
The Case for Thread Migration:
Predictable IPC in a Customizable and Reliable OS

Gabriel Parmer

Computer Science Department
The George Washington University

Washington, DC
gparmer@gwu.edu

Abstract

Synchronous inter-process communication (IPC) be-
tween threads is a popular mechanism for coordination in
µ-kernels and component-based operating systems. Signif-
icant focus has been placed on its optimization, and con-
sequently the efficiency of practical implementations ap-
proaches the lower limits set by hardware. This paper
qualitatively compares the predictability properties of the
synchronous IPC model with those of the migrating thread
model. We assess the idealized communication models, and
their practical implementations both in different versions of
L4, and in the COMPOSITE component-based OS. We study
three main factors – execution accounting, communication
end-points, and system customizability – and discuss the
trade-offs involved in each model. We make the case that
the migrating thread model is as suitable as synchronous
IPC, if not more so, in configurable systems requiring strict
predictability.

1 Introduction

Component-based operating systems are an appealing
foundation for embedded and real-time systems as they en-
able high degrees of system specialization and enhanced re-
liability. The system’s software is decomposed into fine-
grained components. Each component provides a policy,
abstraction, or mechanism that is accessed by other com-
ponents through its interface. A system with specific tim-
ing constraints, or that is reliant on specific resource man-
agement policies, chooses the appropriate components to
satisfy those particular requirements. By segregating com-
ponents into separate protection domains (provided by e.g.
hardware page-tables), the reliability of the system is in-
creased as the scope of the side-effects of faults is limited to
individual components. Communication and interaction be-

tween components is conducted via inter-process commu-
nication (IPC) in which the kernel mediates control transfer
between protection domains.

Many different IPC mechanisms exist including syn-
chronous IPC between threads, and thread migration.
Implementations using synchronous IPC1 exist that are
extremely efficient, approaching the performance lower-
bound imposed by hardware [10]. This method is used in
many systems focusing on extreme IPC performance [16,
20, 17, 19], and it is employed in at least two commer-
cially successful OSes, QNX and OKL42. To accomplish
most tasks, coordination between system components is re-
quired. Thus the predictability of the IPC operation impacts
the real-time characteristics of all software in a component-
based system. This paper seeks to provide a qualitative
analysis and comparison of the predictability properties of
this established IPC mechanism with those of thread mi-
gration [7]. For invocation using thread migration, a single
schedulable thread executes across components.

We base most comparisons in this paper on, first, a
pure model of synchronous IPC presented in Section 2.1,
and, second, a variety of implementations of L4, a ma-
ture and highly-efficient µ-kernel [11]. We choose L4
as various implementations and optimizations have been
made that demonstrate many interesting trade-offs in the
design of synchronous IPC. As a concrete implementation
of thread migration, we compare against the COMPOSITE
component-based OS.

Functionally, both synchronous IPC and thread migra-
tion often look identical to client component code. Both are
made to mimic normal function invocation by a interface

1A note on terminology: In this paper, we will refer to synchronous
IPC between threads as simply synchronous IPC, and will use IPC and in-
vocation interchangeably to denote control transfer back and forth between
components. Additionally, we will use common terms in the µ-kernel lit-
erature to denote components as the client (making an invocation), and
server (receiving and handling the invocation).

2See www.qnx.com and www.ok-labs.com.

definition language [4], hiding the concrete mechanisms
used for the invocation. Behaviorally, they differ greatly
and in this paper we focus on these differences. Many pre-
dictable systems have been built using synchronous IPC,
but we argue here that thread migration is just as strong
a foundation, if not more-so for predictable, configurable,
and reliable systems. We base this argument on three main
factors: (1) how processing time is accounted to execution
throughout the system, (2) the effects of contention on the
communication end-points in the system, and (3) the effect
of the invocation mechanism on the ability of the system to
provide configurable and specialized services.

This paper makes the following contributions:
• identify key factors that effect the predictability and

flexibility of synchronous IPC;
• analyze the migrating thread model with respect to

these factors, and compare against synchronous IPC;
• suggest a number of changes to a system built on

synchronous IPC, that are inspired by the migrating thread
model, to increase system predictability.

This paper is organized as follows: Section 2 intro-
duces models to describe synchronous IPC and thread mi-
gration, so that they can be compared qualitatively. Sec-
tion 3 discusses the different CPU allocation and account-
ing properties of both models, while Section 4 investigates
the properties of IPC end-point contention, and Section 5
discusses system specialization and configuration opportu-
nities present in the migrating thread model. Section 6 dis-
cusses the limitations of the migrating thread model, while
Section 7 outlines related work, and Section 8 concludes.

2 IPC Models

2.1 Synchronous IPC Between Threads

Here we introduce an idealized version of the syn-
chronous IPC model. Though many real-world implemen-
tations do not implement it directly, it serves as the starting
point for their mechanisms. In the following sections we
will discuss how various implementations diverge from this
strict model where appropriate.

w w

call

callwait wait
kernel

Figure 1. Synchronous IPC between threads.
Threads annotated with a w are on a wait-queue as-
sociated with the server thread.

