault tolerance show promise to aid continued process-
driven progress, and the ability to maintain dependable service
in the presence of adverse environmental stimulus. This paper
focuses on the tolerance of intermittent faults (including
transient faults) [3] that are due to environmental, process-
related, or other non-deterministic sources. Due to the very
nature of a fault happening at unpredictable locations within
system execution, it is important for the tolerance of faults
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even in system-level code such as the operating system. Addi-
tionally, as real-time system’s correctness considers temporal
properties, the faults, and the recovery mechanisms must be
integrated into system schedulability analysis.

Fault tolerance infrastructures often trade resource con-
sumption for the ability to recover from faults. Notably,
redundancy is a common technique for tolerating faults and
can rely on hardware or software, using active or passive
replication. However, the existing techniques usually have a
negative impact on system Size, Weight, and Power (SWaP).
Embedded systems with stringent SWaP or cost constraints
benefit from lighter-weight approaches for uni-processors that
attempt to avoid redundant work and are efficient and pre-
dictable. Thus, we focus on node-level fault tolerance with the
goal of increasing dependability by decreasing the probability
that a fault will cause node failure.

Application A Application B

. ipc >
R

syscalls

system sched mem mgr

Fig. 1: Application-level faults are recoverable by restarting the application,
or restoring a previous state. System-level faults effect the timing of multiple
applications, and are difficult to recover from even when system services
are in separate protection domains communicated with via Inter-Process
Communication (IPC).

Much real-time, fault tolerance research assumes that faults
cause failures at the application (user) level [4][5][6] as
depicted in Figure 1. User-level applications have desirable
properties that enable fault tolerance: First, temporal redun-
dancy can be harnessed to re-execute a job that experienced
a fault. Recovery of the application by re-execution can be
done using techniques such as recovery blocks [7], process
checkpointing [8], or application-specific management of state
reconstruction that can be used to recover from a fault.
Second, a single fault will only cause the recovery of a single
application. The impact of re-execution is restricted to the
timing of same and lower-priority applications.

Tolerating faults in system-level software with an emphasis
on predictable recovery has received significantly less at-
tention. Faults in system software (e.g, system scheduling,
memory management, and I/O processing) are significant.
Not only do they possibly compromise the entire system, but
they are common: nearly 65% of hardware errors corrupt OS
state [9] before they’re detected. Figure 1 depicts system-level
faults affecting multiple applications. A number of factors
make the tolerance of system-level faults particularly difficult.



(1) System services that must be recovered have inconsistent

state with the rest of the system. A failed scheduler must reach

a consistent state which includes all threads in the system in

the proper state. (2) Predictable recovery is difficult as the

time to recover a failed service affects all tasks dependent
on it. Additionally, recovery might be expensive due to the
consistent state reconstruction for low-criticality tasks. This
leads to recovery inversion where recovery of “low-criticality
data-structures” delays high-criticality task execution. Recov-
ery inversion is intrinsic in system-level recovery where state
is recovered that corresponds to tasks of different priorities.

(3) Multiple application requests concurrently execute in sep-

arate threads in system services. So recovery must work in

a concurrent environment. (4) Fault propagation is significant

as monolithic systems enable the trivial spread of an errant

behavior throughout the system.

In this paper we introduce C3, the Computational Crash
Cart, implemented on the COMPOSITE component-based
OS [10] that focuses on predictable recovery from system-level
faults. C3 uses a combination of fine-grained fault isolation,
p-reboot, and interface-guided consistent state recovery to
tolerate faults even in some of the lowest-level system ser-
vices. As a comparison case, we also present a low-overhead
implementation of component checkpoint and restore. For
both techniques, we derive their timing properties, and study
how much impact they have on system schedulability in hard
real-time systems.

Contributions.

o We detail the design and implementation of C3 which is the
first system, as far as we know, to provide full, predictable
recovery from system-level faults without the resource costs
of replication. We introduce a novel and effective interface-
driven recovery method that is used to reestablish the state
of a failed system component.

o We introduce the concept of recovery inversion in which the
recovery process unduly interferes with the timing properties
of real-time tasks. We detail a system recovery mechanism
based on on-demand recovery to minimize and bound this
inversion.

o As a comparison case for the C? recovery mechanisms, we
present the implementation of an efficient and predictable
checkpointing facility for embedded systems. While this
mechanism doesn’t necessarily scale beyond small (mem-
ory) systems, or systems with more than one component,
we find it is effective within these assumptions.

o We focus on the timeliness of system recovery. We introduce
a schedulability analysis that accounts for faults that occur
at a minimum, specified rate.

o We evaluate the ability of C3 and checkpointing to maintain
schedulability of (schedulable) random task sets in the
presence of faults.

II. RELATED WORK

System reliability and fault tolerance have been widely
studied for decades [11] [12] [13] [14] [15], with the aim
of delivering predictable service in the presence of faults.
Fault models. This work assumes a periodic fault model
where faults have a minimum inter-arrival time. SEUs are

simulated by this model. Though it is not realistic to expect
periodic faults, modeling them as periodic enables a sys-
tem designer to understand the system timing and recovery
properties with a certain minimum fault inter-arrival. Thus,
given expected fault distributions, a practitioner can make
an engineering decision if the system is tolerant enough.
Additionally, we pessimistically assume that each of these
faults results in an error (i.e. no faults are harmless) — if
faults are harmless, fault tolerance facilities are not required.
In contrast to the periodic fault model, the fault-burst [16]
model represents continuous faults occurring within a window.
Future work will consider this model.

Replication. Existing fault tolerance relies on either active
or passive replication [17], [18], [19] in distributed contexts
with computation on multiple nodes. Process level [20], [21]
replication can be made using a set of redundant processes
per original application process and compares their output to
ensure correct execution. Similarly, [22] replicates execution
of event-driven state-machine computations to detect and pre-
vent the propagation of faults. N-version programming [23] is
based on replicated computation, e.g. N independent versions
of the same program written by the different groups. Recovery
block [7] rolls the system state back and another computation
can be tried based on the result check. These existing tech-
niques are either expensive, or designed to address persistent
hardware faults or deterministic faults [3] (where a module
will always fail for a given input). C® focuses on predictable,
efficient system-level recovery from transient faults without
physical machine, or process-level replication.

