
Execution Stack Management for Hard Real-Time Computation in a
Component-Based OS

Qi Wang, Jiguo Song, and Gabriel Parmer

Computer Science Department
The George Washington University

Washington, DC
{interwq,jiguos,gparmer}@gwu.edu

Abstract—In addition to predictability, both reliability and
security constraints are increasingly important. Mixed criticality,
and open real-time systems execute software of different certifica-
tion and trust levels. To limit the scope of errant behavior in these
systems, a common approach is to raise isolation barriers between
software components. However, a thread that executes through
multiple components computes on execution stacks spread across
each component. As these stacks require backing memory, each
component has a finite amount of execution stacks. In this paper,
we treat these stacks as shared resources, and investigate the
implementation of traditional resource sharing protocols in a real
component-based system. We implement multi-resource versions
of the Priority Inheritance Protocol (PIP) and Priority Ceiling
Protocol (PCP) for these shared stacks and find – surprisingly
– that neither provide better schedulability characteristics than
the other for all system parameterizations. Additionally, we
identify the relationship between allocating additional stacks to
components, and system schedulability. Given this, we describe
and evaluate algorithms to ensure system schedulability while
seeking to minimize the amount of memory consumed for stacks.

I. INTRODUCTION

Embedded and real-time systems are increasingly required
to provide not only predictability, but also increased reliability,
security, and isolation guarantees. Open real-time systems
in which hard real-time tasks execute along-side best effort
and untrusted applications require not only that the real-time
tasks meet their deadlines, but that they are isolated from the
possibly faulty or malicious programs. This motivates a class
of systems that provide fault-isolation at a finer granularity
than is typically provided by monolithic operating systems and
applications. Hardware techniques for memory isolation (e.g.
page tables) are commonly used to segregate the functionality
of the system into separate components. A fault in one
component cannot access or corrupt the memory in another,
thus constraining the fault propagation and the adverse effects
of buggy or malicious components. Examples of such systems
include µ-kernels [1], component-based OSes [2], [3], and
middle-ware systems [4].

Communication between components in such systems is
typically mediated by the kernel and because memory in one
component is generally inaccessible in another, the execution
stacks of threads are distributed across all components that
thread has invoked. Specifically, a thread does not use a single
C execution stack (i.e. used to track function calls, provide
scoped local memory, and an area for spilling registers) when

making invocations between components; instead, a stack1

per-component is used for the local computation within that
component. Each component is allocated a fixed number of
stacks, and they must be used in a mutually-exclusive manner
by threads that invoke the component. Unfortunately, this
presents a problem: If multiple threads concurrently invoke
a component with a single stack, there is naturally contention
on that stack – threads must block waiting for the holder (i.e.
the thread executing in that component) to exit the component,
thus make the stack available for another thread to use. This
causes blocking delays that affect system schedulability in real-
time systems. However, we observe that as more stacks are al-
located to a component, the blocking delays due to contention
are lessened as multiple threads can concurrently execute in
the component. In the extreme case, each component in the
system can be given N stacks, where N is the number of
threads in the system, to remove all blocking delays. There is,
then, a trade-off between the schedulability of systems with
prohibitive blocking delays, and memory usage for stacks.

In this paper, we explore multiple facets of stack contention.
First, we explore an implementation of invocations in our
component-based OS, COMPOSITE, and implement common
resource sharing protocols – the multi-unit Priority Inheritance
Protocol (PIP), and the multi-unit Priority Ceiling Protocol
(PCP) [5], [6] (henceforth, we omit the multi-unit description
and simply refer to PIP and PCP for brevity). These protocols
avoid the unbounded priority inversion that occurs when a
high-priority thread blocks waiting for a stack from a low-
priority holder while a medium priority thread executes for
a possibly unbounded amount of time. We find that PCP
has significant practical implementation overheads when used
for stack sharing and when we apply these overheads in a
system model, PIP actually has more favorable schedulability
characteristics in certain circumstances. This is opposed to
conventional blocking delay formulations in which PCP is
superior to PIP [5]. We investigate PIP, as it is a commonly
implemented protocol in existing systems [7], [8], and we
investigate PCP due to its favorable analytical properties.
Second, given the trade-off between memory usage on stacks
and schedulability, we show how blocking delays can be
manipulated by assigning additional stacks to specific com-
ponents.

Contributions: The main contributions of this paper include:

1In this paper, we use “stacks” as shorthand to refer to “C execution stacks”.

(1) We identify the problem of stack sharing in a reliable
OS architecture as a system design issue involving a trade-
off between memory consumption and schedulability; (2) We
formulate the problem of stack sharing as a traditional re-
source sharing problem, and provide analytical blocking time
calculations that explicitly consider memory allocations to
stacks throughout the system, and how these allocations affect
schedulability; (3) We detail and study the implementation of
both PCP and PIP for stack sharing in a component-based OS;
(4) We show that contrary to convention, PIP can for some
system configurations have better schedulability properties
than PCP when the practical implementation overheads of PCP
are taken into account; (5) We introduce offline algorithms to
allocate stacks for system schedulability and show that a small
number of stacks are necessary to ensure predictability.

Section II discusses the system implementation of compo-
nent invocation in COMPOSITE to motivate the rest of the
paper. Section III constructs a model of a component-based
system while Section IV uses this model to define the blocking
terms of tasks for PIP and PCP given specific stack allocations.
Section V investigates algorithms for assigning stacks to
components for schedulability and Section VI evaluates the
model and algorithms in simulation. Section VII discusses
related work while Section VIII concludes.

II. COMPONENT INTERACTION IN COMPOSITE

We use the COMPOSITE [2] component-based OS as a
motivating system for this work. System policies and abstrac-
tions are defined as components. Components are implemented
by code and data that executes at user-level. A component’s
functionality is accessed by other components only through a
well-defined functional interface. Each component is encap-
sulated and opaque behind this interface, enabling them to be
separated into different protection domains. These protection
domains provide memory isolation by limiting the scope of ac-
cessible memory to each component, thus enabling reliability
by constraining the propagation of faults. These component
protection domains are provided by hardware mechanisms
(page-tables).

In COMPOSITE, even low-level system services such as
scheduling [9], synchronization [10], physical memory man-
agement, I/O handling, and event management are defined by
replaceable components. This simple model enables compli-
cated policies such as hierarchical resource management [11].
The OS can be customized to the requirements and goals of
individual applications, and the component-granularity pro-
tection increases fault isolation and security. A functional
system is the composition of a set of components. COMPOSITE
includes 6K lines of code for the kernel (compared to millions
of lines of code for monolithic systems such as Linux). All
component code, including 3rd party libraries, totals over
100K lines of code in COMPOSITE.

Components invoke functions defined by and in the interface
for other components. These invocations functionally mimic
the call and return semantics of function calls. When a thread
executing in a component c0 invokes a function in the interface

user−level

kernel−level

Execution

Stacks

Thread

Fig. 1. Thread migration in COMPOSITE. The same schedulable entity
migrates between components via invocation. Components are in
separate memory protection domains, thus invocations require kernel
mediation. Separate execution contexts (C stacks) must be used for
the thread’s execution in each component.

for component c1, execution for that thread discontinues in c0

and begins in c1, until it returns and resumes execution in
c0. COMPOSITE uses a migrating thread model to implement
this communication [10] as depicted in Figure 1. The same
schedulable entity (thread) migrates with execution between
components, and thread’s execution in each component re-
quires a separate C execution stack. Thus, in COMPOSITE
there is a separation of the scheduling context (that migrates
between components), and execution contexts (that provides
a stack to execute on in a component). It should be noted
that predictable systems that use synchronous communication
between threads [7], [8] also attempt to separate the schedul-
ing context and execution contexts while using synchronous
rendezvous between separate threads.