A system consists of a number of components,
Ca, . . . , Cz , each in separate protection domains. Thus

communication between components must be conducted
via the kernel (as switching between protection domains is
typically a privileged instruction). Each component con-
tains a number of threads τCa

0 , . . . , τCa
n . When thread τCa

0

wishes to harness the functionality provided by C1, τCa
0

sends a message to τCb
0 , and waits to receive a reply. This

send and receive is often conflated into a single call system
call. τCb

0 waits for requests from client threads, processes
a request when one arrives, and replies to the client. The
operations of reply and wait are often conflated into a sin-
gle reply wait system call. These API additions optimize
for synchronous IPC and reduce the number of required
user/kernel transitions [10]. If τCb

0 is processing and not
waiting for an IPC when τCa

0 calls it, τCa
0 will block in a

queue for τCb
0

3, which will refer to as the wait-queue for a
server thread.

Figure 1 illustrates synchronous IPC between three pro-
tection domains. A server thread, τCb

0 , will become a
client by harnessing the functionality of a third component
and calling τCc

0 . We will say these nested IPCs create a
chain of invocations. More generally, when taken together
with the wait-queues for each server thread, a dependency
graph [20] is created where threads waiting for a reply from
a server thread (either because the server thread is process-
ing on their behalf, or because they are in the wait-queue)
are said to have a dependency on the server thread.

2.2 Thread Migration

kernel

Figure 2. Thread migration. Execution contexts are
spread across components, but the same schedulable
entity traces invocations.

Thread migration [7] is a natural model for making invo-
cations between components in a system. The same schedu-
lable entity in one component continues execution in the
other. The same thread, τ0, executes through system com-
ponents just as a thread in an object oriented language tra-
verse many objects. If components are resident in the same
protection domain this enables direct function invocation
with little overhead [14, 15]. If system components ex-
ist in separate protection domains, then thread migration
is less natural, but can still be accomplished. We will as-
sume components in separate protection domains from now

3Note this is not the only option. The call system call can return an
error code indicating the server thread is not ready for invocations. The
consensus for synchronous IPC amongst surveyed implementations instead
chooses the previous option.

on. In such a case, the execution context for a thread and
the scheduling context are decoupled [20]. An invocation
into each protected component requires a separate execu-
tion context (including C stack and register contents), but
the scheduler treats the thread as a single schedulable en-
tity. Figure 2 depicts thread migration.

2.2.1 Thread Migration in COMPOSITE

COMPOSITE is a component-based operating system focus-
ing on enabling the efficient and predictable implementation
of resource management policies, mechanisms, and abstrac-
tions as specialized user-level components [14]. Higher-
level abstractions such as networking and file-systems are
implemented as components, as are less-conventional low-
level policies for task and interrupt scheduling [13], mutual
exclusion mechanisms, and physical memory management.
Components, by default, are spatially isolated from each
other in separate protection domains (provided by hardware
page-tables).

Components export an interface through which their
functionality can be harnessed by other components. As
system policies and abstractions are defined in components,
invocations between components are frequent and must be
both efficient and predictable.

thread invocation

stack

bC ip

C ip,sp
a

Ca

Cb
capabilities

pgtbl

Figure 3. COMPOSITE kernel data-structures in-
volved in an invocation. A syscall specifies a capabil-
ity (associated with Ca) that yields the component to
invoke (Cb). A thread’s invocation stack saves the in-
voking component and enough state to return from the
invocation (namely, the instruction and stack point-
ers).

The main kernel data-structures involved in an invoca-
tion between component Ca and Cb are depicted in Fig-
ure 3. Each component is restricted to make invocations
only to components to which it has a capability [9]. Kernel
capability structures link components and designate the au-
thority to make invocations from one to the other. A thread
executing in Ca that makes an invocation on a capability
(via system call), will resume user-level execution in Cb,
the component designated by the capability. This invoca-
tion occurs within the same thread, thus the same schedula-
ble entity.

In addition to designating which component to execute

in, a capability includes the instruction pointer in Cb to be-
gin execution at. To maintain isolation, execution in Cb

must be on a different stack from the one used in Ca. This
execution stack in Cb is not chosen by the kernel. Instead,
it is assumed that when the upcall is made into Cb, the first
operation performed is to locate a stack to execute on. This
operation we will refer to as execution stack retrieval. A
simple implementation of this is to have a freelist of stacks
in Cb, and to remove and use one upon upcall. Execution
stack retrieval must be atomic to maintain freelist integrity
as thread preemptions can occur at any time. COMPOSITE
supports restartable atomic sequences [13] to provide this
atomicity, even on processors that don’t support atomic in-
structions. If the freelist of stacks is empty, then Cb invokes
the stack manager component that either allocates a stack
in Cb, or blocks the requesting thread until one becomes
available.

As depicted in Figure 3, the structure representing a
thread in COMPOSITE includes an invocation stack4 which
traces all invocations that have been made while in the con-
text of that thread. Each entry in the stack includes a ref-
erence to the component being invoked, and the instruction
and stack pointers to return to in the previous component.
When an invoked component returns from an invocation
(by invoking a static return capability), an item is popped
off of the invocation stack, and the appropriate protection
domain, stack pointer, and instruction pointer are loaded,
returning execution to the invoking component (Ca). This
process avoids loops, and doesn’t touch user-memory so it
shouldn’t fault. The kernel invocation path, then, should be
predictable.

Invocation arguments are passed in registers – up to 4
words on the x86 COMPOSITE implementation. Additional
arguments are passed via shared memory.