OS reliability. Nooks OS [24] achieves reliability by isolating
the OS from device driver failures. Notably, we do not focus
specifically on device drivers, and instead on general system
services. CuriOS [25] achieves OS service reliability by
saving client-specific state information in protected memory.
Minix3 [26] used the Reincarnation Server to restart the faulty
services. However, none of the these consider the temporal
properties, or schedulability of the system.

p-reboots [27] are used to provide reliability to web-
services, and rely on an application being decomposed into
separate modules, each of which can be restarted individually.
The difficulty is rebuilding appropriate state upon reboot.
For web services, this is simple as a data-store — often
implemented as a database — is used to rebuild an up-to-date
state. Without a mechanism for re-establishing a component’s
state, u-rebooting components alone does not perform system
recovery. A contribution of this paper is not only detailing an
efficient method of y-rebooting a low-level, failed component,
but also a predictable interface-driven recovery mechanism.

Real-time application-level fault tolerance. Schedulability
with temporal redundancy at the application-level has been
investigated in the past [4], [5], [6], [8]. That research has
shown that the schedulability of applications can be guaran-
teed in the presence of faults with proper design. For example,
the feasibility analysis of fault tolerant real-time task sets
with the fixed priorities was proposed in [11]. However, none
of these address predictable fault tolerance of system level
components.
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Checkpointing. Different checkpoint schemes have been in-
vestigated [28], [29], [30] including off-line, on-line, prob-
abilistic and deterministic checkpointing. However, if a fault
occurs in a system level service, checkpointing can not always
guarantee a stable system. Figure 2 shows an unoptimized
PID controller output for a first order time delay system
under normal conditions and under faults tolerated with check-
points. The solid line shows the expected output of a PID
controller converging to a targeted value of 0 around 800ms.
The dotted line represents the output of a PID controller
when the fault occurs in the scheduler every 400ms and the
output slowly converges around 1500ms with some visible
disturbance due to recovery. If the fault occurs every 200ms,
a large variance in the output can be seen as the dashed line
that converges slowly beyond 2700ms. In a cyber-physical
system, checkpointing requires careful consideration due to the
inconsistency between the current physical system state (e.g.
a mobile system’s physical location) and the state expected
by the control system from checkpointed information. For
checkpointing to be applicable to an embedded system, either
this inconsistency must be acceptable for a specific control
system, or the sensors of the system must report absolute,
not relative system description. For example, this would mean
using GPS rather than an accelerometer to track location.

III. SYSTEM DESIGN
A. C3: The Computational Crash Cart

C3 [31] is a system designed around the goals of tolerating
faults in system-level components that all applications are
dependent on, doing so predictably, and with minimal (CPU
and memory) overhead. C3 is built on COMPOSITE.

COMPOSITE background. COMPOSITE is a component-
based OS in which system policies and most abstractions
are defined in fine-grained components. Components in COM-
POSITE are code and data that implement some functionality
that exports an interface of functions through which other
components can harness that functionality. Components have
a set of functional dependencies on interfaces that must be
satisfied by other components. Components in COMPOSITE
execute at user-level in separate hardware-provided protec-
tion domains, and access to resources and communication
channels is restricted by a capability system. Even low-level
services such as scheduling [32], physical memory manage-
ment and mapping, synchronization, and I/O management
are implemented as possibly hierarchically-arranged [33],
user-level components. Invoking a function in the interface
of a depended-on component transparently triggers thread-
migration-based [34], [35] synchronous inter-component com-
munication (called “component invocation”). In this way, the

same schedulable thread executes through many components,
and can be preempted at any time. By default, components are
passive. A component becomes active only when invoked by
threads from other components, or when a thread is explicitly
created in it. Multiple threads can concurrently execute within
a component and predictable resource sharing protocols are
required just as they are in system services of more traditional
OSes.

Limiting Fault propagation via fine-grained component
isolation. As fine-grained components are memory-isolated
via hardware page-tables, fault propagation via errant memory
modifications cannot cross component boundaries. Even a
simple web-server consists of 25 components, thus con-
straining fault propagation significantly. Components interact
through the functions in their interface. Though faults can
propagate through function invocations between components,
in fault injection experiments we have not observed this to
happen. If this propagation became significant, well specified
interfaces with pervasive error checking and validation of
inputs could aid in its prevention (as in [36], [37]). Per-
vasive fault isolation is not too heavyweight. A COMPOS-
ITE webserver performs as well or better than Apache on
Linux [38]. Though Apache is not the fastest web-server,
this demonstrates that COMPOSITE can achieve useful levels
of performance even with the overheads of pervasive fault

isolation.
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Fig. 3: (@ C0n51stency between component data-structures tracking threads
in a client and a server scheduler. When the scheduler fails, it loses data-
structures holding the existing threads. Recovery restores a consistent state
for those data-structures. (b) Example interface for the scheduler.

int sched_exit(thdid_t current);

int sched_blk(thdid_t current,
thdid_t dependency);

int sched_wakeup(thdid_t target);
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Component consistency. Consistency between the state of
multiple components can now be more concretely defined. The
“client” of an interface has a set of active objects that have
been provided by the “server” component. For example, a
real-time component might have used a scheduler component
to create three threads. These objects have had operations
performed on them via interface functions (e.g. threads have
blocked, and woken up) that have expected (implicit) seman-
tics (Figure 3(b)). A consistent state between a client and
server simply dictates that the independent data-structures of
each component contain the same set of objects, and that
the same operations have been performed on the respective,
component-local data-structures. Figure 3(a) depicts this inter-
component state consistency. On the left, three threads in the
client are consistent with the run-queue in the scheduler with
the three threads. Upon failure of the scheduler, the component
is recreated with an initial state that notably lacks a consistent
data-structure for the three threads as seen by the empty run-
queue. The goal of C3 is to predictably rebuild a consistent
state upon system component failure.

thdid_t sched_thd_crt(char *params);

int sched_set_params(thdid_t target,



Component consistency example. The lock component pro-
vides locks to other components, and uses the scheduler
interface to block and wakeup threads (it also creates depen-
dencies with the sched blk function for priority inheritance
which we will ignore here). The lock component tracks
threads blocked on a lock, and the lock holder in its data-
structures. It uses the sched blk call to block the contending
threads. When the lock holder releases the lock, it will call
sched wakeup on all contending threads to wake them up.
In the scheduler, threads are moved from the run-queue to
the blocked queues, and back in response to these calls. If
the scheduler and lock data-structures are inconsistent, then
threads might be executed by the scheduler when they should
be blocked waiting for the release of a lock. Alternatively,
an inconsistency could result in a thread not being woken
upon lock release, thus threatening the lock implementation’s
progress guarantees. If the data-structures aren’t consistent,
then the intended semantics of the lock component cannot
be implemented, thus impacting whole system correctness.
Components that are side-effect free (purely functional) are
better implemented as libraries. Thus, when a component fails,
it is, without further action, inconsistent with the rest of the
system as its state must be assumed corrupted.

