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ABSTRACT

Systems in general, and embedded systems in particular, are increasing in software

complexity. This trend will only continue as we expect more functionality from our com-

putational infrastructure. With complexity, the system’s ability to tolerate and be resilient

to faulty or malicious software becomes ever more challenging. Additionally, as system

capabilities increase, it becomes impossible for the operating system (OS) designer to pre-

dict the policies, abstractions, and mechanisms required by all possible applications. These

trends motivate a system architecture that places an emphasis on both dependability and

extensibility.

This thesis presents the Composite component-based OS that focuses on system-

provided fault tolerance and application-specific system composition. A goal of this system

is to define resource management policies and abstractions as replaceable user-level com-

ponents. Importantly, this enables the component-based control of both the temporal- and

memory-isolation properties of the system. All system scheduling decisions are component-

defined, as are policies that determine the configuration of fault-isolation barriers through-

out the system. In achieving this goal, we posit a philosophy in which fault-isolation is

not a binary condition (that is, present or not), but rather dynamically controlled by the

system’s components.

This thesis first focuses on how Composite is able to migrate the system CPU schedul-

ing policy implementation from the trusted kernel to user-space component. In this way,

scheduling policy is application-specific and fault-isolated from other components. We

demonstrate how different component-defined policies for controlling temporal aspects of



the system are able to predictably schedule interrupt execution to prevent livelock.

The second main focus of this thesis is an investigation of the trade-off between fault-

isolation and system performance. Protection domains between components provide fault-

isolation, but inter-protection domain communication incurs a performance overhead. In

recognition of this trade-off, we introduce Mutable Protection Domains, a novel mechanism

to dynamically construct and remove isolation boundaries within the system in response

to changing inter-protection domain communication overheads. Using this mechanism, we

demonstrate that a component-based web-server is able to manipulate its protection domain

configuration to achieve throughput improvements of up to 40% over a static configuration

while concurrently maintaining high fault isolation.
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Chapter 1

Introduction and Motivation

1.1 Motivation

Computer systems, and especially embedded systems, are undergoing a steady rise in soft-

ware complexity. The functionality required by modern cell phones is increasing to the point

of matching desktop software suites. Embedded systems are increasingly hybrid systems,

or those with tasks of mixed temporal constraints, and are being used with sensors and

actuators for relatively unpredictable physical processes.

1.1.1 System Dependability

Both the increasing complexity of the software deployed on systems and the sometimes

disastrous consequences of system failures motivate a serious effort towards ensuring the

dependability of such systems. Especially in the embedded domain, the heightened complex-

ity poses an acute problem: systems that could be verified to a high degree either statically

or through extensive testing are pushing the boundaries of validation procedures. Examples

of systems that went through a thorough validation process yet still failed include (i) the

NASA mars orbiter [Doub] , (ii) Ariane 5 [Doua], a rocket designed to transfer payloads

to orbit with a budget in the billions, and (iii) the electrical control systems that failed

causing the east-coast blackout of 2003 [Pou]. Indeed, software failures and system failures
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are a wide-spread problem. The US National Institute of Standards and Technology (NIST)

found in 2002 that software bugs cost the US economy $59.5 billion dollars annually [NIS].

System failures cause monetary damage or, in the extreme case, the loss of life and systems

should be designed to prevent the scope of failures. Toward this goal of increasing system

reliability, high-confidence systems often rely on a combination of fault prevention and fault

tolerance [LR04] to minimize the probability of system failure. Most operating systems in

common use, however, do not promote a systematic process for fine-grained fault isolation

either within applications themselves, or within the run-time system’s code. Instead, if

an application failure is detected, the entire application is generally terminated, or if a

kernel fault is found, the system must be rebooted to recover from a possibly inconsistent

state. This coarse-grained fault isolation hampers the ability of the system to recover on a

granularity smaller than an application.

1.1.2 System Predictability

In addition to dependability requirements, the correctness of real-time systems is dependent

on the system’s ability to meet application temporal constraints. Increasingly complex

systems and applications stress the system’s ability to meet these constraints. Expressed in

terms of Quality of Service or tasks deadlines, applications’ resource requirements define the

service levels required from the system. To behave predictably and support the correctness

of these applications, the system must contain resource management policies specialized

towards specific application temporal constraints. For this goal to be achievable across all

systems and application scenarios, the system policy for controlling CPU allocation, the

scheduler, must be customizable and provide exactly those resource management services

required by the system.

1.1.3 System Extensibility

In spite of growing software complexity, there is little unification of the run-time systems

that enable a wide variety of these application domains. Different operating systems provide
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different trade-offs between throughput and latency, between scalability and simplicity, and

between performance and memory usage, so it is not a surprise that the run-time system

in a deeply embedded system is different than that of a cluster-computing node. Even

amongst applications within the same domain, a single system often does not provide the

optimal interface or policies for all applications. The ideal page-replacement policies for a

database [Sto81] or a garbage-collected runtime [HFB05] are different than those for general

purpose applications, and the ideal scheduling policy for an event-triggered real-time process

is different than for one that is time-triggered. In short, systems often exhibit a semantic

gap, or the difference between the system requirements of applications and the abstractions

and policies provided by the run-time system. Instead of systematically approaching this

problem and making a single system that scales across all problem domains by bridging the

semantic gap, there is a multitude of run-time systems each tailored to a domain, with little

code-reuse between them.

This thesis seeks to address this issue by detailing a system that provides extensibility

and application-specific composition of the system’s policies and abstractions. In supporting

predictability across the widest breadth of application-domains we provide customizable

scheduling policies. More fundamentally, system customizability is explored as a first-class

priority to bridge the semantic gap.

1.2 The Composite Component-Based OS

This thesis centers around the design, implementation, and evaluation of the Composite

component-based operating system (CBOS). A component in this context is a collection

of code and data that provides functionality in accordance to a contractually-specified in-

terface. Each component is independently redeployable and harnesses the functionality of

other components through their interfaces. A set of components is composed into a func-

tional system. The decoupling of interface and implementation enables specifically those

policies and abstractions to be used in a system that provide behavior towards the system’s
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or application’s goals. This design bridges the semantic gap, thus making Composite ap-

plicable to domains ranging from constrained embedded systems to servers. Essentially,

Composite is a common architecture on which complicated and specialized behaviors are

composed from a set of common components.

Segregating the system into components provides the opportunity for increased system

fault isolation as each component is placed into its own hardware-provided protection do-

main at user-level (implemented via e.g. page-tables). A fault due to malicious or erroneous

code in any component is prevented from trivially propagating to and corrupting the mem-

ory of other components or the trusted kernel. Additionally, protection domains provide a

natural encapsulation of state for a component. If a component exhibits a failure, its code

and data can be independently restarted avoiding a full-system reboot [CKF+04]. Unfor-

tunately, switching between hardware protection domains is expensive relative to a direct

function call. This is mainly due to overheads in crossing between protection levels, and

the necessary invalidation of hardware (virtually indexed) caches. With each component

in a separate protection domain, communication between them necessitates these switches,

and imposes significant overhead on the system.

1.2.1 Predictable Component-Based Scheduling

The goal of CBOSes is to enable the component-based definition of all system policies

that might effect an application’s ability to meet its goals. Component-based scheduling

is important as it allows application-specific specialization of system scheduling policies.

This is motivated by the fact that different application goals and constraints are ideally

solved by different scheduling policies [vBCZ+03, Ruo06]. As applications do not generally

trust each other to manage all system resources, these policies must be defined at user-level

in a manner that isolates their scheduling decisions. However, past systems have shown

that scheduling policies are difficult to migrate to a user-level, untrusted, component-based

implementation. Schedulers are involved in many performance-critical execution paths, thus

overall system performance is sensitive to the cost of their invocation. The main challenges
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associated with providing component-based schedulers include:

(1) Schedulers often require synchronization (around structures shared across threads,

e.g. the runqueue) which generally implies a kernel-provided mechanism to control access

to critical sections (e.g. semaphores). Unfortunately, such a mechanism requires scheduler

support to switch between threads. This circular dependency between kernel and component

scheduler must be resolved for a plausible user-level scheduling solution.

(2) The processing that results from hardware asynchronous events (i.e. interrupts)

must be scheduled in much the same manner as normal threads. Naively, this implies

scheduler invocations for each interrupt. However, interrupts often execute with an high

frequency. To invoke a scheduler (at user-level in a separate protection domain) for each

interrupt only increases overheads that lead to livelock if not controlled properly [MR97,

RD05].

In embedded and real-time systems, the policies that define the temporal characteristics of

the system directly influence the correctness of the system. For a system to support the

timing behavior of tasks and interrupts that is ideal for all real-time applications, a system

must allow the scheduling policies to vary according to system and application goals.

1.2.2 Mutable Protection Domains

Composite places a systematic emphasis on fault-isolation. All components are executed at

user-level in separate protection domains such that they cannot maliciously or accidentally

modify the data-structures, or alter the execution state of other components. The isolation

boundaries separating components have two implications:

(i) When a failure (such as data-structure corruption, or deadlock) occurs in one compo-

nent, the scope of the failure is contained to that component. The recovery from inevitable

failure of a component only necessitates restarting that specific component.