IPC Efficiency in COMPOSITE: As in L4, the num-
ber of data-structures (thus cache-lines and TLB entries)
touched during an invocation is small to minimize cache in-
terference, and improve performance [10]. COMPOSITE’s
invocation path is implemented in C. It achieves perfor-
mance on the order of optimized synchronous IPC paths
also implemented in C. A component invocation takes less
than 0.7 µ-seconds on both a 2.4 Ghz Pentium 4 proces-
sor, and a 1 Ghz Pentium M processor5. This is compara-
ble to reported performance numbers in the µ-kernel litera-
ture [23, 15].

We believe that this demonstrates that thread-migration
can be implemented without significant performance over-
heads compared to other techniques. Given this, the ques-
tion is what are the other system factors that favor either

4Please note that this invocation stack is unrelated to the C stack.
5The average invocation overheads on these processors are similar –

though they have varying clock speeds – due to significant differences in
hardware overheads for user-kernel transitions, page-table switches, and
relative CPU/memory speeds.

thread migration, or synchronous IPC. We investigate these
in the rest of the paper.

3 CPU Allocation and Accounting

In this section, we investigate how CPU time is allocated
amongst and accounted to different threads.

C C C Ca b ba

IP

TCP

(a) (b)

Figure 4. Invocations through components: (a)
thread migration, (b) synchronous IPC.

We start with a simple system depicted in Figure 4. Ap-
plication execution starts in a client component Ca and
makes an IPC to CTCP which, in turn, makes an IPC to
CIP . This could correspond to an untrusted client send-
ing a packet through the transport and internetworking lay-
ers. Additionally, a second client component, Cb, causes
the same progression of IPCs. Assume that Ca and Cb do
not trust each other, and that they simply use the services
provided by lower-level components.

Here we wish to investigate how CPU time is allocated
and accounted throughout the system, and how it effects
the policies for managing time. We investigate two models:
synchronous IPC with a separate thread per component, and
migrating threads where threads start in Ca and Cb and exe-
cute throughout system components. Figure 4 depicts these
two situations.

From a resource allocation and accounting perspective,
these two models are very different. To illustrate, assume
that the amount of cycles spent processing inCa is pa

a. Invo-
cations from this component result in pa

TCP and pa
IP cycles

sent processing in CTCP and CIP , respectively. Addition-
ally, the amount of time spent processing for the execution
originating in Cb is pb

b, pb
TCP and pb

IP , correspondingly.

3.1 Synchronous IPC Accounting and Ex-
ecution

Client execution accountability: In the synchronous
IPC model, the processing time spent in each component
is charged to the component’s thread. Thus the thread in the
initial applications will be charged for their execution: pa

a

and pb
b. However, the execution charged to τCT CP

0 will be
pa

TCP + pb
TCP , and τCIP

0 will be charged for pa
IP + pb

IP . If
the number of requests originating from Ca is significantly

larger than those from Cb (even if the processing time in
those components is small), the system scheduler will have
little ability to throttle one client, or to even know which
client is causing the overhead in the networking stack. The
fundamental problem with this model for tracking CPU us-
age, and scheduling computation, is that it loses information
about which client a shared component is doing processing
for. Practical approaches to many of the shortcomings of the
pure synchronous IPC model are discussed in Section 3.3.

Real-time task models: Aside from the inability of the
scheduler to properly track client execution throughout the
system, synchronous IPC does not naturally accommodate
traditional real-time task execution models. It is common
to assume a task has a given worst-case execution time, C,
and executes periodically, with a period of T . C includes
all execution time, including that which occurs in server
components. The scheduler, will not see the thread using
C execution time as the accounting for this execution is
distributed throughout invoked threads in the system. This
would make it difficult if not impossible to implement ac-
curate aperiodic servers [22] that make invocations to other
components, as budget consumption would be spread across
multiple threads. An additional problem arises as the prior-
ity of a thread is often associated with its C (e.g. in rate-
monotonic scheduling). It is not obvious how to assign
priorities to threads throughout the system in the presence
of pervasive thread dependencies. This is especially true
in an open real-time system where an unknown number of
nonreal-time or soft real-time tasks execute along side hard
real-time tasks and they can all rely on shared servers. This
problem only becomes more pronounced as the depth of the
component hierarchy increases.

An application can avoid these problems by making no
invocations to server threads. Unfortunately, this limits the
functionality available to that application, and prevents the
decomposition of the system into fine-grained components.

Priority Inversion: A server thread might have a low
priority compared to a high-priority client. In such a case,
a medium priority thread can cause unbounded priority in-
version. To avoid these situations, great care must be taken
in assigning thread priorities throughout the system. For
example, [5] proposes a static structuring such that server
threads always have the same or higher priority than their
clients. Unfortunately, it is not clear if it generalizes in
open systems. Additionally, as it requires that servers run
at a higher priority, it can lead to larger scheduling inter-
ference of high priority server threads (that service predom-
inantly low priority threads) with medium priority threads
elsewhere in the system.

One might be tempted to observe that many of these
problems come from having components that are relied
upon and invoked by multiple other components, possi-
bly with widely varying temporal requirements. Can’t we

simply arrange the system such that there are no compo-
nents that are shared between different subsystems? Unfor-
tunately, it is difficult to not share components that drive
shared peripherals (e.g. keyboards, networking cards), that
share the system’s physical memory between subsystems,
or that schedule system’s threads (assuming component-
based scheduling [13]). Such sharing is unavoidable.