B. C3: Interface-Driven Fault Recovery

Interfaces between components include a set of interre-
lated functions that commonly operate on a small number
of different object types. Due to the separation of concerns
promoted by component-based systems, the number of object
types manipulated in an interface is typically one. These
object types are threads for the scheduler interface, files
for a file-system interface, or virtual memory pages for a
memory management and mapping interface. C? tracks the
semantic information about the state of these objects within
the stub code interposed on the interface to rebuild a consistent
state between components. Figure 4(a) depicts an invocation
between components. Specifically, from a client component
to the sched blk function in the scheduler. The kernel must
mediate communication between separate hardware protection
domains, but interface- and function-specific stubs interpose
on invocations. Traditional stubs are generated by an Interface
Definition Language (IDL) that marshall arguments — pointers
cannot be shared between protection domains. Stubs in C?
also track the current state of each object. C3 interfaces
define each object as a state machine where the semantic
transformations that different functions in the interface have
on the object represent transitions between states. This is in
fact a simple specification of the protocol to organize function
invocations in each interface [36], [37]. C* expands this idea,
by using the tracked object’s state in interface stubs as a means
to restore consistency.

An example of an object’s manipulation in an interface
is seen in Figure 3(b). Thread objects are manipulated by
functions in the scheduler interface, and transfer between
an initial state of runnable (THD RUNNABLE) and blocked
(THD BLOCKED) via invocations to sched blk, and back
with sched wakeup. Thus thread objects in this interface are
described with two states. When an object is destroyed (e.g.

with sched exit), it is no longer tracked — a termination
state. When a server fails, the client stubs recreate objects
and transition them into the consistent state via the functions
in the interface themselves. Server stubs provide the ability to
query, or “reflect” an object’s state by the client, enabling the
client to rebuild its state upon failure. The stub code executes
in both client and server, thus providing recovery guidance if
the other side of the protection domain fails.

Object state tracking via interface interposition. To un-
derstand how stubs are involved when a component invokes
a function provided by another, we use sched blk — the
function that blocks a thread — as an example. In Figure 4(a),

function invocation is redirected at link-time to the stub,

the current state of the operated-on object is found and
updated by transitioning it to another state where appropriate
according to the function called, @ the kernel switches to
the destination component’s protection domain, @ the state
is redundantly tracked in the server stubs to aid client recovery,
and @ finally the destination function is called.

Figure 5 depicts the client stubs for the scheduler inter-
face in Figure 3(b) that track a simple state-machine for
each thread in the client stubs. Here we assume that the
cos_invoke server macro understands how to utilize the
kernel ABI to actually invoke the corresponding function via
kernel-mediated component communication.

As mentioned before, C3 assumes that faults don’t prop-
agate via invocations. As pointers are not passed between
components, and argument validation must be performed for
invocations, it is difficult for faults to propagate in this manner.
Our fault injection experiments confirm this assumption by
producing only local faults. If invocation-based propagation
becomes significant, future work must consider interface-
level [36], [37] fault detection and/or recovery via recursive
reboots [39].

Stub-driven recovery of failed servers. Note the logic in the
client stubs in Figure 5 includes checks on a local variable,
fault, and triggers recovery logic if this variable is non-zero.
As part of the component invocation, this variable is set if the
kernel detects that a fault occurs while the server is processing
this request, or if a fault occurred in the server since the
last time the server was invoked. The kernel maintains a
version for each component that represents the number of
times it has been recovered, and a comparable server version
number for each invocation path (communication capability)
from each client. If a version mismatch is detected on an
invocation, the depicted fault handling path is executed in the
client stub, and the client’s version number is updated to avoid
reporting further faults'. Once a fault is detected, the client
stub attempts to use the interface’s functions themselves to
rebuild the object in a consistent state, and ensures that any
existing objects tracked in the stubs will trigger the recovery

'Importantly, while the p-reboot process is recovering a safe state, client
versions are left un-updated. This prevents any execution within the compo-
nent between when a fault is detected, and when the component’s initial, safe
state is recovered. Only when the component is brought to a safe state, thus
can receive further invocations, are client’s snapshots of the version updated.
This is necessary to prevent further fault propagation, and enables recovery
even in the presence of concurrent component execution.
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enum thd_state_t { THD_BLOCKED, THD_RUNNABLE };
struct thd_metadata {

enum thd_state_t state; // current state
thdid_t thdid, dependency;
char xparam; // describes priority , period, etc...
}s
thdid_t client_stub_sched_crt(char xparam) {
int fault = 0; // set if a fault occurs in the server

thdid_t thdid;
struct thd_metadata xobj;
retry :

thdid = cos_invoke_server(sched_crt, param);//call server
if (fault) goto retry;

obj = obj_alloc (); // allocate tracked object
obj—>state = THD_RUNNABLE; // initial state

obj—thdid = thdid; /] saved object data
obj—>param = alloc_copy (param);

return thdid;

}

int client_stub_sched_blk (thdid_t curr, thdid_t dependency){
int fault = 0, r;
struct thd_metadata xobj = obj_lookup (curr);
assert (obj && obj—>state == THD_RUNNABLE);
obj—>state = THD_BLOCKED; // state transition
obj—>dependency = dependency; // save relevant obj data
r = cos_invoke_server(sched_blk, curr, dependency);
if (fault) return client_stub_recover(obj);
return r;

// find obj

}

// generic client recovery function
int client_stub_recover(struct thd_metadata *obj) {
cos_invoke_server (sched_set_params , obj—>thdid,
obj—>param); // reestablish parameters
switch (obj—>state) {
case THD_BLOCKED:

// transition thread into consistent THD_BLOCKED
// state using the sched_blk function itself
return cos_invoke_server(sched_blk, obj—>thdid,

obj—>dependency );
case THD_RUNNABLE:
// runnable threads
// they are executing
return 0;

}

recovered: if
they are not blocked

are trivially
this code,

}

Fig. 5: Simplified and incomplete client stub code for the scheduler
interface, and recovery upon detection of a fault in the server by recreating
the thread in the server. This code corresponds to that in Figure 4(a), step 2.

code for that object. This is seen in Figure 5 by resetting the
thread’s initial parameters in the (newly initialized) scheduler,
and transitioning the thread’s state in the server into a blocked
(consistent) state by invoking sched blk. Note that this
entire process is completely transparent to the clients.

Client stub code is guided by the goal of finding a path
through the state machine from object initialization to the cur-
rent client’s object state. This path is a sequence of transitions
encoded by the sequence of interface functions to be invoked

()

Fig. 4: Recovery mechanisms and processes in C3. (a) Component invocation between components mediated by per-object, state-tracking stubs, and
the kernel. (b) The timeline between a fault in a component, and its restoration via the booter-provided p-reboot, and the recovery-aware interfaces. (c)
Checkpointing and restore of the para-virtualized FREERTOS system.

in the recovery routine. Our experience so far indicates that
the code for these state machines is straightforward to generate
manually. However, for a large number of interfaces, or for
objects with complex state machines, the automatic generation
of these stubs via the IDL would be valuable to reduce
programming error in them.