(ii) Communication between components must be actuated by the kernel as only the

kernel has the permission to switch protection domains. These invocations impose sig-

nificant overhead beyond a simple function call. Unfortunately these overheads prevent
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some applications from meeting performance or predictability constraints, depending on

the inter-component communication patterns and overheads of the system.

A significant contribution of this thesis is the identification of utility in allowing the

system to dynamically leverage the trade-off between the granularity of fault isolation, and

the performance of the system. We propose and investigate Mutable Protection Domains

(MPD) which allows protection domain boundaries to be erected and removed dynamically

as the performance bottlenecks of the system change. When there are large communica-

tion overheads between two components due to protection domain switches, the protection

domain boundary is removed, if necessary. In areas of the system where protection do-

main boundaries have been removed, but there is little inter-component communication,

boundaries are reinstated.

The ability to dynamically alter the protection domain configuration of the system is

important as it is difficult to predict the bottlenecks of an active system, thus the ability of

the system to automatically find them is useful. In complex systems with varying workloads,

those bottlenecks can change over time. In such systems, the ability to dynamically adapt

to communication patterns between components is essential to maintain consistently high

performance (e.g. in terms of latency or throughput), and high fault-isolation properties.

Importantly, each system places different importance on reliability and performance. MPD

allows each system to make the trade-off that best fits their purpose. This thesis reports the

design, implementation, and evaluation of the Composite MPD mechanisms. Additionally,

we investigate policies that can be used to determine where protection domains should be

placed given inter-component communication overheads.

1.3 Thesis Organization

What follows is an overview of the chapters of this thesis.
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Chapter 2: Related Work

This chapter surveys past research related to Composite. Specifically, we outline relevant

work on component-based OSes, component-based scheduling, and OS fault-isolation.

Chapter 3: Component-Based Scheduling

This chapter investigates how system scheduling can be provided as a user-level component.

This allows the scheduling policy itself to be application-specific and fault-isolated from the

rest of the system. Component-based scheduling raises a number of complications involving

synchronization, interactions with component invocation, and efficiently controlling inter-

rupt execution.

Chapter 4: Mutable Protection Domains: Policy

This chapter details a model for a component-based system that includes both overheads

between components, and a notion of dynamic protection domains. Using this model,

we formulate how a policy is constructed to, given overheads for communication between

components, compute where protection domains should be present in the system. Included

is an investigation into the algorithmic and analytical aspects of system support for MPD.

Chapter 5: Mutable Protection Domains: Design and Implementation

This chapter delves into the mechanisms concerning how Composite is designed and im-

plemented to support MPD. This investigation includes not only providing abstractions to

the policy component to control the protection domain configuration, but also ensuring

these mechanisms do not impede other critical subsystems.

Chapter 6: Future Work

Here we describe outstanding issues and directions for further investigation.
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Chapter 7: Conclusion

In this final chapter, we conclude this thesis with some closing remarks.



Chapter 2

Related Work

2.1 System Extensibility

Composite bridges the semantic gap by allowing the definition of system policies and

abstractions as specific components that are combined to yield a system tailored to the

application domain. Past research projects have attempted to span the semantic gap using

different mechanisms. A discussion of these follows.

2.1.1 User-Level Sandboxing

User-Level Sandboxing [WP06] (ULS) focuses on providing an execution environment in

Commodity Off the Shelf (COTS) systems in which trusted application-specific extensions

are run. The kernel of the system is isolated from such extensions, yet it is possible to execute

them in a variety of execution contexts including at interrupt time. This enabled our past

research into customizable networking [QPW04]. ULS allows the system to recover from

erroneous extensions, but makes no attempt to fundamentally make the system as a whole

(excluding extensions) more reliable, or to redefine the base system to make it extensible

to all application-domains.
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2.1.2 Hijack

Our previous work on Hijack [PW07a] enables the redefinition of the services provided by

a base COTS system for a set of processes by interposing on their service requests. The

interposition code is isolated via hardware from the applications, and the kernel is isolated

from the interposition logic. Interposition code is still able to harness the services of the

base COTS system, and, were appropriate, to redefine policies in an application-specific

manner. This technique bridges the semantic gap for application requests, but does not

increase the isolation characteristics of applications, interposition code, or of the kernel.

2.1.3 Modules/Drivers

One common solution to the semantic gap is to provide a mechanism to download code

directly into a running kernel. Systems such as Linux [Lin] provide this ability through

modules. This approach is limited in that modules only interface with the kernel at statically

defined locations, and they cannot be used to override base policies. For example, the

pseudo-LRU policies of the page-cache, or the CPU scheduler cannot be replaced. More

significantly, modules are run at kernel-level and an error in one trivially propagates into

the kernel-proper. This, therefore, is a mechanism that is only used with highly trusted

extensions, and that does not promote system fault-tolerance.

2.1.4 Exokernels

Exokernels [EKO95, KEG+97] represent a different design philosophy where most system

functionality is placed in the same protection domain as the applications themselves in

libraries. This has the effect of bridging the semantic gap as system policies loaded as

library OSes are chosen and written specifically by the applications themselves. Unfortu-

nately, faults that exist anywhere in a single application will require restarting the entire

application and its library OSes. On embedded systems with a limited number of applica-

tions executing, this is equivalent to total system failure. Fault-tolerance is not emphasized

throughout the entire software stack. Additionally, in exokernels any policies for managing
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resources that must be defined in a central location, are placed into a separate protection

domain and invoked via expensive inter-process communication. For certain applications,

the overhead of this communication can compromise temporal constraints. Managing the

trade-off between fault isolation and system performance is the focus of MPD.

2.1.5 Vino and Spin

Vino [SESS96] and Spin [BSP+95] attempt to bridge the semantic gap by combining the

ability of modules to alter the base system using downloaded code, and software techniques

to protect against extension failure. Specifically, code downloaded into the kernel is disal-

lowed from accessing arbitrary regions in memory to protect the kernel using either type

safe languages, or software fault isolation [RWG93]. In Vino, when an extension is invoked,

it is executed as a transaction that is only committed when the invocation completes. This

prevents kernel data-structures from being corrupted if an extension fails in the middle of

an invocation. The approaches of Spin and Vino are limited because, as with modules,

extensions can only implement policies at statically-defined extension points. Importantly,

fine-grained fault isolation within applications is not a focus of either work as their extensi-

bility mechanisms focus on the kernel. Additionally, any overheads associated with software

protection schemes [LES+97] cannot be dynamically removed, and might preclude meeting

application performance goals.

2.2 System-Provided Fault Isolation

MPD is a novel construct in Composite enabling the system to trade-off fault isolation for

efficiency. A focus on fault tolerance has been seen for some time as essential to dependable

systems [LR04]. Here we survey past OS research with a focus on system provided fault-

tolerance.
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2.2.1 µ-kernels

µ-kernels [Lie95, FAH+06, SSF99, KAR+06] structure the system such that functionality

that would otherwise be defined in the kernel instead exists in servers at user-level. This

design is similar to Composite in that the policies of the system are defined in separate

protection domains at user-level, thus promoting fault-isolation. However, protection do-

main boundaries are defined statically in the system. Care must be taken when choosing

where to place them relative to the software components of the system. Protection do-

mains must be placed such that they don’t induce overheads for any execution pattern that

could preclude meeting application performance requirements. Because of this, protection

domains must be placed conservatively, with the performance of all possible flows of control

in mind. This contrasts with MPD that attempts to place protection domain boundaries

throughout the system in an application- and execution-specific manner that takes system

and application performance constraints into account while attempting to maximize system

fault isolation. Because user-level servers can be replaced in an application-specific manner,

there is some possibility for bridging the semantic gap. However, this can only be done

on the granularity of a server, not on that of individual policies within a server. Addi-

tionally, existing µ-kernels do not allow the efficient user-level untrusted component-based

redefinition of system temporal policies (including the scheduling policy).

2.2.2 Nooks

Nooks [SBL03, SABL04] specifically attempts to provide increased fault-isolation for drivers

in legacy systems such as Linux. This is achieved by using hardware techniques to isolate

drivers from the base kernel while still executing them at kernel-level. The focus here is to

prevent accidental failures and little protection is afforded against malicious drivers. Unlike

Nooks, legacy code support is not a primary focus of Composite. Instead, Composite

provides pervasive fault isolation boundaries throughout all components of the system.
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2.3 Component-Based Operating Systems

Components bridge the semantic gap by allowing for application-specific system composi-

tion. The use of components has been shown to be useful in very specialized systems such as

Click [MKJK99], where complicated routing policies can be constructed from components to

yield a high-performance, customized networking appliance. Components have also scaled

up to server middleware to provide application-processing layers for web requests [Ent], or

distributed coordination [JAU]. Here we focus on component-based OSes [FSH+01] that

provide both the ability to implement low-level policies such as networking and memory

management, but also application-level logic.

2.3.1 TinyOS

TinyOS [HSW+00] provides an execution environment for applications running on con-

strainted hardware such as sensor motes. System services are defined as components and

they are pieced together to yield a functional system. The development style and approach

to code-reuse is similar to Composite, but because of the hardware TinyOS focuses on,

there is no hardware-provided fault isolation. Indeed the entire system is simplified due to

hardware constraints, to the point of not encouraging the use of full threads. This approach,

therefore does not scale past the simple applications targeted to the sensor motes.

