On the Design and Implementation of Mutable Protection Domains Towards Reliable Component-based Systems

Gabriel Parmer and Richard West

Component-based systems

- A component is a reusable software unit of composition
- Contractually specified interfaces
- Explicit interface context dependencies
- Independently deployable
- Abstraction via separation of implementation and interface
- Smaller/more specific components allow more compositional flexibility

Why Mutable Protection Domains (MPD)?

- Systems often go through phases of different distributions of communication between components
- Static placement of protection domains allows either
- good performance or pervasive fault tolerance
- Dynamic placement: performance <u>and</u> fault tolerance

MPD in the Composite OS

- Small region shared with kernel in each component points to code relevant for current protection type
- Serialize function arguments and IPC
- Direct invocation of destination function
- Kernel can dynamically change protection type by altering this structure and memory context (page-tables)

Protection Domains in Operating Systems

- Protection domains provide a basis for
- Resource usage accountability memory, file descriptors, etc...
- Fault isolation a manifested error should effect the smallest part of the system possible (deadlock, ptr corruption, mem leak, ...)
- Essential for reliable systems bugs are inevitable!
- Significant processing costs for inter-protection domain communication

Protection Domains

Reality Interjects: Implementation Complications

- Problem:
- 1. A thread make invocation from component A to B
- 2. A and B are split into separate protection domains

- Solution:
- Threads maintain view of protection domains in current components until they return
- Garbage collect these stale protection domains (predictable via reference counting)

Trade-off in Placing Protection Domains Around Components

- Inter-process Communication (IPC) used to communication between protection domains
- High invocation processing overhead
- 4 user <---> kernel-level switches
- 2 hardware memory context switches
- Switch execution stacks
- Pass any function arguments (copy)
- Invocation takes ~0.63 microsec
- Increased reliablity fault in one component doesn't necessarily effect the other

- Components in the same protection domain communicate via direct function calls
- Low invocation processing cost
- Function call overhead
- Single shared execution stack
- Arguments passed via stack/regs
- Invocation takes ~0.022 microsec
- <u>Less reliability</u> fault in either component can easily corrupt state in the other, no fault isolation

Mutable Protection Domains Canonical Operations

- Policies for protection domain placement defined in components: What should the kernel interface to manipulate them look like?
- Removing protection boundaries is performance-sensitive
- Requires predictability remove overhead in a bounded time
- Avoid creating many stale protection domains

move(A,B,a) = (C,D) is a composite of split and merge

Moves a in A to B, output as C and D

Communication

Pattern at time 0