Note that the code in Figure 5 implements on-demand

recovery. Only when an object is passed as an argument to
a function in the interface, is the recovery on that object
conducted. It is performed within the context of the thread
that is accessing the object, thus avoiding recovery inversion
during object recovery. Eager recovery would simply iterate
through all objects in the client and recover them all when a
fault is detected.
Stub-assisted recovery of failed clients. When a client
component fails, it is often important for it to rebuild objects in
a consistent state with those provided by a server. To facilitate
this process, stubs provide a set of functions to reflect on the
state of objects provided by the server to each client. This
reflection (analogous to language-based reflection) enables the
client to obtain the state of the object in the server, so that the
client can recreate it with a consistent state. The server stubs
in @ in Figure 4(a) also track each thread as in Figure 5, but
we omit them here.

The system call interface is treated as a component in-
terface, and the equivalent of server stubs are coded into
the kernel. Thus, the kernel provides reflection capabilities
on the kernel-provided objects, such as virtual pages and
threads. A simplified function in the system call API is
thdid_t cos_thd_reflect (int iter ), which enables a sched-
uler to iterate through and retrieve all threads it has previously
created before it failed. This enables low-level components
that use the kernel directly to reconstruct a consistent state for
kernel-provided objects. For example, the scheduler directly
creates and dispatches between threads. A failed scheduler
uses the above function to determine which threads it had
previously created. At that point, it can context switch to them,
and when a thread invokes the scheduler using client-driven
recovery as in Figure 5, it will reestablish a consistent state
(i.e. put the thread back into the proper state, with consistent
parameters).

C. C3: Fault Recovery Procedure

Given the interface-driven recovery detailed in the previous
section, Figure 4(b) shows the steps taken for recovery in C3.



We assume a system component that is depended on by others,
and might use the services of other components as well.

@ A fault occurs and is detected (as discussed later, we
currently assume fail-stop semantics). This work does not
focus on fault detection, and our fault injection experiments
indicate that hardware exceptions and assertion statements
have detected many faults. Research into advanced detection
methods (e.g. using compilers [40]) is complementary to
fault tolerance in C3.

@ COMPOSITE converts exceptions into component invoca-
tions. The booter component receives this exception and
immediately makes it so that any non-recovery thread exe-
cuting in the component will cause a comparable exception.
This avoids concurrency issues in that component. At this
point, a lock is also taken for the component. This is an
important step, as locks in COMPOSITE support priority
inheritance. Given this step, recovery will occur exactly at
the priority of the highest-priority thread attempting to use
the component (keeping in mind that any thread invoking
the component will cause an exception into the booter until
recovery is complete).

@ The booter component is in charge of initially booting
the component, and stores an image of the initial state
of the component. This state is safe in that C® knows it
is unaffected by the fault that occurred. The overhead of
this step is dominated by memcpy and memset to reset the
component. This step is similar to p-reboot [27] in that
it restores a safe, initial state. It is optimized in C3 to
avoid creating a new component with separate page-tables
(analogous to killing the previous process, and recreating
it). Instead, this overhead is avoided by using the pre-
existing structures and simply reinitializing memory. For
this reason, p-reboot in C3® is at least a factor of two
faster than process creation in Linux. This work assumes
that neither the booter nor the kernel suffer faults as they
are instrumental in the recovery process. We discuss this
assumption later in this section.

@ An upcall is made to the component for re-initialization.

C? supports two mechanisms to recreate consistent states

of the component with those that depend on it. The first
is eager (“eg” here). All objects from all components that
depend on the failed component are rebuilt at this time,
eagerly. Upcalls are made into each component, and the
recovery procedures in the stubs are activated. Though
straightforward, this has a negative effect on the timing
properties of the system. Some components might contain
only low-priority threads, but their objects are recovered at
this time, regardless. Thus, high-priority/criticality threads
must wait until all of these objects are recovered. This
creates significant (and possibly unbounded) recovery in-
version.

Instead of eagerly recovering a consistent state for all

objects, C3 can resume normal execution of threads at this
time. Later, when the system switches to a thread (at the
proper priority), and that thread makes an invocation of the
previously faulted component. The stubs know that a fault

previously happened (via the fault parameter in Figure 5),
and will rebuild a consistent state for the objects being
operated on at that time. This is done by the actual thread
requesting service, therefore at the proper priority. We call
this on-demand (‘“0d”) recovery of a consistent state as it is
performed at the time of an operation on an object, not at
the time of the fault.

@ This step depicts the client invocations of the server
attempting to recreate a consistent state for each object as
seen in the client stub recover function in Figure 5.

@ The failed component, receives these invocations from the
client, and if they operate on an object not yet represented
in the component’s data-structures, it reflects on the server
interface below it to recreate appropriate objects. For exam-
ple, when a p-rebooted scheduler receives a request for a
thread it does not have a thread control block for, it will
reflect on the kernel to see if the thread exists. If so, it will
then create the thread control block as appropriate.

Putting it all together: recovering the scheduler. Schedulers
provide the policy for multiplexing the CPU amongst threads.
The COMPOSITE kernel provides a very low-level thread
abstraction — including register storage and management, and
the scheduler simply dispatches between these [32]. Each
thread has a set of initial parameters that define its priority, and
determine system behavior (see param in Figure 3(b)). When
the scheduler fails, and it is brought back to an initial state, it
does not contain the requisite thread control blocks. First, it
uses reflection on the kernel interface via cos _thd reflect
to retrieve the threads it previously created. The register and
execution state of each thread are stored in the kernel, so when
the component data-structures are recreated, the scheduler can
directly dispatch these threads. Threads are now consistent
with the kernel, but not in the state assumed by existing
clients in the system (e.g. lock components). When switched
to, the thread will eventually execute the client stub code
as in Figure 5. This code will bring the scheduler and the
client into consistency: if the thread was previously blocked,
it will again be blocked; if it had a dependency, it will
again regain that precedence constraint (e.g. for another thread
holding a lock to implement priority inheritance); and it will
now have the correct scheduling parameters — all directed by
client stub recover. There is a subtlety with handling
the dependency if the client blocks the thread. Threads
are recovered sequentially, and if a thread in the process
of recovery has a dependency on a thread that hasn’t been
recovered, this must trigger the recovery of that depended-on
thread.