2.3.2 Pebble

Pebble [GSB+02] is an operating system that also encourages system development from

user-level components in separate protection domains. The focus of this work is on the

optimization of the communication mechanism between components. When components

wish to communicate, code is dynamically generated with aggressive inlining of kernel data-

structure addresses and specialization to this specific execution path. The goal is to perform

the least amount of operations possible to yield proper communication, thus resulting in

very efficient communication. Indeed, inspiration is taken from this work for Composite.
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Invocations between components in the same protection domain (due to a protection barrier

being removed with MPD) are optimized by dynamically generating the invocation code.

Pebble is unique amongst previous work in that it does allow the definition of the sys-

tem’s scheduler in a user-level component. Unfortunately, these schedulers must be trusted

as they are allowed to disable system interrupts for synchronization. An errant scheduler

could trivially halt execution of any useful code on the machine by infinite looping with

interrupts disabled. Additionally, Pebble must invoke the scheduler for each interrupt, re-

sulting in significant overheard. Pebble is implemented on a processor with low kernel/user

level switches, and fast protection domain switches. By comparison, Composite targets

a commodity processor without specialized features such as address-space ids that signifi-

cantly decrease the processing cost of switching protection domains, and must address the

overheads that result. Pebble shares many of the disadvantages of µ-kernel such as a static

system structure that does not adapt to changing inter-component communication patterns.

2.3.3 Think and the Flux OS Kit

Think [FSLM02], the Flux OS Kit [FHL+96], and CAMKES [KLGH07] focus on the

component-based design of operating systems. In these systems, a designer not only chooses

which components the system is to consist of, but also the manner in which they commu-

nicate with each other and the placement of protection domains. This allows an additional

dimension of configurability above µ-kernels in that the notion of a component is decoupled

from that of a protection domain. In these systems, system structure is static and cannot

adapt to run-time changes in communication bottlenecks as in Composite.

2.4 Extensible Scheduling Policy

Application-specific scheduling policies are useful in a wide variety of contexts, from scien-

tific computing [ABLL91], to real-time scheduling [Ruo06], to serving webpages [vBCZ+03].

The approaches for providing extensible scheduling can be classified into three categories:
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(1) N : M techniques in which N user-level threads are multiplexed onto M system-level

threads, (2) implementations that allow the alteration of a scheduler hierarchy in the kernel,

and (3) approaches similar to Composite that allow the control of system-level threads via

a user-level scheduler. Here we survey each alternative.

2.4.1 N : M Thread Systems

User-level thread operations such as dispatching and coordination are inherently less ex-

pensive than system-level (kernel-provided) alternatives. The primary observation is that

the kernel operations require a user-kernel protection level switch, which is relatively ex-

pensive [Ous90], while the user-level equivalents do not. Unfortunately, when a user-

level thread makes a blocking I/O request, it will block, starving the execution of the

rest of the user-threads. Schemes permitting coordination between user- and system-level

threads [ABLL91, MSLM91, vBCZ+03, Sch] are able to achieve many of the benefits of user-

level threads by permitting efficient inter-thread operations, while still inter-operating with

the rest of the system (notably I/O). Unfortunately, such approaches only alter the schedul-

ing behavior for a single process’s threads, and do not alter the base policies for scheduling

system threads, including low-level execution paths for processing I/O (e.g.softirqs in

Linux). If the system’s scheduler makes it impossible to satisfy an application’s require-

ments, user-level threads are not beneficial.

Virtual machines (VMs) [PG74] fall into this category. Within the VM, threads are

managed according to the VM’s scheduling policy. However, for the application within a

VM to meet it’s goals, it still dependents on the system scheduler (in the virtual machine

monitor (VMM)) that controls all VMs.

2.4.2 Extensible Kernel Scheduler

A number of systems enable the modification of the system scheduler in the trusted kernel.

Shark [GAGB01] provides an interface for adding application-specific schedulers to their

kernel, and communicating Quality of Service (QoS) constraints from the application to
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kernel. HLS [RS01] provides facilities to create a hierarchy of schedulers that can be chosen

in an application specific manner within the kernel. Each of these approaches is able to

schedule system-level threads, but they share the constraint that the scheduling policies

are inserted directly into the most trusted kernel and must themselves be trusted. Prac-

tically, then, untrusted applications cannot have a direct effect on the system scheduler,

as generally the system cannot insert their code into the kernel. Bossa [BM02] defines a

domain-specific language for implementing schedulers in an event-driven manner. Specific

scheduling policies are written in this language, and C code is generated that interfaces

with the host system. The Bossa language provides safety guarantees at the cost of sacri-

ficing generality. Composite instead allows schedulers implemented with general-purpose

languages to execute in separate protection domains.

Both HLS and Bossa provide the opportunity to hierarchically arrange schedulers such

that parent schedulers delegate the scheduling of threads to different child schedulers. This

increases the flexibility of these systems, but does not remove the main limitations of re-

quiring trusted schedulers (HLS) or constraining programmability (Bossa).

2.4.3 User-Level Control of System Threads

Composite is able to control system-level threads from user-level. A number of other

research projects have the same goal. Pebble [GSB+02] enables user-level component-based

schedulers as described in Section 2.3.2. Schedulers in Pebble, must still be trusted as they

synchronize by disabling interrupts.

Past research has put forth mechanisms to implement hierarchically structured sched-

ulers at user-level in separate protection domains [FS96, Sto07]. Additionally, others have

made the argument that user-level scheduling is useful for real-time systems, and have pro-

vided methods accommodating it in a middleware setting [ANSG05]. None of these works

attempt to remove all notions of blocking and scheduling from the kernel. Additionally,

these approaches, do not provide a mechanism for scheduling and accounting asynchronous

events (e.g., interrupts) without recourse to costly scheduler invocations. As these ap-
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proaches require switches to scheduler threads, they also prohibit useful operations that

increase the predictability of the system such as Mutable Protection Domains [PW07b].



Chapter 3

User-Level, Component-Based Scheduling

This chapter focuses on the design of predictable and efficient user-level scheduling in

our Composite component-based system. In particular, we show how a hierarchy of

component-based schedulers is supported with our system design. By isolating components

in user-space in their own protection domain, we avoid potentially adverse interactions with

the trusted kernel that could otherwise render the system inoperable, or could lead to un-

predictability. Additionally, each component scheduler is isolated from the faults of other

components in the system. We show how a series of schedulers can be composed to manage

not only conventional threads of execution, but also the execution due to interrupts. Specif-

ically, in situations where threads make I/O requests on devices that ultimately respond

with interrupts, we ensure that interrupt handlers are scheduled in accordance with the

urgency and importance of the threads that led to their occurrence. In essence, there is a

dependency between interrupt and thread scheduling that is not adequately solved by many

existing operating systems [DB96, ZW06], but which is addressed in our component-based

system. Additionally, we investigate how critical sections are managed to ensure exclusive

access to shared resources by multiple threads.

In the following sections we elaborate on the design details of component-based schedul-

ing in Composite. Section 3.1 describes in further detail some of the design challenges of

Composite, including the implementation of hierarchical schedulers. This is followed by
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an experimental evaluation in Section 3.2. Section 3.3 concludes this chapter.

3.1 Composite Component-based Scheduling

In Composite, a system is constructed from a collection of user-level components that

define the system’s policies. These components communicate via thread migration [FL94]

and compose to form a graph as depicted in Figure 3.1. Edges imply possible invocations.

Here we show a simplified component graph with two tasks, a networking component, a

fixed priority round-robin scheduler, and a deferrable server. As threads make component

invocations, the system tracks their progress by maintaining an invocation stack, as shown

in Figure 3.2. In this example, the downward control flow of a thread proceeds through A,

B, C and D. Each of these invocations is reflected in its execution stack. On return from D

and C, the thread pops components off of its execution stack, and invokes E. Its invocation

stack after this action is shown with the dotted lines.

FP_RR

Task 1 Task 2

Net DS

Demux

NetDev Timer

Figure 3.1: An example component graph.
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Figure 3.2: Thread execution through components.

One of the goals of Composite is to provide a base system that is configurable for

the needs of individual applications. However, for performance isolation, it is necessary

that global policies maintain system-wide service guarantees across all applications. Conse-

quently, we employ a hierarchical scheduling scheme [RS01] whereby a series of successive
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schedulers are composed in a manner that maintains control by more trusted schedulers,

while still allowing policy specialization for individual applications. In addition to tradi-

tional notions of hierarchical scheduling, we require that parent schedulers do not trust

their children, and are isolated from their effects. In this way, the affects of faulty or mali-

cious schedulers are restricted to their subtree in the scheduling hierarchy. By comparison,

scheduler activations [ABLL91] are based on the premise that user-level schedulers interact

with a more trusted kernel scheduler in a manner that cannot subvert the kernel sched-

uler. Composite adopts a mechanism that generalizes this notion to a full hierarchy of

schedulers that all exist at user-level.

Composite exports a system call API for controlling the scheduler hierarchy. This

enables the construction of a recursive structure of schedulers whereby more trusted (parent)

schedulers grant scheduling privileges to their children. Likewise, schedulers have the ability

to revoke, transitively, all such scheduling permissions from their children. To bootstrap

the system, one scheduler is chosen to be the root scheduler. Creating new child schedulers

is done with feedback from abstract application requirements [GAGB01], or via application

specified policies.