Despite the decomposition of system software into
hardware-separated components, the efficiency of COMPOSITE
is reasonable. In [2], we show that a web-server implemented
as more than 25 components (causing over 70 component invo-
cations per HTTP client request) is competitive with traditional
software (apache on Linux). We have also studied mechanisms
to dynamically remove protection domain boundaries between
components [12] to trade fault isolation for performance. For
the web-server, we find that removing inter-protection domain
invocation overheads does improve performance, but that a
system with isolated components is still competitive with
traditional techniques.

A. COMPOSITE Invocation Implementation

When a function defined in a component’s interface is
invoked, the kernel mediates the communication (this is nec-
essary as protection domains must be switched). The kernel
makes an upcall into the “server” component that triggers
execution at a fixed address associated with the function being
invoked. This code is written in assembly as no stack has yet
been found to execute on (i.e. C code assumes an active stack).
This assembly code’s first job is to locate a stack to execute on,
or invoke the stack manager if there are no available stacks.
All arguments for an invocation are passed in registers and
to keep the kernel invocation path simple and efficient, the
kernel does not copy or map memory. If a function requires
more arguments than there are registers (i.e. there are only
6 general purpose registers on x86-32), or if the arguments
are pointers to data regions, an Interface Definition Language
(IDL) compiler generates stubs to pass the data in shared

memory. Shared memory regions are set up and managed by
a devoted component; the details are beyond the scope of this
paper.

Figure 2 depicts the implementation of invocations and ex-
ecution contexts in COMPOSITE. Execution stacks are shared
resources used by multiple threads when they invoke a compo-
nent. Unused stacks are maintained on a singly-linked freelist.
To avoid the unbounded priority inversion that can result
from contention on the stacks (i.e. the shared resources),
we summarize the implementation of both multi-unit priority
inheritance and multi-unit priority ceiling protocols [5], [6].

Multi-unit priority inheritance protocol in COMPOSITE.
Priority inheritance is optimistic in the sense that when a
accessed resource is uncontended, the scheduler isn’t involved
(there are no priority changes), and management of the shared
resource can be handled locally. A good example of this is
mutexes that implement PIP in Linux [13]: in the uncontended
case all kernel invocations (system calls) are avoided. As PIP
can avoid interaction with other components, it is an appealing
mechanism to integrate into an optimized inter-process (or
inter-component) communication path. The common case of
no contention imposes no overhead over the basic invocation
costs. For this reason, previous systems [8], [7] use priority
inheritance to avoid unbounded priority inversion when there
is contention for execution contexts.

In COMPOSITE, when a stack is allocated to a component,
it is part of a singly-linked free-list when unused. The first
operation performed upon invocation is to attempt to retrieve a
stack from the freelist. Instead of using an explicit semaphore
to protect the freelist, we use non-blocking synchronization
that can be made predictable on a uni-processor [14] (or on
a multiprocessor with resource partitioning). Specifically, the
assembly stub finds the freelist of stacks (which is at a known
address in the component), and removes the first stack from
the list. This operation is performed atomically2 Once a stack
is acquired, the thread sets its stack pointer, and the intended
component function is invoked. This is illustrated by step 1
in Figure 2(a). When the component’s function returns, the
stack is atomically added back into the freelist, and the thread
returns to the invoking component (step 2 in Figure 2(a)).
Thus, in the uncontended case, the overhead for sharing stacks
is minimal, including only stack freelist manipulation.

Figure 2(b) details the steps taken for PIP given contention
on the stacks (i.e. more threads have invoked the component
than there are stacks allocated to the component): 1) Low
priority thread τl uses the stack, and is preempted by the
high priority thread τh. 2) τh invokes the component, finds no
stacks on the freelist, sets a “contended bit” in the component,
and invokes the stack manager that suspends the thread in
the scheduler, creating a waits-for relationship between the
threads. 3) The dependency between τh and τl causes priority
inheritance in the scheduler. Due to this, the scheduler executes
τl which eventually returns from the function it executes in the

2Though atomic instructions could be used, COMPOSITE uses a “restartable
atomic sequence” [15] for atomic removal of a stack from the freelist.

component, notes the set contended bit, and calls the stack
manager to notify it that a stack is available for use. Thus, the
stack manager invokes the scheduler to wake τh. 4) τh wakes,
returns to the component, and acquires the stack. Although
this may seem complicated, a motivation behind component-
based systems is the separation of concerns. Both the stack
manager and scheduler are configurable, and are implemented
at user-level in separate protection domains.

This example involves only a single stack, and two threads.
When more stacks are allocated to a component, the overheads
of invoking the stack manager and performing the priority
inheritance will only occur when all of the stacks are in use. In
the current implementation, the thread that inherits the priority
of τh is arbitrarily chosen amongst those holding stacks which
does not effect the theoretical bounds as PIP must already
consider chained blocking. This mimics multi-unit resource
protocols as described in [6].

Multi-unit priority ceiling protocol in COMPOSITE. In
contrast to PIP, PCP takes active action to avoid possible
contention even when there is no actual contention. Specif-
ically, even when there is not resource contention, the system
ceiling is updated. This ceiling must be maintained in a
central location so that it can be updated whenever a stack
in any component is requested, thus in COMPOSITE, the
stack manager maintains the ceiling. Consequently, whenever
a thread wishes to use a stack, or release a stack, it must invoke
the stack manager. This is analogous to user-level mutexes that
implement PCP in Linux: a system call to the kernel must be
made to update the ceiling, even when there is no contention.

Figure 2(c) depicts an invocation using PCP without con-
tention. 1) τ invokes the component, and immediately calls
the stack manager to update the ceiling. 2) τ returns to the
component and acquires the stack. 3) After the execution
is complete, τ calls the stack manager to lower the system
ceiling. 4) τ releases the stack and returns to the invoking
component. When there is contention, PCP takes actions
almost identical to those in Figure 2(b) except that τl first
raises the system ceiling before initially taking the stack.

Multi-unit PCP [6] is used in COMPOSITE to maintain
the guarantee that any thread will only experience contention
once during its execution, thus limiting blocking time to the
maximum hold time for one stack. Importantly, this means
that the highest priority thread holding a stack in a component
should be the one that inherits a suspending thread’s priority.

Coordination with resource sharing for other resources.
Although this paper focuses on the protocols, analytical mod-
els, and resource allocation policies for run-time stacks, COM-
POSITE also includes resource sharing protocols for more tra-
ditional semaphore protected resources [16]. These policies are
implemented in a lock component. If both the lock component,
and the stack manager provide PIP, the waits-for graph that
takes both types of resources into account is maintained by the
scheduler component. Specifically, when a thread is suspended
by the stack manager, or the lock component, the scheduler
is informed of the dependency formed between this thread

13

4

5

2

Scheduler

Stack
Manager

2

1 1

2

3

4

1

3
4

2
freelist

stack

(a) (b) (c) (d)

Fig. 2. The dashed line is a low-priority thread, while the dotted line is a high-priority thread. Four situations each depict a component with
managed stacks (dark), a stack manager (white), and the scheduler (light). An X in the scheduler and an O in the stack manager designate
a thread blocking, and ceiling manipulations, respectively. Priority inheritance without contention (a), and with (b). Priority ceiling without
contention (c), and with (d).

and the one it that should inherit its priority. The scheduler
uses a mechanism similar to shadow tasks in Shark [17] to
provide proper priority inheritance that integrates all different
types of resources. If all resource types use PCP, a single
centralized ceiling will need to be maintained either in the
lock component, or in the stack manager.

