Computer
On the Design and Implementation of Mutable Protection
Domains Towards Reliable Component-based Systems

Component-based systems Why Mutable Protection Domains (MPD)? /f‘ P /4'3 > bar()
foo() foo()

~ : : - serialize() deserialize()
A component is a re-u.sablle software unit of composition . Systems often 9o through phases of different User User
* Contractually specified interfaces T o Kernel e
 Explicit interface context dependencies distributions of communication between components
* Independently deployable " Static placement of protection domains allows either MPD in the Composite OS

* Abstraction via separation of implementation and interface - good performance or pervasive fault tolerance

* Smaller/more specific components allow more compositional flexibility * Small region shared with kernel in each component

points to code relevant for current protection type
* Serialize function arguments and IPC

" Dynamic placement: performance and fault tolerance

Protection Domains in Operating Systems

App1 App2 * Direct invocation of destination function
* Protection domains provide a basis for * Kernel can dynamically change protection type by
* Resource usage accountability — memory, file descriptors, eftc... F|Ie Flle altering this structure and memory context (page-tables)
. : : . : Desc 1 Desc 2 : : : : :
Fault isolation —a manifested error should effect the smallest part of v Reality Interjects: Implementation Complications
the system possible (deadlock, ptr corruption, mem leak, ...) . A B
* Essential for reliable systems — bugs are inevitable! Pipe Problem: - E/F—»%
* Significant processing costs for inter-protection domain Low C"m””’“”"’a“"” Rates | ! A thread make '.m./ocatlon from Compo.nent A tO.B
/. 2. A and B are split into separate protection domains
communication High Communication Rates Sched * The thread immediately faults: Can't access arguments or its execution stack!
* Solution:
Trade-off in Placing Protection Domains Around Components l * Threads maintain view of protection domains in current components until they return

Component /ﬁetDev TimerDev * Garbage collect these stale protection domains (predictable via reference counting)

Communication
/ Pattern at time 0

N B - :-\ Mutable Protection Domains Canonical Operations
User : " " " " " "
— User ~~— Protection Domains App1 App 2 * Policies for protection domain placement defined in components:
erne
IPC l What should the kernel interface to manipulate them look like?
* Inter-process Communication (IPC) used| * Components in the same F|Ie * Removing protection boundaries is performance-sensitive
to communication between protection protection domain communicate via Desc 1 - . . s . .
formains direct function calls e Requires predictability — remove overhead in a bounded time
. High invocation processing overhead °* Low invocation prgcessing cost .AVO|d Crea“ng many Stale prOteCtlon dOmaJnS
* 4 user <---> kernel-level switches * Function call overhead TCP Pipe merge(A,B) = C split(A, a) = (B,C)
* 2 hardware memory context switches * Single shared execution stack l A B C
* Switch execution stacks * Arguments passed via stack/regs | 1 » a
* Pass any function arguments (copy) * Invocation takes ~0.022 microsec Sched A 2 4 p 2 4 - 1 2 1 2
* Invocation takes ~0.63 microsec * Less reliability — fault in either . . .
* Increased reliablity - fault in one component can easily corrupt state | I move(A,B,a) = (C,D) is a composite of split and merge
component doesn't necessarﬂy effect the In the other, no fault isolation NetDev TimerDev Pattern at Time 1 ° MOV@S d |n A (6 B OUtpUt dS C and D .
other