COS SCHED PROMOTE SCHED promote component to be a child scheduler

COS SCHED DEMOTE SCHED remove child subtree’s schedulers privileges

COS SCHED GRANT THD grant scheduling privileges to child scheduler

for a specific thread

COS SCHED REVOKE THD revoke scheduling privileges to a child

scheduler’s subtree for a specific thread

COS SCHED SHARED REGION specify a region to share with the kernel

COS SCHED THD EVT specify an event index in the shared region to

associate with a thread

Table 3.1: cos sched cntl options.

A component that has been promoted to scheduler status has access to the

cos sched cntl(operation, thd id, other) system call. Here operation is simply a

flag, the meaning of which is detailed in Table 3.1, and other is either a component id,

or a location in memory, depending on the operation. In a hierarchy of scheduling compo-
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nents only the root scheduler is allowed to create threads. This restriction prevents arbi-

trary schedulers from circumventing the root scheduler for allocating kernel thread struc-

tures. Thus, it is possible for the root scheduler to implement thread creation policies (e.g.

quotas) for specific subsystems or applications. Threads are both created and passed up

to other components via the thd id cos thd cntl (component id, flags, arg1, arg2)

system call. To create a new thread, the root scheduler makes a system call with the

COS THD CREATE flag. If a non-root scheduler attempts to create a new thread using this

system call an error is returned. Threads all begin execution at a specific upcall function

address added by a Composite library into the appropriate component. Such an invoca-

tion is passed three arguments: the reason for the upcall (in this case, because of thread

creation) and the user-defined arguments arg1 and arg2. These are used, for example,

to emulate pthread create by representing a function pointer and the argument to that

function.

In Composite, each kernel thread structure includes an array of pointers to corre-

sponding schedulers. These are the schedulers that have been granted scheduling privi-

leges over a thread via cos sched cntl(COS SCHED GRANT THD,...). The array of pointers

within a thread structure is copied when a new thread is created, and is modified by the

cos sched cntl system call. Certain kernel operations must traverse these structures and

must do so with bounded latency. To maintain a predictable and constant overhead for

these traversals, the depth of the scheduling hierarchy in Composite is limited at system

compile time.

3.1.1 Implementing Component Schedulers

Unlike previous systems that provide user-level scheduling [FS96, ANSG05, Sto07], the

operation of blocking in Composite is not built into the underlying kernel. This means

that schedulers are able to provide customizable blocking semantics. Thus, it is possible for a

scheduler to allow arbitrary blocking operations to time-out after waiting for a resource if, for

example, a deadline is in jeopardy. In turn, user-level components may incorporate protocols
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to combat priority inversion (e.g., priority inheritance or ceiling protocols [SRL90]).

Not only do schedulers define the blocking behavior, but also the policies to determine

the relative importance of given threads over time. Given that schedulers are responsible

for thread blocking and prioritization, the interesting question is what primitives does the

kernel need to provide to allow the schedulers to have the greatest freedom in policy defini-

tion? In Composite, a single system call is provided, cos switch thread(thd id, flags)

that permits schedulers with sufficient permissions to dispatch a specific thread. This op-

eration saves the current thread’s registers into the corresponding kernel thread structure,

and restores those of the thread referenced by thd id. If the next thread was previously

preempted, the current protection domain (i.e. page-table information) is switched to that

of the component in which the thread is resident.

In Composite, each scheduling component in a hierarchy can be assigned a different

degree of trust and, hence, different capabilities. This is related to scheduler activations,

whereby the kernel scheduler is trusted by other services to provide blocking and waking

functionality, and the user-level schedulers are notified of such events, but are not allowed

the opportunity to control those blocked threads until they return into the less trusted

domain. This designation of duties is imperative in sheltering more trusted schedulers

from the potential ill-behavior of less trusted schedulers, increasing the reliability of the

system. An example of why this is necessary follows: suppose a network device driver

component requests the root scheduler to block a thread for a small amount of time, until

the thread can begin transmission on a Time-Division Multiple-Access arbitrated channel.

If a less trusted scheduler could then restart that thread before this period elapsed, it could

cause detrimental contention on the channel. The delegation of blocking control to more

trusted schedulers in the system must be supported when a hierarchy of schedulers is in

operation. To allow more trusted schedulers to make resource contention decisions (such as

blocking and waking) without being affected by less trusted schedulers, a flag is provided

for the cos switch thread system call, COS STATE SCHED EXCL, which implies that only the

current scheduler and its parents are permitted to wake the thread that is being suspended.
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3.1.2 Brands and Upcalls

Composite provides a notification mechanism to invoke components in response to asyn-

chronous events. For example, components may be invoked in response to interrupts or

events similar to signals in UNIX systems. In many systems, asynchronous events are han-

dled in the context of the thread that is running at the time of the event occurrence. In

such cases, care must be taken to ensure the asynchronous execution path is reentrant, or

that it does not attempt to block on access to a lock that is currently being held by the

interrupted thread. For this reason, asynchronous event notifications in Composite are

handled in their own thread contexts, rather than on the stack of the thread that is active

at the time of the event. Such threads have their own priorities so they may be scheduled in

a uniform manner with other threads in the system. Additionally, a mechanism is needed

to guide event notification through multiple components. For example, if a thread reads

from a UDP socket, and an interrupt spawns an event notification, it may be necessary to

traverse separate components that encompass both IP and UDP protocols.

Given these constraints, we introduce two concepts: brands and upcalls. A brand is a

kernel structure that represents (1) a context, for the purposes of scheduling and accounting,

and (2) an ordered sequence of components that are to be traversed during asynchronous

event handling. Such brands have corresponding priorities that reflect the urgency and/or

importance of handling a given event notification. An upcall is the active entity, or thread

associated with a brand that actually executes the event notification. Brands and upcalls

are created using the cos brand cntl system call. In the current implementation, only the

root scheduler is allowed to make this system call as it involves creating threads. The system

call takes a number of options to create a brand in a specific component, and to add upcalls

to a brand. Scheduling permissions for brands and upcalls can be passed to child schedulers

in the hierarchy in exactly the same fashion as with normal threads. An upcall associated

with a given brand is invoked by the cos brand upcall(brand id, flags) system call, in

a component in which that brand has been created.

Figure 3.3 depicts branding and upcall execution. A thread traversing a specific path
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of components, A, B, C, D, requests that a brand be created for invocation from C: TB =

cos brand cntl(COS BRAND CREATE BRAND, C). Thus, a brand is created that records the

path already taken through components A and B. An upcall is added to this brand with

cos brand cntl(COS BRAND CREATE UPCALL, TB). When the upcall is executed, compo-

nent B is invoked, as depicted with the coarsely dotted line. This example illustrates a

subsequent component invocation from B to E, as depicted by the finely dotted line.

A

B

C

D

E

TB

A

B

B

E

B

TU TU

Figure 3.3: Branding and upcall execution.

When an upcall begins execution in a component, it invokes the generic upcall function

added to the component via the Composite library. If an event occurs that requires the

execution of an upcall for the same brand as an active upcall, there are two options. First, if

there is an inactive upcall associated with a brand, then the inactive upcall can be executed

immediately to process the event. The precise decision whether the upcall is immediately

executed depends on the scheduling policy. Second, if all upcalls associated with a brand are

active, then a brand’s pending count of events is incremented. When an upcall completes

execution and finds that its brand has a positive event count, the count is decremented and

the upcall is re-instantiated.

Brands and upcalls in Composite satisfy the requirements for asynchronous event no-

tification, but an important aspect is how to efficiently and predictably schedule their

corresponding threads. When the execution of an upcall is attempted, a scheduling deci-

sion is required between the currently running thread and the upcall. The scheduler that

makes this decision is the closest common scheduler in the hierarchy of both the upcall

and the currently executing thread. Additionally, when an upcall has completed execution,

assuming its brand has no pending notifications, we must again make a scheduling deci-

sion. This time the threads that are candidates for subsequent execution include: (1) the
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thread that was previously executing when the upcall occurred, (2) any threads that have

been woken up by the upcall’s execution, and (3) any additional upcalls that occurred in

the meantime (possibly due to interrupts), that were not immediately executed. At the

time of this scheduling decision, one option is to upcall into the root scheduler, notifying

it that the event completed. It is then possible for other schedulers in the hierarchy to be

invoked. Unfortunately, invoking schedulers adds overhead to the upcall, and increases the

response time for event notification. We, therefore, propose a novel technique in which the

schedulers interact with the kernel to provide hints, using event structures, about how to

perform subsequent scheduling decisions without requiring their invocation during upcall

execution. This technique requires each scheduler in the system to share a private region

with the kernel. This region is established by passing the COS SCHED SHARED REGION flag

to the cos sched cntl system call detailed in Table 3.1.

Corresponding threads under the control of a given scheduler are then associated with

an event structure using the COS SCHED THD EVT flag. Each of these event structures has

an urgency field, used for priority-based scheduling. Depending on the policy of a given

scheduler, urgencies can be dynamic (to reflect changing time criticality of a thread, as in

the case of a deadline) or static (to reflect different degrees of importance). Numerically

lower values for the urgency field represent higher priorities relative to other threads. Within

the event structure, there is also a flag section to notify schedulers about the execution status

of the thread associated with the event. This is relevant for inactive upcalls, as they are

not currently schedulable. The last field of the event structure is an index pointer used to

maintain a linked list of pending events that have not yet been recorded by the scheduler.