Managing stacks for the stack manager and scheduler.
Who manages the stacks for the stack manager and the
scheduler? We take a practical approach to answering this
question: we pre-allocate enough stacks to satisfy all invo-
cations in these components (i.e. the stack freelists contain
a number of stacks equal to the total number of system
threads). These components have simple code-paths and don’t
require much stack space, so we believe this is an acceptable
design. Importantly, although we allocate stacks for all threads
in these components, this enables the schedulability-aware
allocation, and contention management of stacks for all other
components.

Comparison to the stack resource protocol. The Stack
Resource Protocol (SRP) [18] is a common resource sharing
protocol with theoretical properties similar to PCP. SRP, as
PCP, is not optimistic in the sense that the system ceiling must
be altered on each component invocation. In SRP, the ceiling
must be tightly integrated into the scheduling policies of the
system to ensure that thread preemptions only happen when
the priority of the preempting thread is greater than the system
ceiling. As the scheduler must be invoked even when there
is no contention (i.e. for ceiling maintenance), the practical
overheads due to component invocations are similar to those
for PCP. In COMPOSITE, the scheduler is implemented as a
separate user-level component, thus requiring inter-component
communication when it is involved. Though component in-
vocations in COMPOSITE are efficient (similar to optimized
microkernels [2] and system call overheads in monolithic
systems), this cost is significant compared to the uncontended
priority inheritance operations. Even in a monolithic system
such as Linux, operations that require scheduler interaction
(ceiling maintenance) require relatively expensive system calls
compared to optimized PIP paths [13] that do not. Given
the similar analytical bounds for PCP and SRP, and the
comparable practical overheads, we focus on comparing PCP
and PIP. We leave a more in-depth study of SRP for future

work.

III. COMPONENT-BASED SYSTEM MODEL

{τi, . . .} ∈ T is the set of tasks. We assume tasks are
implemented as threads, and we use the terms interchangeably
henceforth. We assume a simple periodic task model in which
each task consists of an infinite number of jobs. Each job
activates at the thread τi’s periodicity, pi, executes for a
maximum execution time of ei, and has a deadline equivalent
to the activation time of its next job. We assume fixed priority
scheduling with unique priority assignments. The set of threads
with higher-priority than τi is hpi.
{cx, . . .} ∈ C is the set of system components, that

comprise the executable system3. Each component depends
on a set of other component’s functionality that it accessed
through their functional interface via component invocation.
This dependency relation is captured by dx that contains
all components that are depended on by cx. We describe
the set of all components transitively depended on by cx as
Dx = dx ∪ (

⋃
cy∈dx D

y).
The system is additionally described by:
• A τi executing in cx can invoke the components in dx.

We assume that invocations are synchronous: When a thread
invokes cy ∈ dx, it will continue execution in cy , and will
resume execution in cx only when it returns from cy . Many
µ-kernels [1], [7], [8] and component-based systems [10],
including COMPOSITE, are based on synchronous IPC. In
this way, invocations mimic function calls, but operate on
components rather than functions. Invocations have non-zero
execution overheads, in the worst case characterized by O.
• When a thread invokes cx, the worst-case processing done

in that component is ex. When a component is invoked, the
worst-case number of invocations it makes to cy ∈ dx is vx,y .
In keeping with a component model, both ex and vx,y are
specified independently for each component. Although vx,y

references two components, it is purely a function of cx.
Its implementation could change to invoke cy more or less,
independent of cy .
• Each thread begins execution in a specific component (i.e.

with the thread’s main). hi ∈ C is τi’s “home” component.

3To make the notation easier to follow, we use subscripts to denote the
selection of a specific thread, and superscripts to denote selection of a
component.

We simply write h when the specified thread is unambiguous.
Given thread’s home components, the set of threads that can
invoke a specific component is defined as tx = {τi|cx ∈ Dhi}.
We define lpxi ∈ tx to be the set of threads with lower-priority
than τi in cx.
• A component, cx, contains a total of sx number of

execution stacks. When a specific stack is used as an execution
context for a thread, it cannot be used by another thread, i.e. it
is a resource shared in a mutually exclusive manner between
all threads that can invoke cx. The number of stacks that aren’t
being used for any thread’s execution at a point in time (i.e.
the number that are available) is 0 ≤ ax ≤ sx. When a
thread invokes a component (cx) and there are no available
stacks, ax = 0, that thread must block waiting for a stack to
become available. The overhead of this operation (including
blocking the thread, inheriting priority, and context switching
twice) is M , and we call this operation a stack miss. To avoid
unbounded priority inversion, resource sharing protocols are
used. The maximum amount of time that a thread τi can block
waiting to use a stack in component cx is denoted bxi . The total
maximum blocking time for τi is bi.
The stack used for a thread in its home component is not
counted in sh as it is never shared between threads. Unless
a thread terminates (i.e. returns from main), it will never
relinquish this stack.

The worst-case execution time of a thread, ei, if executed
alone on the system is determined by the worst case execution
times of the individual components it invokes, and the number
of invocations made between them. Thus, it can be determined
from the independent parameters of the components used in
the system: ei = ehi .

ex = Ex + Ix (1)

where the cost of component execution and the cost of
invocations is

Ex = ex +
∑
∀cy∈dx

vx,yEy, Ix =
∑
∀cy∈dx

vx,y(O + Iy)

Assumption: known, acyclic component graph. A graph of
components that define a system of hard real-time tasks is
loaded as a single unit. A system specification includes all
components, and their dependencies. The system ensures at
run-time that communication is only made between compo-
nents as described in the specification using capabilities [19].
Given this specification, a number of static analysis are
performed on the system. (1) The priority ceiling protocol
requires that the maximum priority of any task that can invoke
a specific component is known a-priori. This value can be
ascertained solely from the tasks that exist in the system,
and the graph structure. Specifically, the ceiling for cx is
the maximum priority of any thread, max∀τi|cx∈Dhi (prio(τi))
where a thread’s priority is prio(τi). (2) Note that ei given the
definition above is not bounded if cyclic component graphs are
allowed. Thus one analysis that is performed is to ensure that
the graph is acyclic. To bound ei, we ensure at load-time that
the component graph is acyclic, i.e. cx 6∈ Dx. In addition to

making the analysis possible, cyclic structures in component
based systems (and µ-kernels) are dangerous as they can lead
to deadlock when used with synchronous IPC. Although PIP
does not avert deadlock, this assumption removes any cyclical-
wait relationships between threads and shared stacks, thus
preventing stack-based deadlock in COMPOSITE.

The generality of this model. Although it seems that certain
parameters of this model are specific to COMPOSITE– such
as the number of stacks per component, or the acyclic nature
of the component graph – we argue that the model captures
general characteristics shared by many systems. Systems that
distribute execution contexts, and uses a synchronous model of
communication between them, can be described in this model.
For example, systems that use synchronous IPC between
threads [1] must answer the question of how many threads
to serve requests in an invoked component.