This gives rise to a common design-pattern for recovery
within C? components: recovery-aware logic is added to error-
paths within components. When a client calls a function
operating on an object that is not represented in a u-rebooted
component, an error path will typically detect this, and return
an error implying an invalid function argument. Instead, C3
modifies these paths (for example, for thread, virtual page,
and file lookup) by introspecting on a component’s server’s
interfaces to determine the validity of the object, and any
relevant underlying resources (for example, the kernel thread,



physical frame corresponding a virtual page, and memory
buffers corresponding to a file, respectively). Though C? does
require recovery-aware changes to components, most of the
recovery complexity is automated by the client stubs.

C3 recovery complexity. For components to perform recov-
ery, we find that 46, 162, and 93 lines of code? are added
to the RAM file-system, scheduler, and memory manager,
respectively, to support recovery. This constitutes 15.1%,
4.8%, and 19.2% of the total length of these components.
Components dependent on these services required no changes
beyond being relinked with the interface stubs. The stubs
themselves are 602, 245, and 358 lines of code, respectively.
A single interface with multiple implementations (interface-
centric polymorphism is a goal of component-based systems)
shares interface recovery code for all of them. Ideally, a small
set of interfaces can provide recovery for a wide variety of
components. Though these are currently large, and written
manually, we are in the process of automatically generating
them from terse declarative specifications as part of the
Interface Definition Language (IDL).

C3 Trusted Computing Base for Fault Tolerance (TCB-
FT). Systems that provide fault tolerance via software mech-
anisms will often fail to tolerate faults given a fault in those
mechanisms themselves. This motivates a discussion of what
the TCB-FT (analogous to the Reliable Computing Base [41])
of the system is. The TCB-FT is the core of software that is
assumed to not suffer faults to provide fault tolerance to the
rest of the system. A goal, then, is to minimize the size and
fault exposure of this TCB-FT.

The TCB-FT in C? includes the booter that orchestrates
the p-reboot process, and the kernel itself. The booter and
kernel are less than 500 and 7000 lines of code, respectively.
Additionally, the stub code and data-structures that track the
state of objects across interfaces are integral in C® fault
tolerance support. By many measures, this is a small amount
of code (FREERTOS is considered very small and is less than
4000 lines of code). We do not analyze the fault exposure in
on-chip and memory structures of the TCB-FT, and leave that
as future work. However, it is important that any increase
in the number of in-kernel data-structures including threads
and components could increase the fault vulnerability of the
TCB-FT. Regardless, shrinking the size of this code-base is
ongoing and future work, as is measuring and shrinking the
fault exposure of this code.

Compiler techniques for increasing the resiliency of code
by adding redundant computation come with significant exe-
cution and memory overhead [40]. However, as the booter is
only executed in the event of a fault, these techniques might
avoid incurring significant cost on task execution while still
increasing fault tolerance. Though the booter would still be
part of the TCB-FT, it would be hardened to transient faults
itself.

D. System-Level Checkpoint/Restore

System-level checkpointing is an option for fault tolerance
that relies on the roll-back (restoration) of the entire system

2All line counts derived using David A. Wheeler’s *SLOCCount’.

state to a previous safe point (before the fault). Consistency
between different services in a system is trivially maintained,
as all software is rolled back to a safe state. Application
checkpointing (e.g [42]), though useful, will not provide a
consistent recovery point if a system component such as the
scheduler fails; indeed, it often relies on the system to provide
checkpoint and restore functionality. As noted in Section II,
checkpoints do not recover a consistent state with the physical
environment, so they might not be applicable to some systems.

We implement simple and predictable, yet effective check-
point/restore functionality in COMPOSITE and apply it to a
single component: a popular hard real-time, high-confidence
operating system: FREERTOS [43] that we paravirtualized
to run on COMPOSITE. For simplicity, and to investigate
the lower-bounds on the cost of checkpointing and restore
(C/R) functionality, we focus on C/R support for a single
component. Though not as powerful as C/R support for a
graph of components, this enables a comparison of a very
low-cost C/R infrastructure with C3 while still providing
C/R for a popular paravirtualized RTOS and its applications.
Consistent with our assumptions in Section III-A, we assume
that faults happen in user-level components that constitute the
vast majority of the functionality and runtime on the system.
We implement C/R functionality in the booter component.
At boot time, the booter creates the FREERTOS component,
and later creates COMPOSITE-level threads on demand for
FREERTOS. FREERTOS is all allowed to install its own
timer interrupt handler, and directly switch between its own
threads using COMPOSITE support for hierarchical resource
management [33]. Consistent with the typical behaviors of a
hard real-time system, we assume that all threads required by
FREERTOS are created at system bootup, thus simplifying
C/R of thread state. Similarly, the booter provides an initial
image of memory for FREERTOS to use at boot time, and
FREERTOS can not allocate additional memory. This physical
memory is mapped using shared memory via page-tables into
both the booter, and the FREERTOS component.

Figure 4(c) shows the FREERTOS component executing
on the system, and recovery via the booter. To check-
point FREERTOS, the booter periodically copies the ac-
tive memory for FREERTOS into an equal-sized extent of
memory (the darker region next to the memory image),
and saves all thread’s state. This operation must occur at
the highest priority, as memory cannot be modified while
copying. This operation is bounded by the cost of memcpy.
We avoid live checkpointing here — where checkpoints are
taken concurrently with component execution — as such an
approach induces page faults on memory writes to detect
page modifications [44], and would have significant impact on
system predictability. Restoring upon a fault is conducted as
follows: @ The fault is detected as above. @ The hardware
exception for the fault is converted into component invocation
to the booter. @ The saved checkpoint is copied into
FREERTOS’s active memory, and thread state is restored.
@ The faulted thread in FREERTOS is returned to, now with
the register state from when the checkpoint occurred.

FREERTOS time management. Checkpoint and restore



necessarily creates an inconsistency between FREERTOS’s
clock, and the real system time. Restoring a checkpoint
explicitly rolls FREERTOS back to a previous time. We do
not currently implement any intelligent means of updating
FREERTOS’s clock on restore. However, such mechanisms
exist. Paravirtualized support to synchronize virtual time (in
FREERTOS) with real time [45], and explicit support in
hierarchical scheduling systems [33] for temporal consistency
could be applied to this checkpointing system.

Checkpointing trusted computing base for fault tolerance.
The implementation of checkpoint/restore in COMPOSITE has
a TCB-FT consisting of the checkpoint-aware booter, and the
kernel. These two bodies of software constitute less than 800
and 7000 lines of code each. As in C3, compiler techniques
for hardening this code could be used to decrease the chance
of them being corrupted.