Event structures are placed in a corresponding shared memory region, accessible from

the kernel regardless of which protection domain is currently active. Thus, when an upcall

is performed, the event structures for the closest common scheduler in the hierarchy to

the currently running thread and the upcall thread are efficiently located, and the urgency

values in these structures are compared. If the upcall’s brand has a lower numeric urgency

field than the current thread, the upcall is immediately executed. The scenario is more
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complicated for the case when the upcall is completed. In this case, the kernel checks to see

if a scheduler with permissions to schedule the previously executing thread has changed its

preference for which thread to run. If this happens it will be reflected via the shared memory

region between the scheduler and the kernel. Changes to the scheduling order might be due

to the fact that the upcall invoked a scheduler to wake up a previously blocked thread.

Additionally the kernel considers if another upcall was made while the current upcall was

executing, but is deferred execution. If either of these conditions are true, then an upcall

is made into the root scheduler allowing it to make a precise scheduling decision. However,

the system is designed around the premise that neither of these cases occur frequently, and

most often needs only to switch immediately back to the previous thread. This is typically

the case with short running upcalls. However, if the upcalls execute for a more significant

amount of time and the root scheduler is invoked, the consequent scheduling overhead is

amortized.

Given these mechanisms which allow user-level component schedulers to communicate

with the kernel, Composite supports low asynchronous event response times while still

maintaining the configurability of scheduling policies at user-level.

3.1.3 Thread Accountability

Previous research has addressed the problem of accurately accounting for interrupt execu-

tion costs and identifying the corresponding thread or process associated with such inter-

rupts [DB96, ZW06]. This is an important factor in real-time and embedded systems, where

the execution time of interrupts needs to be factored into task execution times. Composite

provides accurate accounting of the costs of asynchronous event notifications and charges

them, accordingly, to corresponding threads.

As stated earlier, brands and upcalls enable efficient asynchronous notifications to be

used by the system to deliver events, e.g. interrupts, without the overhead of explicit

invocation of user-level schedulers. However, because thread switches can happen without

direct scheduler execution, it is more difficult for the schedulers themselves to track total
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execution time of upcalls. If the problem were not correctly addressed, then the execution of

upcalls might be charged to whatever thread was running when the upcall was initiated. We,

therefore, expand the event structure within the shared kernel/scheduler region to include

a counter, measuring progress of that event structure’s associated thread. In our prototype

implementation on the x86 architecture, we use the time-stamp counter to measure the

amount of time each thread spends executing by taking a reading whenever threads are

switched. The previous reading is subtracted from the current value, to produce the elapsed

execution time of the thread being switched out. This value is added to the progress counter

in that thread’s event structure for each of its schedulers. On architectures without efficient

access to a cycle counter, execution time can be sampled, or a simple count of the number

of times upcalls are executed can be reported.

Observe that Composite provides library routines for common thread and schedul-

ing operations. These ease development as they hide event structure manipulation and

automatically update thread accountability information.

3.1.4 Efficient Scheduler Synchronization

When schedulers are implemented in the kernel, it is common to disable interrupts for short

amounts of time to ensure that processing in a critical section will not be preempted. This

approach has been applied to user-level scheduling in at least one research project [GSB+02].

However, given our design requirements for a system that is both dependable and pre-

dictable, this approach is not feasible. Allowing schedulers to disable interrupts could

significantly impact response time latencies. Moreover, scheduling policies written by un-

trusted users may have faulty or malicious behavior, leading to unbounded execution (e.g.,

infinite loops) if interrupts are disabled. CPU protection needs to be maintained as part of

a dependable and predictable system design.

An alternative to disabling interrupts is to provide a user-level API to kernel-provided

locks, or semaphores. This approach is both complicated and inefficient, especially in the

case of blocking locks and semaphores. As blocking is not a kernel-level operation in Com-
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posite, and is instead performed at user-level, an upcall would have to be performed.

However, it is likely that synchronization would be required around wait queue structures,

thus producing a circular dependency between kernel locks and the user scheduler, poten-

tially leading to deadlocks or starvation. Additionally, it is unclear how strategies to avoid

priority inversion could be included in such a scheme.

Preemptive non-blocking algorithms also exist, that do not necessarily require kernel

invocations. These algorithms include both lock-free and wait-free variants [HH01]. Wait-

free algorithms are typically more processor intensive, while lock-free algorithms do not

necessarily protect against starvation. However, by judicious use of scheduling, lock-free

algorithms have been shown to be suitable in a hard-real-time system [ARJ97]. It has also

been reported that in practical systems using lock-free algorithms, synchronization delays

are short and bounded [HH01, MHH02].

To provide scheduler synchronization that will maintain low scheduler run-times, we

optimize for the common case when there is no contention, such that the critical section is

not challenged by an alternative thread. We use lock-free synchronization on a value stored

in the shared scheduler region, to identify if a critical section has been entered, and by

whom. Should contention occur, the system provides a set of synchronization flags that are

passed to the cos switch thread syscall, to provide a form of wait-free synchronization.

In essence, the thread, τi waiting to access a shared resource “helps” the thread, τj , that

currently has exclusive access to that resource, by allowing τj to complete its critical section.

At this point, τj immediately switches back to τi. The assumption here is that the most

recent thread to attempt entry into the critical section has the highest priority, thus it is

valid to immediately switch back to it without invoking a scheduler. This semantic behavior

exists in a scheduler library in Composite, so if it is inappropriate for a given scheduler,

it can be trivially overridden. As threads never block when attempting access to critical

sections, we avoid having to put blocking semantics into the kernel. The design decision

to avoid expensive kernel invocations in the uncontested case is, in many ways, inspired by

futexes in Linux [FRK02].
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Generally, many of the algorithms for non-blocking synchronization require the use of

hardware atomic instructions. Unfortunately, on many processors the overheads of such

instructions are significant due to factors such as memory bus locking. We have found that

using hardware-provided atomic instructions for many of the common scheduling operations

in Composite often leads to scheduling decisions having significant latencies. For exam-

ple, both the kernel and user-level schedulers require access to event structures, to update

the states of upcalls and accountability information, and to post new events. These event

structures are provided on a per-CPU basis, and our design goal is to provide a synchro-

nization solution that does not unnecessarily hinder thread execution on CPUs that are

not contending for shared resources. Consequently, we use a mechanism called restartable

atomic sequences (RASes), that was first proposed by Bershad [BRE92], and involves each

component registering a list of desired atomic assembly sections. These assembly sections

either run to completion without preemption, or are restarted by ensuring the CPU instruc-

tion pointer (i.e., program counter) is returned to the beginning of the section, when they

are interrupted.

Essentially, RASes are crafted to resemble atomic instructions such as compare and

swap, or other such functions that control access to critical sections. Common operations

are provided to components via Composite library routines 1. The Composite system

ensures that if a thread is preempted while processing in one of these atomic sections, the

instruction pointer is rolled back to the beginning of the section, similar to an aborted

transaction. Thus, when an interrupt arrives in the system, the instruction pointer of the

currently executing thread is inspected and compared with the assembly section locations

for its current component. If necessary, the instruction pointer of the interrupted thread

is reset to the beginning of the section it was executing. This operation performed at

interrupt time and is made efficient by aligning the list of assembly sections on cache lines.

We limit the number of atomic sections per-component to 4 to bound processing time. The

performance benefit of this technique is covered in Section 3.2.1.

1In this paper, we discuss the use of RASes to emulate atomic instructions but we have also crafted
specialized RASes for manipulating event structures.
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cos_atomic_cmpxchg:

movl %eax, %edx

cmpl (%ebx), %eax

jne cos_atomic_cmpxchg_end

movl %ecx, %edx

movl %ecx, (%ebx)

cos_atomic_cmpxchg_end:

ret

Figure 3.4: Example compare and exchange atomic restartable sequence.

Figure 3.4 demonstrates a simple atomic section that mimics the cmpxchg instruction

in x86. Libraries in Composite provide the

cos cmpxchg(void *memory, long anticipated, long new val) function which expects

the address in memory we wish to change, the anticipated current contents of that memory

address, and the new value we wish to change that memory location to. If the anticipated

value matches the value in memory, the memory is set to the new value which is returned,

otherwise the anticipated value is returned. The library function calls the atomic section

in Figure 3.4 with register eax equal to anticipated, ebx equal to the memory address, ecx

equal to the new value, and returns the appropriate value in edx.

Observe that RASes do not provide atomicity on multi-processors. To tackle this prob-

lem, however, either requires the use of true atomic instructions or the partitioning of data

structures across CPUs. Note that in Composite, scheduling queue and event structures

are easily partitioned into CPU-specific sub-structures, so our synchronization techniques

are applicable to multi-processor platforms.