IV. TASK BLOCKING TIME CALCULATION

The maximum resource hold time is the maximum amount
of time between when a task acquires and releases a resource.
It is common to assume that this value is known, or is easily
derived from individual resource hold times. However, as
we will see, allocating stacks to different components has
the effect of changing the stack hold times. Thus instead of
assuming the maximum stack hold times for different stacks
are constant, we calculate them from the structure of the
system. We assume that high-priority threads do not self-
suspend while holding resources (stacks).

A. Priority Ceiling Protocol Blocking Time Calculation

For PCP, the maximum blocking time for a thread τi is

bi = max
∀cx∈dh

(bxi (PCP)) where bxi (PCP) = ex +M (2)

Blocking time refinement: stack allocations. This analysis is
pessimistic: it doesn’t consider either thread priority, or stacks
allocations. τi will not block in cx if stacks are available. In
the worst case, we can guarantee that a thread will not block
when invoking a component if it is amongst the sx lowest
(inherited) priority threads that can invoke cx.

bxi (PCP) =

{
max
∀cy∈dx

(byi) if |lpxi | < sx

ex +M otherwise
(3)

When we refer to byi , assume that we mean the textually
closest definition of byi (i.e. byi (PCP)).

B. Priority Inheritance Protocol Blocking Time Calculation

We expand on Equation 2 to define the blocking time
for PIP. In this case every invocation can result in resource
contention, thus the maximum blocking time for a thread τi
is

bi =
∑
∀cx∈dh

bxi (PIP) where bxi (PIP) = ex +M +
∑
∀cy∈dx

byi

This assumes that when τi invokes cx, ax = 0, thus
causing the thread to block waiting for the stack to become

available. The thread holding the stack executes, and when it
invokes other components (in dx) they also have no stacks
available. For each invocation, there is contention on the
resource, thus causing priority inheritance. This is equivalent
to priority inheritance’s well-known “chained blocking” [5].
Thus a thread’s block time is dependent not only on the
execution time of the thread holding the stack (ex), but also
on its blocking time for other components as well.

Blocking time refinement: stack allocations. Similar to
Equation 3, we refine this analysis by taking into account
thread priority and stack allocations.

bxi (PIP) =

{
βxi if |lpxi | < sx

ex +M +
∑
∀cy∈dx b

y
i otherwise

where βxi =
∑
∀cy∈dx

byi

Threads only experience stack misses when their initial
priority places them in the set of lower priority threads of
size greater than sx. In effect, the sx lowest priority threads
will not block in contention for stacks. It should be noted that
they will contend for stacks when they inherit a higher-priority,
but in such cases, their blocking time will not be increased,
only the blocking time of the higher-priority thread (τi in this
case).

This analysis is pessimistic for two reasons. First, execution
at the priority of a thread can only suffer from “chained
blocking” once per component, thus limiting the total number
of blocking occurrences. Second, the number of lower-priority
threads also limits the impact of chained blocking events. We
refine the analysis based on these two observations.

Blocking time refinement: number of components. We
observe that “chained blocking” can only occur a maximum
of |Dhi | times for τi. If τl – a low-priority thread – holds a
stack in cx, and a higher-priority thread, τh, blocks waiting
for the stack, when τl completes its execution and frees the
stack, all components it invokes (in Dx) will have an available
stack. This stack will be used without contention by τh, or by
any thread that blocks τh and inherits its priority. Thus, once
a stack miss occurs in cx while executing with τh’s priority,
threads invoking cx will not suffer another stack miss. We can
bound the number of blocking occurrences by the number of
components τh can invoke (i.e. |Dhi |). A thread will not block
if we can guarantee there are enough stacks for it in a given
component.

bi =
∑

∀cx∈Dhi

{
0 if |lpxi | < sx

ex +M otherwise (4)

V. COMPONENT STACK ALLOCATION AND
SCHEDULABILITY

If we assume that ∀x, sx = 1, then we can solve the block-
ing terms for each thread. We use response time analysis [20]
to determine if the system is schedulable. We use the fixed

point construction in [21]:

Rt+1
i = ei + bi +

∑
∀τj∈hpi

⌈Rti
pj

⌉
ej (5)

hpi returns the set of threads that have a higher priority than
τi. R0

i = 0, and the solution iterates until either Rt+1
i = Rti ,

or Rti > pi, in which case the response time of the task is
greater than its deadline and it is not schedulable.

Stack allocation algorithms. If we assume that, given the
blocking factors (Equations 3 and 4) and thread execution
times, the analysis in Equation 5 shows the system is not
schedulable, we observe that increasing the stack allocation
to components (sx > 1) decreases the blocking factors. We
assume that the system is schedulable if ∀x, sx = |T |, which
removes all blocking terms4.

We propose two greedy heuristics, one for allocating stacks
when using PCP and one for PIP. They attempt to make
the system schedulable while allocating the fewest number
of stacks. Both algorithms, take the set of all threads, F ⊆ T ,
that fail to satisfy the response-time analysis of Equation 5.

A. Stack allocation for PCP

We observe that the only way to decrease the blocking time
for threads when using PCP, is to add stacks to components
that can block the thread, but not those invoked via dependen-
cies from these. The function max_component finds this
set. Algorithm 1 uses this function to find the component,
cx, of this set that has the maximum execution time – the
one contributing to the thread’s blocking time as shown in
Equation 3. It will do this for the highest priority thread
missing deadlines, τh. If stacks are allocated to a component
for this thread, it will also benefit other threads in F dependent
on the same component. Stacks are allocated to prevent τh
from blocking on stacks for cx. Once stacks are added, the
response time analysis of those threads in tx is recomputed.
If any of them now pass, they are not considered further,
otherwise the algorithm repeats.

Algorithm 1: PCP Stack Allocation
Input: F : Set of threads that fail the response-time analysis
while F 6= ∅ do // While threads miss deadlines1

τi = get_highest_prio_thd(F)2
cm = max_component(F , τi)3
// Increase the number of stacks in cm

sm = |lpmi | + 14
// tm is all threads that can invoke cm

for τi ∈ tm ∩ F do // Thds w/ new blocking times5
if pass_response_time_analysis(τi) then6

// remove the thread from F
F = F\τi7

end8
end9
return10

max_component(F, τi) = max
∀cx∈can_blk(hi,τi)

(ex) where

4If this isn’t true, then the system must be fundamentally redesigned by
changing the tasks, execution times, or processing power.

can_blk(cy, τi) =
⋃
cz∈dy

{
can_blk(cz, τi) if |lpzi | < sz

cz otherwise

Algorithmic Complexity. The complexity of algorithm 1 is
O(|C|(|T |log|T |) + |C|(|E||C| + |T |RTA)) where RTA is
the cost of conducting a response time analysis. Although
much work has been done to improve the efficiency of this
operation [22], in practice we have observed that this term
dominates the cost of the algorithm.

This optimization is run offline, and we find the runtime
to not be prohibitive (average runs for a Java implementation
take on the order of two seconds for systems with 1K threads
on a Pentium 4 system running at 2.8 Ghz).

B. Stack Allocation for PIP
Stack allocations to any cx can decrease the blocking time

of threads in tx, and components with a higher ex will
decrease thread blocking time by a larger amount. The PIP
stack assignment algorithm uses these relations to allocate
stacks toward schedulability. The PIP algorithm is identical
to Algorithm 1 except that max_component is defined
differently. max_component instead finds the component
that has the best ratio of decreased blocking time for threads
that miss their deadlines to the number of stacks required
for this decrease in blocking time. As in Algorithm1, stacks
are allocated to these components until no threads miss their
deadlines.

max_component(F, τi) = max
∀cx∈Dhi

((ex × |tx ∩ F |)/|lpxβ |)

Algorithmic Complexity. Only the max_component func-
tion differs in complexity from the stack allocation algorithm
for PCP. The complexity of that procedure is O(|C||T |) (|T |
to compute the intersection). Thus the final complexity is
O(|C|(|T |log|T |)+ |C|(|C||T |+ |T |RTA)). The algorithm is
run offline and we have not observed it to take more than three
seconds for systems with 1K threads, we have not found the
cost to be prohibitive (on the same system as in Section V-A).