3.2 Migrating Threads Accounting and
Execution

The migrating thread model makes it explicit which
client a server component is processing for, e.g. computa-
tion in the networking stack is performed in the scheduling
context of the client thread. The scheduler explicitly sees all
execution performed on behalf of a specific client, and can
schedule it accordingly. Thus, the execution time accounted
to the thread created in Ca is pa

a + pa
TCP + pa

IP , and like-
wise for the thread created in Cb. If τa makes a dispropor-
tionately large amount of invocations into the networking
stack, it is charged directly for the processing time of those
invocations (in contrast to the synchronous IPC case).

Priority Inversion: A significant complication with the
migrating thread model concerns shared resources within a
server component. If a low-priority thread takes a shared
resource requiring mutual exclusivity (e.g. it is protected
by a lock) priority inversion can occur if it is preempted
by a high-priority thread that attempts to access the shared
server resource. The solution to this is to use a resource
sharing protocol that bounds the priority inversion [18]. In
COMPOSITE, locking policies including those that avoid
unbounded priority inversion are implemented as compo-
nents.

We claim that the resource management and accounting
properties of this model more closely match the intended
structure of a system composed of many components. There
is some precedent for this position: When a user-level pro-
cess makes a system call, the execution time spent in the
kernel is typically accounted to and scheduled with the cre-
dentials of the user-level thread. That is to say, that threads
migrate from user- to kernel-level (though, of course, their
execution contexts change).

3.3 Synchronous IPC Implementations:
Accounting and Execution

Actual implementations of synchronous IPC deviate
from the pure model. In this section, we discuss the rele-
vant differences.

In synchronous IPC, the kernel switches between threads
on each IPC. It is thus natural to perform scheduling on
every IPC. However, the overhead of scheduling decreases
IPC performance significantly. An optimization is to use

lazy scheduling to avoid scheduling until the scheduler is
explicitly invoked (e.g. via a timer-interrupt), and to do di-
rect process switch whereby the system switches directly to
the server thread upon IPC [10, 17] (assuming the server
thread was blocked waiting for an IPC) 6. The combination
of these techniques removes scheduling related overheads
from the IPC path.

Unfortunately, The thread that is charged for execution
at any point in time is not predictable. Before the execu-
tion of the scheduler, the invoking thread is charged, em-
ulating migrating threads. However, after the scheduler is
executed, the threads are scheduled separately. This un-
predictability is harmful to real-time systems [16], and re-
searchers have tested if the optimization is indeed neces-
sary for efficiency [6]. The answer appears dependent on
the frequency of IPCs. It should be noted that in such a case
we are choosing between two undesirable cases: (1) unpre-
dictable resource accounting and scheduling (via direct pro-
cess switching and lazy scheduling), and (2) the problems
associated with the pure synchronous IPC between threads
(Section 3.1) including the associated overhead.

Side-stepping these problems, Credo [20] decouples the
execution context and scheduling context of threads. Syn-
chronous IPC between threads transfers the scheduling con-
text to the receiving thread. This model can require walking
a path in the dependency graph of thread synchronizations
to maintain proper scheduling context assignments. Credo
essentially moves the synchronous IPC regime towards a
migrating thread model. Unfortunately, it does so at the
cost of complexity, and it increases the worst-case execu-
tion time of invocations by requiring the walking of the de-
pendency graph to determine current scheduling context. If
the depth of this tree is not predictable, then IPC operations
themselves will, in turn, not be predictable.

Discussion: Motivated by efficiency or better ac-
counting, practical synchronous IPC implementations have
moved towards the accounting and execution style of a mi-
grating thread model. However, they do so a the cost of
complexity and possible unpredictability. Systems requir-
ing predictable IPC in which dependency graph depths can-
not be statically known, would benefit from starting with a
migrating thread model.

4 Communication End-Point Contention

IPC in µ-kernels and component-based OSes is directed
at specific communication end-points. The end-point in
synchronous IPC systems is the server thread. This thread is
addressed directly from the client (i.e. by thread id), or in-
directly via a capabilities [9]; the end-point is the same. For

6It should be noted that K42 provides synchronous IPC with direct pro-
cess switch between dispatchers that are similar in many ways to system
threads.

thread migration, the target of an invocation is the compo-
nent, or protection domain, being invoked. This component
can be addressed either by id, or indirectly by capability.
The end-point of an invocation is important as it effects sys-
tem behavior when there is contention (multiple concurrent
invocations) to that end-point.

4.1 Synchronous IPC End-Point Con-
tention

Unpredictable IPC overheads due to end-point con-
tention: If multiple threads attempt to conduct synchronous
IPC with an active server thread, they are placed in its wait-
queue. When the server thread replies, the system exe-
cutes the thread being replied to, or one of the threads on
the wait-queue, depending on which of all of the threads
has the highest priority. The execution cost of finding the
next thread to execute, then, is linear in the size of the
wait-queue. Thus to enable predictable IPC, the number
of threads concurrently calling a specific server thread must
be bounded. The assumption is often that the duration of
an IPC is short, thus the server thread will be preempted
with only a small probability. Thus, the wait-queues should
rarely grow to significant length. In general component-
based systems in which even applications are decomposed
into separate components, the probability of preemption in
an invoked component is high, thus the consideration of
wait-queue length is important7. Importantly, worst-case
IPC costs must be considered in hard real-time systems.

w w

(a) (b) (c)

Figure 5. Invocations of and contention on vari-
ous end-points. (a) All client threads invoke sep-
arate server threads. (b) Client threads invoke the
same server thread, adding two to the server thread’s
wait-queue. (c) Thread migration: execution contexts
aren’t the target of invocation, thus cases similar to
(b) are impossible.