3.2 Experimental Evaluation

In this Section, we describe a set of experiments to investigate both the overheads of and

abilities of component-based scheduling in Composite. All experiments are performed

on IBM xSeries 305 e-server machines with Pentium IV, 2.4 GHz processors and 904 MB

of available RAM. Each computer has a tigon3 gigabit Ethernet card, connected by a

switched gigabit network. We use Linux version 2.6.22 as the host operating system with a

clock-tick (or jiffy) set to 10 milliseconds. Composite is loaded using the techniques from
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Hijack [PW07a], and uses the networking device and timer subsystem of the Linux kernel,

overriding all other control flow.

3.2.1 Microbenchmarks

Here we report a variety of microbenchmarks investigating the overheads of the scheduling

primitives: (1) Hardware measurements for lower bounds on performance. (2) The per-

formance of Linux primitives, as a comparison case. (3) The performance of Composite

operating system primitives. All measurements were averaged over 100000 iterations in

each case.

Operation Cost in CPU cycles

User → kernel round-trip 166

Two user → kernel round-trips 312

RPC between two address spaces 1110

Table 3.2: Hardware measurements.

Table 3.2 presents the overheads we obtained by performing a number of hardware

operations with a minimum number of assembly instructions specially tailored to the mea-

surement. The overhead of switching between user-level to the kernel and back (as in a

system call) is 166 cycles. Performing two of these operations approximately doubled the

cost. Switching between two protection domains (page-tables), in conjunction with the two

system calls, simulates RPC between components in two address spaces. It is notable that

this operation on Pentium 4 processors incurs significant overhead.

Operation Cost in CPU cycles

Null system call 502

Thread switch in same process 1903

RPC between 2 processes using pipes 15367

Send and return signal to current thread 4377

Uncontended lock/release using Futex 411

Table 3.3: Linux measurements.

Table 3.3 presents specific Linux operations. In the past, the getpid system call has
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been popular for measuring null system call overhead. However, on modern Linux systems,

such a function does not result in kernel execution. To measure system-call overhead,

then, we use gettimeofday(NULL, NULL), the fastest system call we found. To measure

context switching times, We use the NPTL 2.5 threading library. To measure context switch

overhead, we switch from one highest priority thread to the other in the same address space

using sched yield. To measure the cost of IPC in Linux (an OS that is not specifically

structured for IPC), we passed one byte between two threads in separate address spaces

using pipes. To understand how expensive it is to create an asynchronous event in Linux, we

generate a signal which a thread sends to itself. The signal handler is empty, and we record

how long it takes to return to the flow of control sending the signal. Lastly, we measure the

uncontended cost of taking and releasing a pthread mutex which uses Futexes [FRK02].

Futexes avoid invoking the kernel, but use atomic instructions.

Operation Cost in CPU cycles

RPC between components 1629

Kernel thread switch overhead 529

Thread switch w/ scheduler overhead 688

Thread switch w/ scheduler and accounting overhead 976

Brand made, upcall not immediately executed 391

Brand made, upcall immediately executed 3442

Upcall dispatch latency 1768

Upcall terminates and executes a pending event 804

Upcall immediately executed w/ scheduler invocations 9410

Upcall dispatch latency w/ scheduler invocation 5468

Uncontended scheduler lock/release 26

Table 3.4: Composite measurements.

A fundamental communication primitive in Composite is a synchronous invocation

between components. Currently, this operation is of comparable efficiency to other systems

with a focus on IPC efficiency such as L4 [Sto07]. We believe that optimizing the fast-

path in Composite by writing it in assembly can further reduce latency. Certainly, the

performance in Composite is an order of magnitude faster than RPC in Linux (as shown

in Table 3.4).
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As scheduling in Composite is done at user-level to ease customization and increase

reliability, it is imperative that the primitive operation of switching between threads is

not prohibitive. The kernel overhead of thread switching when accounting information is

not recorded by the kernel is 0.22 microseconds. This is the lower bound for scheduling

efficiency in Composite. If an actual fixed-priority scheduler is used to switch between

threads which includes manipulating run-queues, taking and releasing the scheduler lock,

and parsing event structures, the overhead is increased to 0.28 microseconds. Further,

if the kernel maintains accounting information regarding thread run-times, and passes this

information to the schedulers, overhead increases to 0.40 microseconds. The actual assembly

instruction to read the time-stamp counter (rdtsc) contributes 80 cycles to the overhead,

while locating and updating event structures provides the rest. We found that enabling

kernel accounting made programming user-schedulers significantly easier. Even in this form,

the thread switch latency is comparable to user-level threading packages that do not need

to invoke the kernel, as reported in previous research [vBCZ+03], and is almost a factor of

two faster than in Linux.

The overhead and latency of event notifications in the form of brands and upcalls is

important when considering the execution of interrupt triggered events. Here we measure

overheads of upcalls made under different conditions. First, when an upcall is attempted,

but its urgency is not greater than the current thread, or if there are no inactive upcalls,

the overhead is 0.16 microseconds. Second, when an upcall occurs with greater urgency

than the current thread, the cost is 1.43 microseconds (assuming the upcall immediately

returns). This includes switching threads twice, two user → kernel round-trips, and two

protection domain switches. The time to begin executing an upcall, which acts as a lower-

bound on event dispatch latency, is 0.73 microseconds. This is less than a thread switch in

the same process in Linux. Third, when an upcall finishes, and there is a pending event, it

immediately executes as a new upcall. This operation takes .33 microseconds.

A feature of Composite is the avoidance of scheduler invocations before and after every

upcall. Calling the scheduler both before and after an upcall (that immediately returns) is
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3.92 microseconds. By comparison, avoiding scheduler invocations, using Composite event

structures, reduces the cost to 1.43 microseconds. The dispatch latency of the upcall is 2.27

microseconds when the scheduler is invoked, whereas it reduces to 0.73 microseconds using

the shared event structures. It is clear that utilizing shared communication regions between

the kernel and the schedulers yields a significant performance improvement.

Lastly, we compare the cost of the synchronization mechanism introduced in Section 3.1.4

against futexes. In Composite, this operation is barely the cost of two function calls, or 26

cycles, compared to 411 cycles with futexes. An illustration of the importance of this differ-

ence is that the cost of switching threads, which includes taking and releasing the scheduler

lock, would increase in cost by 42% if futexes were used. The additional cost would rise

as more event structures are processed using atomic instructions. As thread switch costs

bound the ability of the system to realistically allow user-level scheduling, the cost savings

is significant.

3.2.2 Case Study: Predictable Interrupt Scheduling

To demonstrate the configurability of the Composite scheduling mechanisms, we imple-

ment a variety of interrupt management and scheduling schemes, and contrast their be-

havior. A component graph similar to that shown is Figure 3.1 is used throughout our

experiments. In this figure, all shaded components are implemented in the kernel. In the

experiments in this section, we use network packet arrivals as our source of interrupts,

and demultiplex the interrupts based on packet contents [MRA87]. The demultiplexing

operation is performed predictably, with a fixed overhead, by carefully choosing the packet

parsing method [PR01].

Compositeis configured with a number of different scheduling hierarchies. The schedul-

ing hierarchies under comparison are shown in Figure 3.5. Italic nodes in the trees are

schedulers: HW is the hardware scheduler giving priority to interrupts, FP RR is a fixed

priority round-robin scheduler, and DS is a deferrable server with a given execution time and

period. All such configurations include some execution at interrupt time labeled the level 0
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interrupt handling. This is the interrupt execution that occurs before the upcall executes,

and in our specific case involves network driver execution. The children below a scheduler

are ordered from top to bottom, from higher to lower priority. Additionally, dotted lines

signify dependencies between execution entities in the system. The timer interrupt is not

depicted, but the FP RR is dependent on it. Task 3 is simply a CPU-bound background

task.

HW

FP_RR

Level 0 Ints
Task 1 & Task 2
Interrupts

Task 1

Task 2

Task 3

(a)
Task 1 &

Interrupts

(b)

DS (7/20)

Task 1

Task 2

Task 3

Task 2HW

FP_RR

Level 0 Ints

HW

FP_RR

Level 0 Ints(c)

Task 1

Task 1

Task 2

Task 2

Task 3

HW

FP_RR

Level 0 Ints
Interrupts

Interrupts Interrupts

Interrupts

(d)

Task 1

Task 2

Task 3

DS (5/20)

DS (2/20)
Task 2

Task 1

Figure 3.5: Scheduling hierarchies implemented in Composite.

Figure 3.5(a) depicts a system in which all interrupt handling is executed with the

highest priority. Ignoring ad-hoc mechanisms for deferring interrupts given overload (such

as softirqd in Linux), this hierarchy models the default Linux behavior. Figure 3.5(b)

depicts a system whereby the processing of the interrupts is still done at highest priority,

but is constrained by a deferrable server [SLS95]. The use of a deferrable server allows for

fixed priority schedulability analysis to be performed, but does not differentiate between

interrupts destined for different tasks. Figure 3.5(c) depicts a system whereby the interrupts

are demultiplexed into threads of different priority depending on the priority of the normal

threads that depend on them. This ensures that high priority tasks and their interrupts will

be serviced before the lower-priority tasks and their interrupts, encouraging behavior more

in line with the fixed priority discipline. The interrupts are processed with higher priority

than the tasks, as minimizing interrupt response time is often useful (e.g., to compute

accurate TCP round-trip-times, and to ensure that the buffers of the networking card do

not overflow, possibly dropping packets for the higher-priority task). Figure 3.5(d) depicts a
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system where interrupts for each task are assigned different priorities (and, correspondingly,

brands). Each such interrupt is handled in the context of an upcall, scheduled as a deferrable

server. These deferrable servers not only allow the system to be analyzed in terms of

their schedulability, but also prevent interrupts for the corresponding tasks from causing

livelock [MR97].
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Figure 3.6: Packets processed for two streams and two system tasks.