C. Considering Different Component Stack Requirements
The presented algorithms assume that the memory usage per

stack is the same for different components. This assumption
has a practical motivation: it is common for thread packages
to allocate stacks for threads of a fixed size. However, if
maximum stack usage could be profiled or statically de-
termined, then per-stack memory allocations would differ
between components. We save an evaluation of this for future
work. However, we note that the algorithms that take a thread
that cannot meet deadlines and choose a component to receive
stacks, can be enhanced to consider the amount of memory
required to do so.

VI. EXPERIMENTAL EVALUATION

In this section, we combine empirical measurements from
COMPOSITE with simulation results to analyze the effective-
ness of (1) PCP and PIP for different system configurations,
and (2) the capabilities of the algorithms in Section V to make
the system schedulable while minimizing the memory required
for stacks.

Operation Average Stddev Worst Case
context switch 1.42 0.06 29.22

Opip 0.56 0.1 6.05
Opcp 1.53 0.04 18.17∗

M 7.39 0.09 76.63∗

TABLE I

COMPOSITE microbenchmarks (measured in µ-seconds). Context
switches include a single invocation to the scheduler. Values marked
with ∗ are qualified in the text.

A. COMPOSITE Performance Characteristics

These experiments are run on an Intel Core 2 Duo with only
one core enabled running at 2.33 Ghz. COMPOSITE is loaded
using Hijack techniques [23], and it uses only the Linux timer
drivers. We measure all operations using the rdtsc cycle
counter provided by the architecture.

Although we intend to study generic component-based
system configurations, we will particularly study a system
configuration motivated by COMPOSITE. Thus, we empirically
measure or infer the costs of key operations in COMPOSITE:
the maximum invocation overheads for both PIP and PCP (we
will denote these as Opip and Opcp, respectively), and the
maximum cost of a stack miss, M .

In measuring the worst-case costs of these different opera-
tions, we wish to avoid interference that results in measure-
ment of asynchronous events such as interrupts. Specifically,
measuring the worst-case execution time of a fast operation
will be dominated by the processing of the timer interrupt if
it preempts the tested code. Interrupt processing time must be
taken into account in a real-time system, but it must be taken
into account separately from the worst-case execution times
of unrelated operations.

Often one can disable interrupts to obtain accurate mea-
surements. However, as we wish to measure events that
involve both kernel and user-level, the natural transitions for
component invocation will re-enable interrupts (i.e. the kernel
ensures that interrupts are enables whenever switching to user-
level). Instead of changing this kernel behavior, we measure
the key operations carefully and avoid interrupt interference:
we set up the task conducting the measurements as a real-time
task with a periodicity of a single timer-tick. At the beginning
of the task’s execution, it manually writes to each cache-line in
a large array to flush the cache’s content. Next, the operation
we wish to measure is performed, and the timing recorded.
This is done every clock tick on an otherwise quiescent system
till we record 1K readings. We found this method to work
well for somewhat atomic operations, such as measuring the
maximum context switch latency, or the O for PIP. However
for operations such as Opcp and M , this is insufficient. We
found the worst-case reported measurement included the worst
case cost for a single invocation or context switch, but that the
rest of the invocations and other operations took times closer
to their average.

To compensate for inaccuracy of our worst-case measure-
ments, we observed that both Opcp and M are composite
operations of primitive operations for which we can accurately

measure the worst case. Thus Opcp and M worst cases
are synthesized from the worst-case measurements of their
constituent operations. The average and standard deviations of
all measurements are directly derived from the measurements.
Table I shows the costs of these operations in COMPOSITE. In
this study, our goal is to achieve some understanding of the
relative costs of these operations (especially Opip and Opcp).

B. System Generation and Simulation

To study the schedulability properties of the different re-
source sharing protocols and stack allocation algorithms, we
generate component graphs, and task sets, and apply our
analysis to them. Although task set generation is common
and well-studied, synthesizing a component hierarchy is not.
Our goal is to enable the generation of systems that are
parameterized in such a manner that they can capture a wide
variety of component-based and µ-kernel systems. Important
differences between these systems are (1) the aspect ratio of
the graph, or how “deep” the system is (i.e. the maximum
number of nested invocations) versus how many components
are in the system, (2) the ratio of invocation costs to in-
component execution, (3) the number of dependencies that
components have, (4) and the maximum number of invocations
that are made between components.

Component graph generation. We wish to show which
types of graphs and task sets the different resource shar-
ing protocols are superior for, and what types of systems
can benefit most from stack allocations. Thus, we gener-
ate random component graphs parameterized by the tuple
(δmax, wavg, iratio, davg, navg). δmax is the maximum depth
of the system, while wavg is the average width of a system.
Although width is a synthetic parameter (i.e. real systems
do not have a defined width), it, along with δmax, enables
the model to control the ratio of the maximum number of
nested invocations to the number of components. For example,
a monolithic kernel such as UNIX could be seen as a very
shallow component graph (δmax = 2, with large wavg 5),
while a pipeline of processes (e.g. a UNIX pipeline – where
processes have execution dependencies) has a small width and
is deep. iratio is the ratio of the average ex of components
in the system to the cost of an invocation (Opip). davg is the
average number of dependencies a component has, while navg

is the average maximum number of invocations made over a
dependency each time a component is invoked. All random
variables use an exponential distribution.

A component graph is generated by creating a “grid” of
components, and then connecting them via dependencies. The
grid has a depth δmax, and at each level (each row), we gen-
erate on average wavg components. Each component at level l
has dependencies on davg components in levels [l+ 1, δmax].
Each of the invocation “edges” signifies a maximum of navg ,
on average, invocations whenever the component is invoked.

5Any process-driven kernel [24] with a kernel stack for each thread,
including Linux, could be seen as a system where the “kernel component”
has skernel = |T |.

For some value of Opip, each component is assigned an ex

that is on average iratio(Opip). If system graphs are created
that are disconnected, they are discarded.

Task set generation. Given a component graph, we generate
task sets to analyze their schedulability. |T | tasks are randomly
assigned home components. We favor placing threads in lesser
levels to ensure that the “functionality” of the system defined
by higher levels is used. Thus, tasks are assigned a random
home component at level l where l is exponentially distributed
with an average of 1.2 (where the top level is 0). The thread’s
ei is generated using Equation 1. We generate task sets with
a randomly distributed target utilization. Given a utilization
target, 0 < U ≤ 1, we assign each thread a pi using a random
variable with an exponential distribution and an average of
U/|T |. Tasks are assigned priorities based on rate-monotonic
assignment: tasks with lower pi have higher priority.

C. Schedulability of PCP and PIP

To evaluate the properties of component-based systems im-
plementing either PCP or PIP, we study the effects of altering
system parameters to determine which significantly affect the
system schedulability. In doing so, we compare the schedula-
bility properties of PIP and PCP. Although PCP is analytically
superior to PIP in the literature as it avoids chained blocking,
system implementations of PCP as outlined in this paper can
have more overhead as they require active maintenance of
the priority ceiling. In COMPOSITE, this requires invoking the
stack manager once to raise the ceiling, and once to lower it, on
every component invocation. In contrast, PIP does not require
priority/ceiling manipulations in the uncontended case. This
real-world system overhead requires an analysis of the factors
that are beneficial or detrimental to PCP and to PIP.