Assume N threads concurrently attempt to invoke M
threads in a server component. If N = 1,M ≥ 1, then

7Some synchronous IPC implementations disregard priority, and either
switch immediately to the thread being replied to, or to the head of the wait-
queue. This alleviates the problem of linear execution time in the size of
the wait-queue. However, as it ignores thread priorities, it is unpredictable
none-the-less.

it is clear the IPC will continue without complication as the
wait-queue is empty. If M ≥ N ≥ 1, and each of the N
synchronizes with a separate server thread, the situation is
comparable (Figure 5(a)). However, it is possible that all
N invoking threads will attempt to synchronize with a sin-
gle thread in the server, thus the wait-queue will be N − 1
long 8. M − 1 server threads will remain waiting for IPC,
and IPC overheads will correspondingly increase. This sit-
uation is depicted in Figure 5(b). If N > M , then some
server thread’s wait-queues will be unavoidably non-empty.

It follows that IPC predictability is dependent on if the
following factors can be predicted: (1) the relative num-
ber of clients and server threads, and (2) the distribution of
client invocations across server threads.

Limiting wait-queue length: Perhaps the most straight-
forward way to predict the maximum size of server wait-
queues is to ensure that for each client thread, there is a
corresponding server thread. Care is taken to only invoke
a client’s corresponding server thread. Though appealing
in simplicity, this solution doesn’t generalize for two rea-
sons. First, the maximum number of threads in a protec-
tion domain is often bounded. Thus two components with
the maximum number of threads each, would have at least
twice the number of threads than are available in the server.
Second, threads take up resources (e.g. memory). In the
worst case such a strategy would require T ×C threads, for
T application threads and C components.

In a more realistic scenario, server threads are partitioned
amongst different classes of client threads (with different
priorities, or timing constraints). Fundamentally, client
threads don’t know the status of specific server threads (i.e.
if specific server threads are busy or waiting for IPC). Yet
on each invocation, they must answer “which server thread
should I call?” Thus it is difficult, in the general case, for
them to avoid invoking the same server thread.

Discussion: Predictable systems can be created using
the two suggested modifications to synchronous IPC. How-
ever, in general systems with possibly malicious clients, and
deep component hierarchies, it is not clear what the price of
such techniques is (e.g. in memory consumption for thread
context, or programmer complexity). Generally, the root
problem is that the clients are forced to choose the specific
execution context to process on in the server, but they don’t
have all information required to make that decision. That
decision is best made by the server that knows its own state.
In Section 4.3, we discuss possible enhancements to make
this possible.

8We are assuming a very specific interleaving of client threads where
invocations are made before a server thread completes processing of an
IPC request. This is the worst-case, and must be considered in real-time
systems.

4.2 Thread Migration and End-Point
Contention

For thread migration, the communication end-point be-
ing invoked is the server component9. As discussed in Sec-
tion 2.2.1, when a component is upcalled into as the result
of an invocation, the first operation it performs it to retrieve
an execution stack from its local freelist. AssumeN threads
invoke the functions of a component in which M execution
stacks (contexts) exist.

(b)(a)

Figure 6. Retrieving execution contexts with thread
migration. (a) Stacks are maintained on a freelist in
the invoked component, or (b) in the kernel.

If N ≤ M , all invocations will immediately find an ex-
ecution stack to execute on. As the invocation end-point is
the component, rather than specific execution contexts, so
the server prevents contention on its stacks. As the execu-
tion contexts are not the target of IPC, the component has
the opportunity to multiplex execution contexts as it deems
appropriate. Clients will never block waiting for an execu-
tion context. Figure 6(a) depicts this operation.

If N > M , then contention for execution contexts is un-
avoidable, so the freelist of stacks will be empty for some
invocations. In such cases, the thread invokes a component
specializing in stack management. The stack manager allo-
cates a new stack for immediate use, or calls the scheduler
to block the thread until one becomes available. In the latter
case, the stack manager implements priority inheritance to
avoid unbounded priority inversion. Differentiated service
between different clients or threads can be provided both at
the time of execution stack retrieval, and in the stack man-
ager by maintaining different lists of stacks for each level of
service, and class of specific threads (i.e. hard real-time vs.
best-effort execution contexts).

In COMPOSITE we choose to implement all policies for
obtaining execution contexts at user-level in components.
This enables (1) the definition of specialized policies as
user-level components, and (2) the simplification of the ker-
nel invocation path enabling its predictable execution and
low number of data-structure accesses. It is possible to
maintain the freelist of stacks in the kernel and assign a
thread to a specific context for the duration of a compo-
nent invocation. This is the approach taken by [8] which
slightly complicates both kernel data-structures and the in-
vocation path. Additionally, it places the policy for man-

9More specifically, in COMPOSITE the end-point is a function within
the API of the component denoted by a capability is the target.

aging the stack freelist in the kernel (thus precluding the
differentiated service policy described above). The bene-
fit of this approach is that, in the case there is no available
stack, it avoided the invocation into the server component.
Figure 6(b) depicts this scenario.