Streams of packets are sent to a target system from two remote machines, via Gigabit

Ethernet. The packets arrive at the host, triggering interrupts, which execute through the

device driver, and are then handed off to the Composite system. Here, a demultiplexing

component in the kernel maps the execution to the appropriate upcall thread. From that

point on, execution of the interrupt is conducted in a networking component in Composite,

to perform packet processing. This takes 14000 cycles (a value taken from measurements of

Linux network bottom halves [FW07]). When this processing has completed, a notification

of packet arrival is placed into a mailbox, waking an application task if one is waiting. The
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tasks pull packets out of the mailbox queues, and processes them for 30000 cycles.

Figure 3.6(a) depicts the system when the interrupts have the highest priority (NB: lower

numerical priority values equate to higher priority, or greater precedence). Packets arriving

at sufficient rate cause livelock on the application tasks. The behavior of the system is not

consistent or predictable across different interrupt loads. Figure 3.6(b) shows the system

configured where the interrupts are branded onto a thread of higher precedence than the

corresponding task requesting I/O. In this case, there is more isolation between tasks as the

interrupts for Task 2 do not have as much impact on Task 1. Task 1 processes more packets

at its peak and performs useful work for longer. Regardless, as the number of received

packets increases for each stream, livelock still occurs preventing task and system progress.

Figure 3.6(c) depicts a system that utilizes a deferrable server to execute all interrupts.

Here, the deferrable server is chosen to receive 7 out of 20 quanta. These numbers are

derived from the relative costs of interrupt to task processing, leading to a situation in

which the system is marginally overloaded. An analysis of a system with real-time or QoS

constraints could derive appropriate rate-limits in a comparable fashion. In this graph, the

interrupts for both tasks share the same deferrable server and packet queue. Given that

half of the packets in the queue are from each task, it follows that even though the system

wishes one task to have preference (Task 1), they both process equal amounts of packets.

Though there is no notion of differentiated service based on Task priorities, the system is

able to avoid livelock, and thus process packets across a wide variety of packet arrival rates.

Figure 3.6(d) differentiates interrupts executing for the different tasks by their priority,

and also processes the interrupts on two separate deferrable servers. This enables interrupts

to be handled in a fixed priority framework, in a manner that bounds their interference rate

on other tasks. Here, the high priority task consistently processes more packets than the

lower-priority task, and the deferrable servers guarantee that the tasks are isolated from

livelock. The cumulative packets processed for Task 1 and 2, and the total of both are

plotted in Figure 3.7(c). Both approaches that prevent livelock, by using deferrable servers,

maintain high packets processing throughput. However, the differentiated service approach
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is the only one that both achieves high throughput, and predictable packet processing (with

a 5 to 2 ratio for Tasks 1 and 2).
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Figure 3.7: Packets processed for two streams, one with constant rate.

Figure 3.7 further investigates the behaviors of the two approaches using deferrable

servers. Specifically, we wish to study the ability of the system to maintain predictably

differentiated service between the two tasks, given varying interrupt arrival rates. In this

case, Task 1 is sent a constant stream of 24100 packets per second in Figure 3.7(a) and (b),

and 488000 in Figure 3.7(d) and (e). The amount of packets per second sent to Task 2 varies

along the x-axis. The results for both receive rates demonstrate that when all interrupts

share the same deferrable server, allocation of processed packets to tasks is mainly dependent

on the ratio of packets sent to Task 1 and Task 2. Separating interrupt processing into two

different deferrable servers, on the other hand, enables the system to differentiate service

between tasks, according to QoS requirements.

Figure 3.7(f) plots the total amounts of packets processed for the tasks in the system

under the different hierarchies and constant packet receive rates. The differentiated service

approach maintains a predictable allocation of processing time to the tasks consistent with
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their relative deferrable server settings. Using only a single deferrable server and therefore

ignoring the task dependencies on interrupts, yields processing time allocations that are

heavily skewed towards the task of lesser importance when it has more packets arrivals.

3.3 Conclusions

This chapter presents the design of user-level, component-based schedulers in the Com-

posite component-based system. Separating user-level scheduling policies from the kernel

prevents them from compromising the underlying system’s integrity. Moreover, component

services themselves are isolated from one another, thereby avoiding potentially adverse in-

teractions. Collectively, this arrangement serves to provide a system framework that is both

extensible and dependable. However, to ensure sufficient predictability for use in real-time

domains, Composite features a series of low-overhead mechanisms, having bounded costs

that are on par or better than competing systems such as Linux. Microbenchmarks show

that Composite incurs low overhead in its various mechanisms to communicate between

and schedule component services.

We describe a novel method of branding upcall execution to higher-level thread contexts.

We also discuss the Composite approach to avoid direct scheduler invocation while still

allowing full user-level control of scheduling decisions. Additionally, a lightweight technique

to implement non-blocking synchronization at user-level, essential for the manipulation of

scheduling queues, is also described. This is similar to futexes but does not require atomic

instructions, instead relying on “restartable atomic sequences”.

We demonstrate the effectiveness of these techniques by implementing different schedul-

ing hierarchies, featuring various alternative policies, and show that it is possible to imple-

ment differentiated service guarantees. Experiments show that by using separate deferrable

servers to handle and account for interrupts, a system is able to behave according to specific

service constraints, without suffering livelock.



Chapter 4

Mutable Protection Domains: Policy

Fault isolation on modern systems is typically limited to coarse-grained entities, such as

segments that separate user-space from kernel-level, and processes that encapsulate sys-

tem and application functionality. For example, systems such as Linux simply separate

user-space from a monolithic kernel address space. Micro-kernels provide finer-grained iso-

lation between higher-level system services, often at the cost of increased communication

overheads. Common to all these system designs is a static structure, that is inflexible to

changes in the granularity at which fault isolation is applicable.

For the purposes of ensuring behavioral correctness of a complex software system, it is

desirable to provide fault isolation techniques at the smallest granularity possible, while still

ensuring predictable software execution. For example, while it may be desirable to assign

the functional components of various system services to separate protection domains, the

communication costs may be prohibitive in a real-time setting. That is, the costs of marshal-

ing and unmarshaling message exchanges between component services, the scheduling and

dispatching of separate address spaces and the impacts on cache hierarchies (amongst other

overheads) may be unacceptable in situations where deadlines must be met. Conversely,

multiple component services mapped to a single protection domain experience minimal

communication overheads but lose the benefits of isolation from one another.

This chapter focuses on this trade-off between component communication costs, and the
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fault-isolation benefit they provide. We formulate a model for a component-based system,

and investigate algorithms that make the trade-off between isolation and performance by

maximizing the number of protection boundaries while still meeting application performance

constraints such as deadlines. Using such an algorithm in a MPD policy component enables

the dynamic restructuring of a component-based system, to maximize isolation utility while

maintaining timeliness.

The rest of the chapter is organized as follows. Section 4.1 provides an overview of the

system, and formally defines the problem being addressed. System dynamics and proposed

solutions to the problem are then described. An experimental evaluation is covered in

Section 4.2, and finally, conclusions are discussed in Section 4.3.

4.1 Component-Based System Model

With mutable protection domains, isolation between components is increased when there

is a resource surplus, and is decreased when there is a resource shortage. Such a sys-

tem, comprising fine-grained components or services, can be described by a directed acyclic

graph (DAG), where each node in the graph is a component, and each edge represents

inter-component communication (with the direction of the edge representing control flow).

Represented in this fashion, a functional hierarchy becomes explicit in the system construc-

tion. Multiple application tasks can be represented as subsets of the system graph, that rely

on lower-level components to manage system resources. Component-based systems enable

system and application construction via composition and have many benefits, specifically

to embedded systems. They allow application-specific system construction, encourage code

reuse, and facilitate quick development. Tasks within the system are defined by execution

paths through a set of components.

A natural challenge in component-based systems is to define where protection domains

should be placed. Ideally, the system should maximize component isolation (thereby increas-

ing system dependability in a beneficial manner) while meeting constraints on application
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tasks. Task constraints can vary from throughput goals to memory usage, to predictable

execution within a worst-case execution time (WCET). A task’s WCET is formulated as-

suming a minimal amount of fault isolation present within the system. A schedule is then

constructed assuming this WCET, and the implicit requirement placed on the system is

that the task must complete execution within its allotted CPU share. In most cases, the

actual execution time of tasks is significantly lower than the pessimistic worst case. This

surplus processing time within a task’s CPU allocation can be used to increase the isolation

between components (inter-component communication can use the surplus CPU time).

In general, task constraints on a system with mutable protection domains can be defined

in terms of multiple different resources. We focus on timeliness constraints of tasks in this

paper, and consider only a single resource (i.e., CPU time) for communication between,

and execution of, components. For n tasks in a system, each task, τk, has a corresponding

target resource requirement, RTk, which is proportional to its worst-case execution time.