Faults that corrupt the state of memory would require
additional action on the part of the booter. Specifically the
integrity of the system checkpoint must be validated before it
is restored. This could be done by using memory replication
and voting (i.e. keeping 2 or 3 copies of the checkpoint, and
validating them before restoring).

E. Recovery Inversion

Each of the approaches we discuss — C3 eager recovery,
C3 on-demand recovery, and checkpointing — have implica-
tions on the system timing properties. Threads must wait for
the objects they require to reach a consistent state before
continuing execution. Thus recovery is guaranteed to have
an impact on system schedulability. However, the different
techniques present different amounts of recovery inversion in
which the recovery of state for low-priority/criticality tasks
prevent the execution of high-priority/criticality tasks. C3
eager recovery inversion: all objects are recovered as part of
the process initiated by the fault. If best-effort tasks exist in
the system, and an a-priori bound cannot be found on their
number, then this process is unbounded. Even if a bound
can be found, the interference is significant. C3 on-demand
recovery inversion: Recovery of a consistent state for objects
is performed by the thread that is accessing that object, at
its priority. Checkpointing: The cost of recovery is mainly a
function of the size of physical memory. If this size is large
due to the best-effort, or low-criticality tasks of the system,
this also entails a fair amount of interference. The effects of
the recovery inversion are studied in Section VI.

IV. SYSTEM MODEL
A. Base System

In a fault-free single processor system, let I' be the set of
n periodic tasks, {71, 72, ..., 7, } scheduled under preemptive,
fixed priority scheduling. 7; has the highest priority and 7,, has
the lowest priority. Thus, task 7; has higher priority than task
7; iff i < j. The task 7; can be described by the parameters
(e pi)-

e ¢; is the worst-case execution time required by task 7; for
each of its jobs.

o p; is the job inter-arrival time (period) of task 7;. Without
loss of generality, we assume that a task’s deadline is equal
to its period (implicit deadlines).

n

e ur =y, ;— is the utilization of task set I'

i=1""

o p; is the average period of all tasks in T’

o S is a set of such task sets, S = {I';,T'g, ...}

Though not necessary for the analysis, for simplicity, we
assign priorities according to a rate-monotonic policy.

B. Fault Model

This work focuses on tolerating transient faults at the
system level and we assume that overheads for fault detection
are integrated into either task worst-case execution times
(e.g. execution of asserts), or into the recovery time of
a component (e.g. page-fault execution). We also assume
that the fault will be detected immediately after corrupting
system state — we assume fail-stop behavior. Though this is
a significant assumption, past work characterizing faults finds
that 65% [24], 80.6% [46], and 93% [47] of injected faults
with detectable failures resulted in fail-stop behavior. In future
work, we will consider latent faults whose detection is delayed
arbitrarily after state corruption.

For the purpose of the timing analysis, the relevant fault
properties are defined as:

e py; is the period of transient fault occurances. It specifies
the minimum inter-arrival time between consecutive faults.
Unless stated otherwise, we choose 200ms as it is consis-
tent with a realistic fault period stated in [48]. Note that
faults correspond to the corruption of state in the system
due, in our case, to Single-Event Upsets (SEUs). Errors
resulting from the fault cause undesired behavior, which
is what is actually detected. py; denotes the maximum
number of detected errors over a window of time, thus
pessimistically assumes that each fault causes an error.

o 75(m;) is the cost to recover m; objects for task 7;
if component ¢” failed. In COMPOSITE, the services are

implemented as components, denoted as c',c?, ....

« rj(my) = max{rj(m;)}
.- 18 the execution time of p-reboot of component c¢*.

o ey = nﬁx{eﬁr}

e DPcp is the period of system level checkpointing. We assume
that check-pointing process is atomic and that no fault can
occur during checkpointing.

e ¢y 18 the cost of system level checkpointing where e, <
Pep-

e Ty, is the cost of restoring the system back to the check-
pointed state where ¢, < pep.

e €

V. TIMING MODEL
A. Response Time Analysis

When there is no fault presented in the system, the schedu-
lability of a task 7; can be evaluated using the traditional
Response Time Analysis (RTA) [49]

RPN =i+ ) [R] ¢ (1)

j<i pj



where R; is the response time of the task 7;. The second term
is the interference due to higher priority tasks.

Task 7; is said to be schedulable iff all its jobs do not miss
their deadlines. The task set I is said to be schedulable iff all
tasks in I are schedulable. Let S” be a set of such fault-free
schedulable tast sets, S’ = {I'},T'%,...} C S.

Past research augmented traditional response time analysis
with the fault tolerance overheads of task re-execution, ex-
ception handling, recovery blocks, and checkpointing, starting
with [11]. Here we provide an analogous expansion of the
RTA to include system-level overheads and to include the
recovery inversion due to system-level recovery.
Fault-aware schedulability analysis. The schedulability
analysis needs to consider the effect of fault tolerance over-
heads on task timing. It becomes more challenging to validate
the timing constraints of the system with faults since the faulty
service can affect every client’s temporal behavior and the
recovery adds complexity into the feasibility analysis.

To investigate the feasibility of a system in the presence
of faults, we need define the fault-aware schedulability anal-
ysis model. S” is the set of fault tolerance overhead-aware
schedulable tast sets, S” = {I'},T%,...} C S’. Thus, we
define the Fault-Aware Schedulability Success Ratio, FASSR,
as |S”|/]S’| € [0,1]. FASSR represents the percentage of
fault-aware schedulable task sets, of fault-free schedulable
task sets. It represents the ability of fault tolerance systems to
maintain system schedulability.

C? analysis. C?® provides two interface-driven system level
fault recovery strategies: (1) On-demand recovery is aware
of the priority during the recovery process. Objects will be
only recovered at the priority of the thread that is accessing
them. The response time for task 7; should suffer interference
only from the recovery of the objects for higher priority tasks.
(2) Eager recovery will recover all objects for all tasks at the
time of the fault. The response time for task 7; will not only
be affected by the recovery of objects for higher priority tasks,
but also by the recovery for lower priority tasks. The response
time analysis equation for on-demand and eager is generalized

as
Bt — et 3 [ B e [ B et 3 i) @
J

j<i Pre i<K

where py; is the fault period and e, is the cost of p-reboot
for the faulty component. 7;(m;) is the recovery cost of
m; objects for the task 7;. Notice that e, causes inevitable
recovery interference in C3, as no computation in recovering
components is possible until they are brought into a safe state
by the u-reboot.

K is defined separately for each recovery scheme: (1) For
on-demand, K = 1 for 7;. Only the recovery of the objects
for higher priority tasks cause interference on task 7;. (2) For
eager, K = n, where n is the total number of tasks in task
set. This implies that the response time of task 7; is interfered
with by object recovery for even lower-priority tasks resulting
in recovery inversion.