Discussion: By changing the target of invocations from
individual threads in the server to the server itself, thread
migration enables the server to manage and allocate its own
execution contexts. This avoids multiple client threads wait-
ing on a single server thread while other server threads are
available which will increase IPC overheads.

4.3 Synchronous IPC End-Point En-
hancements

Here we propose methods for modifying synchronous
IPC implementations to include many of the benefits of the
migrating thread model by changing the server communica-
tion end-point.

Locating execution contexts: One benefit of the migrat-
ing thread model is that the IPC end-point is not a specific
execution context, thus the system – or the invoked compo-
nent – has the opportunity to choose the appropriate context
itself according to specialized policies. The system (and
application) designer need not carefully plan which specific
client and server threads communicate with each other. We
believe that slight modifications to synchronous IPC imple-
mentations would enable the same capability.

Some modern µ-kernel systems [9] use capabilities to
indirectly address the thread endpoint for IPC. Given this
level of indirection, it would be natural for the capability
to reference not a single thread, but a collection of server
threads. Figure 6(b) depicts a similar scheme. Whenever an
invocation is made with the capability, a thread is dequeued
and execution in the server is made on that thread. As capa-
bilities currently hold a pointer to the thread to IPC to, the
overhead of this approach should be minimal. Capabilities
can include a wait-queue of threads waiting to complete IPC
with one of the server threads. Alternatively, when no server
thread is available to service a call, a exception IPC (sim-
ilar to page-fault IPC) can be delivered to a corresponding
execution context manager. When paired with the Credo
enhancements to migrate scheduling context upon invoca-
tion, synchronous IPC becomes quite similar to thread mi-
gration indeed. The desired behavior seems better captured
by thread migration.

Predictable IPC execution time: In systems where it
is difficult to predict the maximum number of threads on a
wait-queue for a server thread (thus the worst-case cost of
an IPC), it is possible for intelligent data-structures to pro-
vide a constant-time lookup of the highest priority thread
waiting for IPC. This removes the linear increase to the cost
of IPC for waiting threads (though not the cost commen-

surate with the depth of the dependency graph in Credo).
The O(1) Linux scheduler (present in Linux versions 2.6
to 2.6.23) includes a data-structure enabling constant time
lookup of the highest-priority thread. Though this approach
will technically make IPC time predictable across all wait-
queue lengths, it could impose a large cost in terms of mem-
ory usage and constant execution overheads. We leave this
as an area of future study.

5 System Configurability

We discuss the ways that COMPOSITE provides the user-
level definition of novel policies that rely upon the seman-
tics of thread migration. Specifically, we discuss user-level,
component-based scheduling, and Mutable Protection Do-
mains (MPD) that enable the alteration of the protection do-
main configuration at run-time.

5.1 Component-Based Scheduling

In designing µ-kernels and component-based operating
systems, a common goal is to include in the kernel only
those concepts required to implement the system’s required
functionality at user-level [11]. The inclination is to re-
move mechanisms and policy from the (fixed) kernel and
define them instead in replaceable and independently fail-
able user-level components. Part of the motivation for this
is so that the system can be configured to the largest possi-
ble breadth of application and system requirements. In real-
time and embedded systems, the policies that dictate tem-
poral behavior are amongst the most sensitive to meeting
such requirements. In COMPOSITE, then, we have focuses
on enabling the user-level, component-based definition of
system scheduling policies [13].

To enable efficient user-level scheduling in COMPOSITE,
the invocation path should not require scheduler invocation.
This goal has two implications: First, the invocation path
should not rely on scheduling parameters associated with
threads, such as priority, as these are defined in the user-
level scheduler. Second, the invocation path should not re-
sult in multiple threads becoming active, as this would im-
ply an invocation of the user-level scheduler.

The migrating thread model satisfies both of these con-
straints. As no thread switches occur during the invoca-
tion path, the scheduling parameters associated with threads
are not required. The only thread active during an invoca-
tion is the original scheduling context. To block or wakeup
threads, invocations must be made to the scheduler compo-
nent.

Pure synchronous IPC does not satisfy either of these
goals. As thread switches occur on each IPC, the next thread
to execute must be located, and to do so involves access
to thread scheduling parameters, and dispatching between

threads. This practically requires the scheduler to be kernel-
resident, and for the IPC mechanism to hard-code a single
scheduling policy. Additionally, some IPC operations result
in the activation of multiple threads. For example, when
executing a reply wait, the IPC path can result in both the
client and server threads, being active if there are threads on
the wait-queue for the server thread. Direct process switch-
ing avoids these issues at the cost of predictable thread exe-
cution accounting.

There are some indications, beyond the COMPOSITE
implementation, that user-level scheduling of all system
threads is best done with the migrating thread model. For
example, in [21], L4 is modified to allow specific threads to
control scheduling. Doing so involves migrating scheduling
context with IPCs as in Credo. Additionally, due to compli-
cations created by end-point contention, the author suggests
that a solution is to “construct a µ-kernel solely based on
procedure call semantics”.