We generate system configurations as described in Sec-
tion VI-B with the following default parameters: δmax =
10, wavg = 4, iratio = 10, davg = 2, and navg = 1.2. We
choose Opip, Opcp, and M based on the actual results from
COMPOSITE in Section VI-A (note that to compare PCP and
PIP, the ratio of these results and the ratio of execution time to
the these overhead (iratio) are salient, not the absolute values).
For the task model, by default we choose |T | = 8.

To compare PIP and PCP, we generate graphs with the total
utilization (U =

∑
τi∈T ei/pi) of the system uniformly at

random in the range (0, 1]. We generate a graph, calculate task
execution times assuming that there is no invocation overhead
(O = 0), and no blocking times (i.e. that each component has
|T | stacks). We discard any generated systems that don’t pass
a response time analysis under these conditions. Thus systems
are generated for a system without any overheads from stack
contention. Using the same component graph and task set,
we add in the actual resource sharing overheads (Opip, Opcp,
and the calculated bi) for both sx = 1 (maximum blocking
overheads) and sx = |T | (minimal blocking overheads). This
enables a comparison of the two resource sharing protocols
and associated system overheads. Unless otherwise noted, we
generate 1000 graphs that are schedulable with O = 0 and

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

%
 S

c
h
e
d
u
la

b
le

Average Number of Dependencies per Component

PIP 1 Stack
PIP Max. Stacks

PCP 1 Stack
PCP Max. Stacks

 50

 60

 70

 80

 90

 100

 4 8 16 32 64 128 256 512 1024

%
 S

c
h
e
d
u
la

b
le

Number of Threads

PIP 1 Stack

PIP Max. Stacks

PCP 1 Stack

PCP Max. Stacks
 50

 60

 70

 80

 90

 100

 3 9 15 21 27 33 39 45 51 57 63

%
 S

c
h
e
d
u
la

b
le

Depth

PIP 1 Stack
PIP Max. Stacks

PCP 1 Stack
PCP Max. Stacks

(a) (b) (c)
Fig. 3. Percent of randomly generated systems with O = 0, sx = |T | that are schedulable, varying parameters.

 0

 20

 40

 60

 80

 100

1 2 5 10 50 100 1000 10000

%
 S

c
h
e
d
u
la

b
le

Component WCET / O(pip)

PIP 1 Stack
PIP Max. Stacks

PCP 1 Stack
PCP Max. Stacks

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8 9 10

S
c
h
e
d
u
la

b
le

 R
a
ti
o
 (

P
C

P
 /
 P

IP
)

O(pcp) / O(pip)

PCP 1 Stack, 8 Threads

PCP Max. Stacks, 8 Threads

PCP 1 Stack, 64 Threads

PCP Max. Stacks,64 Threads

PIP Corresponding Stacks

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8 9 10

S
c
h
e
d
u
la

b
le

 R
a
ti
o
 (

P
C

P
 /
 P

IP
)

O(pcp) / O(pip)

PCP 1 Stack, Dependency Avg: 2

PCP Max. Stacks, Dependency Avg: 2

PCP 1 Stack, Dependency Avg: 6

PCP Max. Stacks, Dependency Avg: 6

PIP Corresponding Stacks

(a) (b) (c)
Fig. 4. (a) Modifying the ratio of in-component execution time, to the cost of Opip. (b)-(c) compares the schedulability of PCP and PIP
when changing the ratio of Opcp to Opip.

sx = |T |, and report the percent of them that are schedulable
using PIP and PCP.

Figure 3 shows the percent of the generated graphs that
are schedulable for both PCP and PIP when each component
has one stack, or a maximum number of stacks. Note that
the y-axis shows only the upper 50%. We keep all variables
constant at default values, and change one control variable.
To study which properties of the component graph affect the
schedulability, we vary davg in (a), the number of threads,
|T | in (b), and the depth of the generated graph, δmax in (c)
(note that because we are changing the depth, and keeping
the average width constant, this alters the aspect ratio of the
graph). Although we do not plot the results, we vary navg (the
average maximum number of invocations on a dependency),
and find that the results and trends are very similar to the
plots for davg , thus for brevity we omit them. We will discuss
the similarity at the end of the section. In Figure 4(a), we
study the effect of the ratio of the execution time done in each
component to the cost of invocations (i.e. iratio = ex/Opip).
In this case, the x-axis is the ratio of component execution
time to invocations for PIP (note the change in the y-axis).
PCP has a correspondingly higher invocation overhead that is
taken into account in the plot.

In these results, we use a ratio of Opip to Opcp derived
from measurements in COMPOSITE. However, other systems
might have different invocation overheads depending on how
they implement PIP and PCP. We study the effect of varying
Opcp/Opip on the schedulability of systems under PCP and
PIP in Figure 4(b) and (c). We plot the ratio of the percent of

schedulable systems for PCP to PIP. The plot is normalized
to PIP, so we only plot PCP values. Values above y=1 mean
that for that ratio of invocation costs, PCP can schedule more
systems, while values below y=1 means that PIP can schedule
more. We choose to vary the number of threads (|T |) in (b),
and the number of dependencies (davg) in (c) as these are
the variables deducted from Figures 3(a)-(c) for which PIP
and PCP diverge most significantly in behavior. We see in
Figure 4(b) that when both PIP and PCP have components with
only one stack, when the ratio of their invocation costs is less
than 5, PCP schedules more systems due to the large blocking
times induced by PIP. However, for most other system settings,
notably when there are many system threads, or the costs of
invocations is significant, PIP can schedule more systems. In
Figure 4(c), we vary the number of dependencies, and find
that smaller dependency numbers hurt PIP (see Figure 3(a)),
thus relatively increasing PCP’s schedulability.

Discussion. Given this data, we make a number of obser-
vations: 1) PIP has a lower overhead than PCP for normal
invocations, thus when each component is allocated |T | stacks
(eliminating blocking overhead), PIP performs better than PCP
across all tests. 2) There are a large number of systems that are
not schedulable using PIP without stacks (e.g. > 30% of the
systems in Figure 3(a) with 1 dependency). For these cases,
intelligent stack allocation can benefit the system. 3) The over-
head of invocations for PCP relative to PIP has a significant
effect on the comparison between the two. However, when
stacks are available, PIP exceeds PCP (Figure 4(b) and (c),
Max. Stacks plots). 4) Trends for PIP and sx = 1 are

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

U
ti
liz

a
ti
o
n

% Stacks Required

PIP Stack Allocation
Naive

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

U
ti
liz

a
ti
o
n

% Stacks Required

PCP Stack Allocation
Naive

(a) (b)
Fig. 5. Percentage of the maximum number of stacks (|T | × |C|) required to make systems with a given utilization schedulable that were
not schedulable with ∀cx, sx = 1, but are with sx = |T |. (a) Plots for the 207 (of 1K) systems that did not pass for PIP, while (b) plots the
27 (of 1K) systems for PCP. A vertical split in either graph yields the number of systems (on the left of the split) that will be schedulable
given a specific percent of stacks.