We assume that real-time tasks use a predictable number
of objects (that m; is known a-priori). We believe this is
reasonable as it is common to pre-allocate a fixed amount

of memory, use a bounded number of threads, and only
access files and mailboxes that are opened at initialization
time. In the presence of best-effort tasks where m; cannot be
known, on-demand recovery becomes essential for recovery
predictability.
Checkpointing analysis. The system state is periodically
saved, which is used to restore the system to a safe point
if a fault occurs. Both checkpointing and restore overheads
must be considered in the RTA.

Therefore the response time analysis equation for system
level checkpoint is given as

R R? R?
R?“‘l =e; + Z ’7 —‘ €j —+ lrpz—‘ ecp -+ ’7])];—‘ Tcp (3)
cp .

J<i pj
For simplicity, and motivated by system measurements (Sec-
tion VI), we assume that e, = r.,. We assume that the
checkpoint operation itself is atomic (i.e. performed at the
highest priority).

n
3

VI. EVALUATION
A. C? System Evaluation

We evaluate three important components in the system:
1) the system scheduler, 2) the system physical memory
manager and mapper, and 3) a RAM-based file system.
Unless otherwise specified, experiments are run on an Intel
17-2760QM running at 2.4 Ghz.

Workload. The results are generated for each system compo-
nent while running the following workload:

o Scheduler (Sched): Two threads essentially perform a
ping-pong, blocking and waking each other in turn using
sched blk and sched wakeup.

o Memory Manager (MM): Real-time threads are granted
memory pages and use those as a statically-allocated
region; no further interactions are made with the memory
manager. Best-effort subsystems are granted a number of
pages, and these pages are aliased once, and then revoked,
which removes all aliases. This process is completed to
synthesize memory strain in the system.

o RAM File System (FS): A file is opened, a byte is written
to it, read from it, and then it is closed.

Fault tolerance effectiveness: fault injection. We mimic
transient faults using bit-flips within registers and inject these
faults every timer-tick (100 times a second) by iterating
through all threads and flipping register’s bits only if they are
executing within a target component. Previous research [50]
has shown that using this fault injection technique accurately
models actual pipeline transient faults. Previous research [51],
[52], [53], [54], [50], [55] has shown that error rates in
pipeline logic caused by transient faults are currently higher
than error rates in memory. Additionally, the ever-decreasing
physical footprint of on-chip transistors increases the impact
of transient faults in pipelines[2]. These factors, and a de-
sire for simplicity motivate our fault injection methodology.
Undetected faults (i.e. those that cause no detectable errors
or changes in system behavior) are ignored when measuring
recovery success. Successful recoveries are defined by the
continued execution of the workload post-recovery.



[ Component [ p-reboot — mem init. | p-reboot — exe init. | RT object recovery | BE object recovery [[ nominal workload overhead |

Sched 7.52 (0.10) 10.15 (1.00) 0.76 (0.06) <— same 1.45+0.34 (0.04)
MM 16.06 (0.13) 4.00 (0.19) 0 (0) 5.23 (0.14) 0.52+0.09 (0.03)
FS 6.37 (0.06) 2.66 (0.08) 5.00 (1.21) <— same 1.65+1.12 (0.11)
TABLE I: The average (stddev) costs in p-seconds of key recovery operations and the infrastructure overhead
20 Tasks 50 Tasks 100 Tasks
100 p== = 100 100
od 0.02ms e, —a—
:100ms p
80 80 80
eg 0.02ms e, —e—
:100ms py
x 60 60 60
7] cp 0.1mseg, —x—
2 d :200ms pg,
T 40 40 40 cp lmseg, ——
:200ms pg,,
20 20 20 cp 10ms ecp
:200ms pp
0 | 0 0 t=t—e—e—t—e—e—o——o-o-.
40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
Utilization Utilization Utilization

Fig. 6: FASSR vs Utilization. (od:on-demand, eg:eager, cp:checkpoint)

In this manner we inject 80 faults into the scheduler, and
300 each into the memory manager and file system. For these
injected faults, we observed a 100% recovery rate as the
system is rebuilt via interfaces.

C3 microbenchmarks. First we evaluate (1) The cost of the
re-initialization phase of component p-reboot including a) the
amount of time spent reinitializing memory, and b) the amount
of time spent re-initializing execution in cos _init. (2) The
cost of interface-driven re-creation of a consistent state for
each object. This cost, combined with the number of objects,
bounds the recovery interference cost of eager and on-demand.
We also evaluate the overhead of interface-based tracking of
object state on all component-communication (due to the code
in component stubs). This overhead varies depending on the
type of interface, and tracked objects.

Table I shows the costs of different phases of the C? recov-
ery process outlined in Figure 4(b) (memory reinitialization
includes memcpy and memset, and execution reinitialization
is execution of cos init), and the cost to recreate, using
interface functions, the objects provided by each component
are shown. Objects used by best effort threads can be more
expensive to recover (see the workload description) than for
real-time threads.

The table also shows the overhead of object tracking in
stubs for the system scheduler, system memory manager and
the RAM-based file system. Although the overhead from
interface tracking of objects is inevitable, it only adds rel-
atively small overhead in the studied workloads. The costs
of the workloads, and the additional overhead for interface-
driven tracking are labeled as ‘“nominal workload overhead”
in Table I, and should be interpreted as “overhead without
tracking + overhead with tracking (standard deviation of
overhead)”.

B. Checkpointing System Evaluation

We evaluate checkpointing/restore (C/R) overheads in
a) COMPOSITE, b) checkpoint/restore in user space (CRIU)
in Linux [42], and ¢) Xen virtual machine(VM). Evaluations
are run on an Intel i7-3700S running at 2.8Ghz for COMPOS-
ITE and CRIU. memcpy overhead is measured on the same

machine as a reference. This machine is configured with

less than 900MB of RAM, so we only plot memcpy costs

up to 256MB of RAM. The Xen VM checkpoint/restore is
performed on an Intel Xeon E5-2420 at 1.90GHz. We could
not configure Xen to run on the i7 machine, nor could we get

CRIU to work on the Xeon system due to driver conflicts.

Though neither CRIU nor Xen are designed for real-time

checkpointing, we don’t know of any systems that are (aside

from checkpointing in C3). C/R overheads of these systems
should be interpreted only as context for what overheads to
practically expect. Our results investigate various C/R costs.