5.2 Mutable Protection Domains

The resource accountability and execution semantics of
component invocations are identical for invocations be-
tween protection domains, and between components in the
same protection domain. This, along with novel mech-
anisms for predictably and dynamically altering protec-
tion domain structures, enables Mutable Protection Do-
mains (MPD) [12]. MPDs recognizes that in a fine-grained
component-based system, even optimized invocation paths
can have significant overheads10. The system is able to
monitor the frequency of invocations between each com-
ponent. We observe that the distribution of such invoca-
tion counts is heavily tailed, and if the overhead of invoca-
tions between a small number of components is removed,
the system can attain both high reliability (retaining most
protection domain boundaries), while concurrently achiev-
ing significant performance improvements (up to 40%). As
the distribution of invocations between components change,
the system can erect and remove protection boundaries as
appropriate. The goal is to maintain high reliability (to de-
tect and isolate faults when they occur), and high perfor-
mance. When a protection boundary is required for security,
it should never be removed.

To retain a consistent model of thread execution account-
ing and scheduling in a system using synchronous IPC,
thread switches would be necessary even when the compo-
nents share a protection domain. The overhead of schedul-
ing and switching between threads is higher than that of di-
rect invocation of the destination function. For example, the
cost of intra-protection domain invocations in COMPOSITE

10In COMPOSITE, we implement a simple web-server [14] consisting
of about 25 components. Each HTTP request causes between 50 and 70
invocations depending on if it is for static or dynamic content.

fnfn

(a) (b)

Figure 7. Inter-address space invocations of the
function fn, using (a) synchronous IPC that required
thread dispatch, and (b) migrating threads with indi-
rect invocations through a function pointer [14].

is on the order of a C++ virtual function call, significantly
faster than thread dispatch. Figure 7 depicts these two forms
of invocation. Only a single execution context is required
when using thread migration.

6 Thread Migration Limitations

There are a number of limitations and peculiarities both
with the thread migration model, and with the COMPOSITE
implementation. We discuss these in turn.

Execution Context Unavailability: When an invoca-
tion is made to a component, an execution context for that
invocation must be found. This can be done in the ker-
nel [8], or within the component itself (as in COMPOSITE).
If there are no available contexts, the system must resolve
this contention. Both thread migration and synchronous
IPC must deal with this case where there are more pending
invocations than there are server execution contexts. We be-
lieve this case is best dealt with by allowing the customized
definition of the policies for dealing with such cases. In
COMPOSITE, these policies are defined as components and
they vary from having separate execution stack freelists for
different client service classes (i.e. to guarantee that hard
real-time tasks will always find a stack), to implementing
priority inheritance. Additionally, we are currently inves-
tigating methods to balance responsiveness with execution
context memory usage when allocating execution contexts
to components.

Fault Recovery: The fault recovery model for server-
based systems using synchronous IPC is well-known and
simple to understand. When a fault occurs within a server,
all threads in active IPC with that thread or server can be di-
rectly notified of that failure and act accordingly. The fault-
ing thread and the server can independently be restarted.
With thread migration, the thread that causes a fault in one
component should not be destroyed as its execution context
is spread across multiple components. Thus when a fault
occurs in a specific component, one solution is to cause the
thread to return to the invoking component, either with an
error code, or an exception [3]. This model is less familiar
to developers accustomed to a process-style structuring of
the system.

6.1 COMPOSITE Implementation Limitations

COMPOSITE is a prototype and should not be seen as
being as feature-rich as either monolithic systems such as
Linux, or even mature µ-kernels such as L4. A number
of design decisions simplify the implementation of thread
migration in COMPOSITE.

First, the COMPOSITE kernel is non-preemptive. The
IPC path assumes that no interrupts will preempt it, thus
that no synchronization around kernel data-structures is re-
quired in the single-processor case. Additionally, as the
invocation path does not touch user-memory, we assume
that faults cannot occur. The non-preemptive assumption
is justified by the general lack of expensive operations in
the kernel. For example, we avoid supporting general hier-
archical address space operations such as map, grant, and
unmap [11] operations in the kernel, as complex mapping
hierarchies can cause unmap to become expensive. Instead,
we provide a simple operation to directly map a physical
frame into a specific virtual location in a component. A
privileged user-level component uses this simple facility to
itself implement the higher-level operations. Though we be-
lieve the non-preemptive kernel implementation is a sound
design decision, we cannot predict if systems that do not
make such an assumption might have difficulty implement-
ing efficient invocations using thread migration.

An additional limitation of the current COMPOSITE im-
plementation is the fact that it only supports uniproces-
sors. We believe partitioning the state of the system (e.g.
threads) between processors will enable efficient and pre-
dictable (and lock-free) invocations when we move COM-
POSITE to multiprocessors.

7 Related Work

Thread migration is not a new method for inter-
protection domain invocation. LRPC [1] describes now
RPC within a single machine can be optimized by using
thread migration. Ford [7] altered the invocation path in
Mach to use thread migration for a significant performance
improvement. Pebble [8] optimizes invocation latency by
custom-compiling specialized invocation code and by us-
ing thread migration. We argue that thread migration is a
predictable foundation upon which to implement finely de-
composed, configurable, and reliable systems. We do not
know of other work that has compared the predictability of
thread migration to synchronous IPC.

8 Conclusions

In this paper, we argue the case for using a thread migra-
tion approach for predictable inter-protection domain com-
munication in configurable and reliable systems. In doing

so, we introduce the COMPOSITE design for component in-
vocation that uses thread migration. We make this argu-
ment in terms of three factors: (1) the desire to have a con-
sistent processor management and accounting scheme for
CPU utilization across invocations that maps well to sys-
tems in which specialized services are provided by some
components to others, (2) the communication end-point ab-
stractions provided by the kernel that have a significant ef-
fect on the bounds for IPC latency, and (3) the effect that
the IPC mechanism can have on the ability of the system
to provide configurable system policies (e.g. scheduling,
MPD).