 0

 2

 4

 6

 8

 10

%
 S

ta
c
k
s
 R

e
q
u
ir
e
d PIP

 0

 2

 4

 6

 8

 10

1 2 5 10 50 100 1000 10000

%
 S

ta
c
k
s
 R

e
q
u
ir
e
d

Component WCET / O(pip)

PCP

 0

 2

 4

 6

 8

 10

%
 S

ta
c
k
s
 R

e
q
u
ir
e
d PIP

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8

%
 S

ta
c
k
s
 R

e
q
u
ir
e
d

Average Number of Dependencies per Component

PCP

 0

 2

 4

 6

 8

 10

%
 S

ta
c
k
s
 R

e
q
u
ir
e
d PIP

 0

 2

 4

 6

 8

 10

 4 8 16 32 64

%
 S

ta
c
k
s
 R

e
q
u
ir
e
d

Number of Threads

PCP

(a) (b) (c)
Fig. 6. The percent of |T | × |C| stacks required for systems using PIP and PCP as we vary the system variables that Section VI-C
showed affect schedulability. (a) Varying the ratio of component execution time to invocation overhead. (b) Varying the average number of
dependencies a component has. (c) Varying the number of tasks. We plot PIP and PCP separately as the number of systems that can benefit
from stack allocation differs for each. Thus the percent of stacks required is averaged over a different number of systems for each.

largely dependent on the ratio between the blocking term, and
the thread’s pi. The number of threads increases a thread’s pi
if the system utilization is held constant, but the bi does not
comparably increase. Thus, more threads make the blocking
term contribute less to the response time analysis. Comparably,
davg also affects this ratio. As davg grows, the execution time
assuredly grows, but bi doesn’t necessarily as the additional
connections might be to components that are already counted
in the thread’s blocking term. 5) When |Dh| is closer to 1,
the blocking terms for PCP and PIP are closest. When δmax

is close to 1, so is the dependency set. Thus, for systems with
a short depth, PIP (with sx = 1) is closer to PCP, as shown
in Figure 3(c). 6) Figures 4(a)-(c) confirm our intuition: as
the invocation overhead becomes inconsequential (ex >> O
or Opcp ≈ Opip), more systems become schedulable (a), and
the blocking term matters more. When both the blocking term
and invocation costs diminish, the schedulability approaches
optimal (a, PIP, sx = |T |).

System design guidelines. We derive from the data a number
of design guidelines for systems that must choose between
using PIP and PCP for stack sharing. When sx = 1, PCP
is often superior to PIP. However a number of factors can
change this: for larger numbers of threads, larger numbers of

component dependencies, and small ratios of ex/O, PIP can
schedule more systems. Practical system implementation de-
tails greatly affect the schedulability of PCP vs. PIP. However,
when stacks are available, the blocking term of PIP disappears,
and its performance (when there is any overhead for normal
invocations for PCP) is superior to PCP. However, requiring
that sx = |T |, thus that the system devote memory for |T |×|C|
stacks is unrealistic in many systems, especially embedded
systems. In the next section, we investigate how stacks can
intelligently be allocated to minimize used memory, while
ensuring schedulability.

D. Stack Allocation for Schedulability

Results in Section VI-C show that both PCP and PIP benefit
from having additional stacks allocated into components. The
blocking terms in PCP are smaller than in PIP, so PIP tends
to benefit more from having these overheads removed. In this
section, we study the effectiveness of the algorithms described
in Section V to make systems that are not schedulable with
∀cx, sx = 1, schedulable while attempting to minimize the
number of stacks allocated. In this section, we report on the
amount of stacks required to make these systems schedulable.

Figure 5 plots the number of stacks required for systems
that were not schedulable with sx = 1 and the utilization of

that system. We plot two possible stack allocation methods
for both PIP and PCP and show what percentage of the total
possible allocated stacks (|T | × |C|) are required. The naive
method takes into account the fact that in COMPOSITE, we
can generate tx (where tx ≤ |T |) for each component as
the system knows the dependency sets of each component,
and each thread’s home component. This method gives each
component a number of stacks such that sx = |tx|. The second
method we explore is the use of the intelligent algorithms from
Section V. In the graphs, this is labeled stack allocation.

Figures 6(a)-(c) depict the percent of the total number of
stacks required to make the system schedulable for systems
that aren’t schedulable with sx = 1, but are with sx = |T |
while varying system variables. This effectively compares
against the case where a system does not intelligently manage
stacks, and does not understand the communication behaviors
of components. We study the effect of system characteristics
on the effectiveness of the algorithms of Section V. For each
of the points, we generate 1K systems that are schedulable
when O = 0 and sx = |T |. Of those systems that can benefit
from stack allocation for PIP and PCP (separately), we plot
the average number of stacks required to make the system
schedulable. We plot these separately for PIP and PCP as the
number of systems, and the actual system configurations used,
differ for the protocols.

Discussion. In Section VI-C, we conclude that PIP has po-
tential to provide a high-degree of schedulability for many
systems, but that significant memory is required for stacks
to do so. In this section, we study how much memory is
practically required using intelligent stack allocation. Although
system configuration parameters do affect the number of
required stacks for PIP, for all configurations on average
the system never requires more than 10% of the maximum
number. We believe this makes the usage of PIP when paired
with intelligent stack allocation for schedulability a practical
option for many systems.

Protocol Average Stack Memory Used and Saved
PIP 46.2 KB (3.7%) 1188 KB
PCP 17.89 KB (1.5%) 1167.8 KB

TABLE II
MEMORY USED FOR STACKS FROM FIGURE 5.

We summarize the results for the stack allocation algorithms
in Table II. We assume that each stack requires 4KBs of
memory (this is the value taken from COMPOSITE– it will
vary for different systems). We show how much memory (on
average) is used for stacks, and how much is saved compared
to allocating |T | stacks to each component (i.e. |T | × |C|
stacks). The value in parenthesis denotes the percent of the
memory required for sx = |T | that is used to make the system
schedulable.

VII. RELATED WORK

Systems that break execution up into different components,
each separated via memory isolation (e.g. hardware page-

tables, or software memory safety), separate the execution
contexts of the system into the different components. We
focus on systems with synchronous communication between
components. Many systems exist that implement this model,
each with different mechanisms for locating execution con-
texts. LRPC [25] dispatches an invocation to an execution
context identified by the kernel, while protected procedure
calls in K42 [26] acquire execution contexts in the invoked
component in user-space (as in COMPOSITE). The L4 [1]
family of µ-kernels use synchronous IPC between threads.
Specific implementations use the separate threads primarily to
identify the execution contexts [8], [7], and priority inheritance
is used to resolve contention on concurrently required threads.
Middleware systems intelligently manage thread pools for
predictability [4]. A natural question is “how many threads
should be in the pool?” This paper helps answer this question.
All of these systems further motivate this work by raising
the question of how execution context (stack) sharing affects
schedulability. Notably, we do not know of any other systems
than the one presented that have implemented PCP in the
invocation path.

Pebble [3] is another component-based system that asso-
ciates a set of stacks with a thread, rather than with specific
components. When an invocation on a component is made,
on of these stacks is mapped into the component for thread
execution. We study the stack allocation to components instead
of specific threads for a variety of reasons. (1) Performance:
page table manipulations (to map and unmap the stack)
has significant overhead compared to the otherwise highly
optimized invocation path. (2) Configurability: to find a free
address to map stacks into a component dynamically, the
kernel must manage the virtual address space of compo-
nents (i.e. allocate/free virtual ranges). This complicates the
kernel implementation, and the ability of user-level compo-
nents to manage their own virtual address spaces. A goal of
component-based systems is to define all such policies as user-
level components. (3) Security: a thread’s stack can map into a
variety of components when they are invoked. This can allow
one component to observe the stack state (local variables) of
another component, causing information leakage. In studying
stack allocation to components, we solve a problem that has
broader applicability to middleware, microkernels, and other
such systems that use thread-pools.