Workload. The following workload is used to obtain the

overhead of C/R operations:

o COMPOSITE: For a paravirtualized hard real-time OS,
FREERTOS, of different static heap sizes (512k, 1M and
2M), COMPOSITE periodically checkpoints the FREER-
TOS component, and restores it on fault.

e CRIU: In Linux 3.6 configured with CRIU (ver 0.2),
a FREERTOS process is periodically checkpointed and
restored onto a 200MB ramdisk. FREERTOS is configured
with heap sizes of 512KB, 1MB and 2MB.

e Xen VM: Xen version 4.1.2 with Dom0O (Linux 3.5) peri-
odically checkpoints and restores a VM (with 512MB, and
1GB of memory).

bOS I‘?estore -

— COS Checkpoint
2 10000 - CRIU Checkpoint =
=~ CRIU Restore =
T 1000 | Xen Restore
2 Xen Checkpoint =
§ 100 | memcpy() —
[e)
£ 10
S
o
3
2 1
<
O

0.1

512 1024

Memory Size (MB)
Fig. 77 Checkpoint Operation Overhead. Measurements on the two sides of
the vertical bar are from different hardware.

Figure 7 compares the overheads of the different C/R systems.
Standard deviation bars are small enough that they aren’t
visible, and each value represents the average of 200 mea-



surements. The difference between checkpoint and restore is
small because most overhead is due to memory operations.
COMPOSITE has the least overhead (around 0.1ms), as its
dominant cost (99%) is memcpy for a heap-size of 2MB. CRIU
has around one magnitude higher overhead (1~10ms) than
COMPOSITE while the overhead of C/R in Xen (5~15s) is at
least several magnitude higher than CRIU and COMPOSITE.
Note that for systems larger than FREERTOS, memcpy costs
increase largely linearly, and it bounds the speed of C/R
operations.

C. Fault-aware Schedulability Evaluation

The experiments in this section compare three system level
fault tolerance techniques, on-demand, eager and checkpoint.
To evaluate how the system schedulability is affected by the
fault tolerance mechanisms, we use fault-aware schedulability
success ratio, FASSR as defined in Section V-A. Intuitively,
the FASSR shows the fraction of task sets that are schedulable
given a fault-oblivious analysis (Equation 1) that are still
schedulable given the fault-aware analysis introduced in Sec-
tion V-A. Low FASSR values correspond directly to a fault-
tolerance infrastructure inhibiting system schedulability. From
the base system (no fault), we generate 50 schedulable task
sets. In each set there are 20 tasks, 50 tasks and 100 tasks. We
generate each task 7;, by selecting p; with average of 100ms
from an exponential distribution. A utilization is selected from
an exponential distribution with average w; = wur/n, and
€i = PiUy.

Default parameters. Unless otherwise specified, systems are
generated with e,, = 0.02 ms and 7;(1) = 0.005 ms
(both from pbenchmarks), m = 10 (number of objects to
be recovered per task for a component), p., = 200ms (2x
average period), ps; = 200ms (from [48]), ecp € [0.1,10] ms
(from reasonable pbenchmarks), and ur = 0.7.

Figure 6 shows FASSR as the function of utilization for differ-
ent sized task sets. Changes in task set size here affect results
as they change the ratio of task execution time to recovery
costs (the latter of which stay constant). FASSR decreases
for higher utilization. On-demand maintains high FASSR, and
declines only toward 85% while eager performs poorly for
>20 tasks. Checkpointing with 0.1ms checkpoint costs is very
competitive across all dimensions, but checkpoints with more
costly operations perform significantly poorer.

Discussion. On-demand has better schedulability behavior
than eager due to its avoidance of recovery inversion. Note
that in our workload, we generate no best-effort tasks. If
we do, eager recovery can be unbounded as the number
of objects cannot be bounded. Additionally, checkpointing
with low checkpoint costs avoids most interference and is
efficient. Thus checkpointing might be appropriate for very
small systems. However, for systems with significant amounts
of memory (8MB or more), checkpoint-driven recovery does
not provide favorable schedulability. We believe these results
show that on-demand C3-based recovery is viable and effec-
tive at predictable, system-level fault recovery for embedded
systems.

Figure 8 illustrates the relation between FASSR and the
number of recovered objects (m;) for on-demand and eager.

FASSR

1 2 4 8 16 32 64 128
Objects per task (util 70, e,,:p;=0.02:100ms)

256 512

Fig. 8: FASSR vs Objects for eager, on-demand, and different task set sizes.
Eager degrades quickly with increasing m;, especially for
large task sets due to the interference between tasks. On-
demand maintains a high FASSR, and quickly drops at dif-
ferent m,; thresholds.

Discussion. Recovery inversion causes significant and quick
drops in FASSR for eager, while on-demand maintains signifi-
cantly better schedulability behavior, scaling to a large m;. As
it is rare that a real-time process will require 100s of threads
or files, we believe the system is able to provide predictable
recovery for many practically-sized systems.

20 tasks

FASSR
50 tasks

100 tasks
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Fault Period (ms)

od 0.02ms e,;:100ms p; —&—cp 0.1ms €,:200ms pg, —*— cp 10ms e,:200ms pe,

eg 0.02ms e,:100ms p; —o— cp 1ms e.,:200ms p, —+—

Fig. 9: Effect of fault periodicity on FASSR.

Figure 9 shows the effect of fault period on the FASSR for a
task set using the different fault tolerance mechanisms. The x-
axis plots an increasing fault periodicity. The system is often
completely unschedulable for all task sets until some fault
period is reached, after which a steady FASSR is maintained
regardless of how large the fault period is. The parameters for
the fault tolerance methods use the default values. Figure 9
plots on-demand, eager, and checkpointing with checkpoint
costs increasing from 0.1 to 10ms.

Discussion. As expected, on-demand achieves higher
FASSR than eager due to less recovery inversion, and check-
pointing effectiveness degrades quickly for expensive check-
point costs. Interestingly, since this function forms a step with
a maximum less than or equal to 100%, certain recovery
techniques will simply be unacceptable for some task sets
even for very large fault periods.

VII. CONCLUSION

This paper presents the C? system, which is the first system
we know of for predictable, system-level fault tolerance that
doesn’t require replication (e.g. physical or process-based). We
also provide an implementation of component checkpointing



to use as a significant comparison point. In an evaluation of
both systems, we find that recovery can occur, given proper
system design, within 10s to 100s of p-seconds. We identify
recovery inversion as a significant impediment to scheduling
system fault tolerance, and present on-demand recovery as
a solution. The overheads of recovery are integrated into
a schedulability test for both C® and checkpointing, and
evaluated. The results show that on-demand recovery in C3
is effective at maintaining system schedulability even in the
presence of system-level faults, and also that checkpointing
can be useful in specific, low-memory situations.

Please find the source for C3, and schedulability simulations
at http://composite.seas.gwu.edu/.
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