We argue that thread migration provides a predictable in-
vocation foundation, and we contrast that with synchronous
IPC in the general case. We argue not that previous IPC
mechanisms should be abandoned, but that bringing their
semantics closer to that of thread migration is beneficial for
overall system predictability.

The COMPOSITE source code is available upon request.

References

[1] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy. Lightweight remote procedure call. ACM Trans. Com-
put. Syst., 8(1):37–55, 1990.

[2] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast mutual
exclusion for uniprocessors. In ASPLOS-V: Proceedings of
the fifth international conference on Architectural support
for programming languages and operating systems, pages
223–233, New York, NY, USA, 1992. ACM.

[3] F. M. David, J. C. Carlyle, E. Chan, D. Raila, and R. H.
Campbell. Exception handling in the choices operating sys-
tem. In Advanced Topics in Exception Handling Techniques
in Springer Lecture Notes in Computer Science, pages 42–
61, 2006.

[4] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom.
Flick: a flexible, optimizing idl compiler. In PLDI ’97:
Proceedings of the ACM SIGPLAN 1997 conference on Pro-
gramming language design and implementation, pages 44–
56, New York, NY, USA, 1997. ACM Press.

[5] K. Elphinstone. Resources and priorities. In Proceedings of
the 2nd Workshop on Microkernels and Microkernel-Based
Systems, October 2001.

[6] K. Elphinstone, D. Greenaway, and S. Ruocco. Lazy
scheduling and direct process switch – merit or myths? In
Workshop on Operating System Platforms for Embedded
Real-Time Applications, July 2007.

[7] B. Ford and J. Lepreau. Evolving mach 3.0 to a migrating
thread model. In Proceedings of theWinter 1994 USENIX
Technical Conference and Exhibition, pages 97–114, 1994.

[8] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silber-
schatz. The pebble component-based operating system. In
Proceedings of Usenix Annual Technical Conference, pages
267–282, June 2002.

[9] A. Lackorzynski and A. Warg. Taming subsystems: capa-
bilities as universal resource access control in l4. In IIES

’09: Proceedings of the Second Workshop on Isolation and
Integration in Embedded Systems, pages 25–30, New York,
NY, USA, 2009. ACM.

[10] J. Liedtke. Improving ipc by kernel design. In SOSP ’93:
Proceedings of the fourteenth ACM symposium on Oper-
ating systems principles, pages 175–188, New York, NY,
USA, 1993. ACM Press.

[11] J. Liedtke. On micro-kernel construction. In Proceedings of
the 15th ACM Symposium on Operating System Principles.
ACM, December 1995.

[12] G. Parmer and R. West. Mutable protection domains: To-
wards a component-based system for dependable and pre-
dictable computing. In RTSS ’07: Proceedings of the 28th
IEEE International Real-Time Systems Symposium (RTSS
2007), pages 365–378, Washington, DC, USA, 2007. IEEE
Computer Society.

[13] G. Parmer and R. West. Predictable interrupt management
and scheduling in the Composite component-based system.
In RTSS ’08: Proceedings of the 29th IEEE International
Real-Time Systems Symposium. IEEE Computer Society,
2008.

[14] G. A. Parmer. Composite: A Component-Based Operating
System for Predictable and Dependable Computing. PhD
thesis, Boston University, Boston, MA, USA, Aug 2009.

[15] S. Reichelt, J. Stoess, and F. Bellosa. A microkernel api for
fine-grained decomposition. In 5th ACM SIGOPS Workshop
on Programming Languages and Operating Systems (PLOS
2009), Big Sky, Montana, oct 2009.

[16] S. Ruocco. A real-time programmer’s tour of general-
purpose l4 microkernels. In EURASIP Journal on Embedded
Systems, 2008.

[17] Scheduling in k42, whitepaper:
http://www.research.ibm.com/k42/white-
papers/scheduling.pdf.

[18] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Trans. Comput., 39(9):1175–1185, 1990.

[19] J. S. Shapiro. Vulnerabilities in synchronous ipc designs. In
SP ’03: Proceedings of the 2003 IEEE Symposium on Se-
curity and Privacy, page 251, Washington, DC, USA, 2003.
IEEE Computer Society.

[20] U. Steinberg, J. Wolter, and H. Hartig. Fast component in-
teraction for real-time systems. In ECRTS ’05: Proceedings
of the 17th Euromicro Conference on Real-Time Systems
(ECRTS’05), pages 89–97, Washington, DC, USA, 2005.
IEEE Computer Society.

[21] J. Stoess. Towards effective user-controlled scheduling
for microkernel-based systems. SIGOPS Oper. Syst. Rev.,
41(4):59–68, 2007.

[22] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The de-
ferrable server algorithm for enhanced aperiodic responsive-
ness in hard real-time environments. IEEE Trans. Comput.,
44(1):73–91, 1995.

[23] V. Uhlig, U. Dannowski, E. Skoglund, A. Haeberlen, and
G. Heiser. Performance of address-space multiplexing on
the Pentium. Technical Report 2002-1, University of Karl-
sruhe, Germany, 2002.