Although in this paper we compare the overheads of PCP
and PIP in relation to stack contention, PCP also causes
overhead for user-level lock implementations that seek to
avoid system calls in the uncontended case [16], [13]. Thus,
elements of this work are of general concern: PIP’s optimistic
implementation allows user-level, efficient implementations of
uncontended lock access similar to the fast PIP path in our
system. In contrast, PCP requires kernel system-call invo-
cations that makes the worst-case overhead for uncontended
access significantly higher. Indeed in any system that uses an
optimistic version of PIP, and shared multiple resources (of
any type) can use the proposed techniques to trade the number
of resources versus schedulability. PIP will have favorable

schedulability properties compared to PCP due to the higher
uncontended overhead.

The Stack Resource Policy (SRP) [18] enables the possi-
bility of many tasks sharing a common run-time stacks. In
contrast, we focus on splitting the execution contexts (stacks)
for a thread across components for increased isolation, and
managing the distributed stack resources.

Baruah [27] investigated a strategy for replicating shared
resources to meet schedulability constraints in EDF scheduled
systems using SRP. This work differs in the following ways.
(1) We focus specifically on solving the tangible problem of
how to manage run-time stacks in a system with pervasive fault
boundaries, and base our results on measured parameters of the
COMPOSITE component-based OS. (2) We compare multiple
resource sharing protocols and identify system parameters that
favor one protocol over the other. (3) Replication of resources
partitions them between competing threads. In contrast, in our
system, the amount of stacks available in a component can be
changed, but they cannot be partitioned for specific threads.
We provide analysis and allocation algorithms that account for
this different problem formulation.

In this paper, we make the pessimistic assumption that all
functions that can be invoked in a component’s interface have
the same worst-case execution time. Future work will explore
more general models to differentiate a component’s functions.

VIII. CONCLUSIONS

Motivated by systems decomposed into separate memory-
isolated components, this paper presents the trade-offs between
1) system schedulability and stack memory usage, and 2) PCP
and PIP for stack contention management in a real component-
based system. Although PCP is typically formulated to be
analytically superior to PIP, we find that real-world overheads
for both policies (measured with an implementation in the
COMPOSITE component-based OS) result in more systems
being schedulable under PIP than PCP when memory can be
allocated for execution stacks. Even when memory is scarce
and each component has a single stack, PIP provides superior
schedulability for some system configurations – notably those
with more component dependencies, more tasks, or higher
proportions of component execution to invocation overheads.
We conclude that the choice of PIP vs. PCP for multi-unit
resources (i.e. for managing execution stack contention) is
complex and dependent on practical implementation overheads
that must be considered in system design and analysis.

In contrast to traditional resource contention models in
which blocking overheads are assumed as parameters to the
model, we provide schedulability conditions for both PCP
and PIP given a variable number of stacks allocated to each
component. We define and evaluate algorithms for assigning
these stacks attempting to minimize memory usage, while
finding schedulable configurations. We find that in contrast to
a naive stack allocation method, the system achieves schedula-
bility while significantly cutting down the amount of memory
necessary for stacks.

Source code for the system can be found on the COMPOSITE
webpage at www.seas.gwu.edu/∼gparmer/composite.html

Acknowledgements. We’d like to thank Andrew Sweeney
for the initial implementations of the stack manager, and our
shepherd, Daniel Mosse, along with the anonymous reviewers,
for improving the quality of this paper.

REFERENCES

[1] J. Liedtke, “On micro-kernel construction,” in SOSP, 1995.
[2] G. A. Parmer, “Composite: A component-based operating system for

predictable and dependable computing,” Ph.D. dissertation, Boston Uni-
versity, Boston, MA, USA, Aug 2009.

[3] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silberschatz, “The
pebble component-based operating system,” in Proceedings of Usenix
Annual Technical Conference, 2002.

[4] I. Pyarali, M. Spivak, R. Cytron, and D. C. Schmidt, “Evaluating and
optimizing thread pool strategies for real-time corba,” in LCTES, 2001.

[5] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175–1185, 1990.

[6] M.-I. Chen, “Schedulability analysis of resource access control proto-
cols in real-time systems,” Ph.D. dissertation, University of Illinois at
Urbana-Champaign, Urbana-Champaign, IL, USA, 1991.

[7] U. Steinberg, A. Bottcher, and B. Kauer, “Timeslice donation in
component-based systems,” in OSPERT, 2010.

[8] U. Steinberg, J. Wolter, and H. Hartig, “Fast component interaction for
real-time systems,” in ECRTS, 2005.

[9] G. Parmer and R. West, “Predictable interrupt management and schedul-
ing in the Composite component-based system,” in RTSS, 2008.

[10] G. Parmer, “The case for thread migration: Predictable ipc in a cus-
tomizable and reliable os,” in OSPERT, 2010.

[11] G. Parmer and R. West, “Hires: A system for predictable hierarchical
resource management,” in RTAS, 2011.

[12] G. A. Parmer and R. West, “Mutable protection domains: Towards a
component-based system for dependable and predictable computing,” in
RTSS, 2007.

[13] H. Franke, R. Russell, and M. Kirkwood, “Fuss, futexes and furwocks:
Fast userlevel locking in linux,” in Ottawa Linux Symposium, 2002.

[14] J. H. Anderson, S. Ramamurthy, and K. Jeffay, “Real-time computing
with lock-free shared objects,” ACM Trans. Comput. Syst., vol. 15, no. 2,
pp. 134–165, 1997.

[15] B. N. Bershad, D. D. Redell, and J. R. Ellis, “Fast mutual exclusion for
uniprocessors,” in ASPLOS, 1992.

[16] G. Parmer and J. Song, “Customizable and predictable synchronization
in a component-based os,” in the Conference on Embedded Systems and
Applications (ESA), 2010.

[17] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo, “A new kernel approach
for modular real-time systems development,” in Proceedings of the 13th
IEEE Euromicro Conference on Real-Time Systems, June 2001.

[18] T. P. Baker, “A stack-based resource allocation policy for realtime
processes,” in RTSS, 1990.

[19] H. Levy, “Capability-based computer systems,” 1984.
[20] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time

System,” The Computer Journal, vol. 29, no. 5, May 1986.
[21] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell, “Applying new

scheduling theory to static priority pre-emptive scheduling,” Software
Engineering Journal, vol. 8, pp. 284–292, 1993.

[22] M. Sjödin and H. Hansson, “Improved response-time analysis calcula-
tions,” in RTSS, 1998.

[23] G. Parmer and R. West, “Hijack: Taking control of cots systems for
real-time user-level services,” in RTAS, 2007.

[24] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullmann, “Interface
and execution models in the fluke kernel,” in OSDI, 1999.

[25] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy,
“Lightweight remote procedure call,” ACM Trans. Comput. Syst., vol. 8,
no. 1, pp. 37–55, 1990.

[26] “Scheduling in k42, whitepaper: http://www.research.ibm.com/k42/white-
papers/scheduling.pdf.”

[27] S. K. Baruah, “Resource sharing in edf-scheduled systems: A closer
look,” in RTSS, 2006.