The measured resource usage, RMk, is the amount of τk’s resource share utilized by its

computation. Similarly, the resource surplus for τk is RSk, where RSk = RTk − RMk. For

n tasks the resource surplus is represented as a vector, ~RS = 〈RS1, . . . , RSn〉.

Component 1

Component 2

Stack

Protection Domains

Figure 4.1: Example Isolation Levels.

In response to resource surpluses, different levels of isolation can be placed at the

boundaries between components, depending upon their inter-component communication

overheads. Three possible isolation levels are depicted in Figure 4.1. On the left, we see

complete hardware isolation, equivalent to process-level protection in UNIX-type systems,

which incurs costs in terms of context switching between protection domains. In the center,

we have no isolation, equivalent to how libraries are linked into the address space of code that
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uses them. Such a lack of isolation implies only function-call overheads for inter-component

communication. Finally, the right-hand side of Figure 4.1 depicts an asymmetric form of

isolation, whereby component 1 is inside the protection domain of component 2 but not

vice versa. This isolation scheme is equivalent to that found in many monolithic OSes such

as Linux, which separate the kernel from user-space but not vice versa. It is also similar to

the scheme used in our User-Level Sandboxing approach [WP06].

Problem Definition: By adapting isolation levels, which in turn affects inter-component

communication costs, we attempt to increase the robustness of a software system while main-

taining its timely execution. The problem, then, is to find a system configuration that max-

imizes the benefit of fault isolation, while respecting task execution (and, hence, resource)

constraints. Using a DAG to represent component interactions, let E = {e1, . . . , em} be the

set of edges within the system, such that each edge, ei ∈ E, defines an isolation boundary,

or instance, between component pairs. For each edge, ei, there are Ni possible isolation

levels, where Nmax = max∀ei∈E(Ni). Where isolation is required and immutable for secu-

rity reasons, there might exist only one available isolation level (Ni = 1), so that security is

never compromised. Isolation level j for isolation instance, ei, is denoted eij . The overhead,

or resource cost, of eij is ~cij , where cijk ∈ ~cij ,∀RSk ∈ ~RS. Conversely, each isolation level

provides a certain benefit to the system, bij . We assume that the costs are always lower

for lower isolation levels and that the benefit is always higher for higher isolation levels.

Finally, ~s denotes a solution vector, where isolation level si ∈ {1, · · · ,Ni} is chosen for iso-

lation instance ei. The solution vector defines a system isolation configuration (or system

configuration for short).

More formally, the problem of finding an optimal system configuration is as follows:

maximize Σ
i≤m

bisi

subject to Σ
i≤m

cisik ≤ RSk, ∀RSk ∈ ~RS

si ∈ {1, . . . , Ni}, ∀ei ∈ E

(4.1)

Represented in this manner, we have a multi-dimensional, multiple-choice knapsack
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problem (MMKP). Though this problem is NP-Hard, approximations exist [Kha98, LLS+99,

AMSK01, PHD05]. Specifically, heuristics proposed in these papers attempt to solve the

objective function:

O(E, ~RS) = max
0<j≤Ni

{O(E\ei, ~RS − ~cij) + bij | ei ∈ E}

4.1.1 System Dynamics

Previous approaches to the MMKP for QoS attempt to solve a resource-constrained prob-

lem off-line, to maximize system utility. After a solution is found, actual system resources

are then allocated. In our case, we wish to alter an existing system configuration on-line, in

response to resource surpluses or deficits that change over time. The dynamics of the system

that introduce changes in resource availability and isolation costs include: (i) threads chang-

ing their invocation patterns across specific isolation boundaries, thus changing the overhead

of isolation instances throughout the system, (ii) threads altering their computation time

within components, using more or less resources, thus changing ~RS, and (iii) misprediction

in the cost of isolation. Thus, heuristics to calculate system configurations to maximize

beneficial isolation over time must adapt to such system dynamics.

It is difficult to compensate for these dynamic effects as the measurements that can

be taken directly from the system do not yield complete information. Specifically, at each

reconfiguration, the system can measure resource usage, ~RM , but explicit information re-

garding the overhead of isolation is not in the general case observable. For example, the

isolation costs between two components mapped to separate protection domains might in-

clude context-switch overheads, which in turn have secondary costs on caches, including

translation look-aside buffers (TLBs). Such secondary costs are difficult to extract from the

total runtime of a task. Section 4.1.6 discusses the impact of mispredicting isolation costs

on system behavior.
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4.1.2 Dynamic Programming Solution

Given that our problem can be defined as a multi-dimensional, multiple-choice knapsack

problem, there are known optimal dynamic programming solutions, For comparison, we

describe one such approach similar to that in [LLS+99].

DP [i, j, ~RS] =

8

>

>

>

>

<

>

>

>

>

:

max(−∞, DP [i, j − 1, ~RS]) if ∀
RSk∈ ~RS

cijk > RSk

bij if i = 1

take(i, 1, ~RS) if j = 1

max(take(i, j, ~RS), DP [i, j − 1, ~RS]) otherwise

take(i, j, ~RS) ≡ bij + DP [i − 1, Ni−1, ~RS − ~cij ]

Figure 4.2: Dynamic programming solution.

Figure 4.2 shows the dynamic programming solution DP . The algorithm is initially

invoked with DP [|E|, N|E|, 〈RS1, . . . , RSn〉]. For the lowest isolation level (level 1) of an

edge, we assume the sum of the minimal isolation levels is always within the resource

consumption limits. That is, ∀k,
∑

ei∈E ci1k ≤ RSk.

The recurrence keeps track of the current resource usage and iterates through all isolation

levels for a given instance, choosing that which provides the best benefit given its resource

cost. The base cases are when we have run out of resources or reached the last isolation

instance (i = 1).

The complexity of the algorithm reflects the memory structure used: O(|E| · Nmax ·

RS1 · . . . ·RSn). Because of the memory and execution time requirements, this algorithm is

impractical for on-line use, but is useful for comparison.

4.1.3 HEU

HEU is a heuristic solution first proposed in [Kha98] that is summarized here. HEU is a popular

comparison case in the MMKP literature and is competitive in terms of quality of solution.

Previous algorithms, HEU included, assume that the knapsack is initially empty and choose

items to place in it from there. This algorithm’s general strategy is to weight isolation
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benefits versus their costs to choose which isolation level to increase. It uses Toyoda’s

notion of an aggregate resource cost [Toy75] to collapse multiple constraint dimensions into

one by penalizing those dimensions that are more scarce. Then, HEU uses a greedy algorithm

based on benefit density to choose the isolation level that will yield the highest benefit for

the least resource usage. This chosen isolation level is added to the system configuration.

This process is repeated, new aggregate resource costs are chosen and that isolation level

with the best benefit density is chosen until the resources are expended. Because the

aggregate resource cost is recomputed or refined when choosing each edge, we will refer to

this algorithm as using fine-grained refinement. The asymptotic time complexity of this

algorithm is O(|E|2 · N2
max · | ~RS|).

4.1.4 Computing Aggregate Resource Costs

Aggregate resource costs should have higher contributions from resources that are scarce,

thereby factoring in the cost per unit resource. Inaccurate aggregate costs will lead to

a system that does not evenly distribute resource usage across its task constraint dimen-

sions. The approach we take to computing costs is similar to that in [LLS+99]. First,

we compute an initial penalty vector which normalizes the total resource costs across all

isolation instances and levels, ~cij , by the vector of available resources, ~RS. This is shown

in Equation 4.2 and will be subsequently referred to as init penalty vect, ~p.

~p = 〈p1, · · · , pn〉 | pk ∈ ~p =

P

∀ei∈E

P

j≤Ni
cijk

RSk

(4.2)

pk =
(
P

∀ei∈E cisik)p′
k

(
P

∀ei∈E cisik) + RSk

| pk ∈ ~p, p′
k ∈ ~p′ (4.3)

Equation 4.3 is used to refine the penalty vector, taking into account the success of the

previous value, ~p′. Recall from Section 4.1 that si is the chosen isolation level for isolation

instance ei, while cisik is the cost in terms of resource constraint RSk. We will subsequently

refer to the updated penalty vector calculated from Equation 4.3 as update penalty vect.
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Finally, Equation 4.4 defines the aggregate resource cost, c∗ij, using the most recent penalty

vector, ~p.

c∗ij =
X

∀RSk∈ ~RS

(cijk − cisik)(pk) (4.4)

4.1.5 Successive State Heuristic

Our approach to solving the multi-dimensional, multiple-choice knapsack problem differs

from traditional approaches, in that we adapt a system configuration from the current

state. By contrast, past approaches ignore the current state and recompute an entirely new

configuration, starting with an empty knapsack. In effect, this is equivalent to solving our

problem with a system initially in a state with minimal component isolation.

Our solution, which we term the successive state heuristic (ssh), successively mutates

the current system configuration. ssh assumes that the aggregate resource cost, c∗ij , for all

isolation levels and all instances has already been computed, as in Section 4.1.4. Edges are

initially divided into two sets: set H comprises edges with higher isolation levels than those

in use for the corresponding isolation instances in the current system configuration, while

set L comprises edges at correspondingly lower isolation levels. Specifically, eij ∈ H, ∀j > si

and eij ∈ L, ∀j < si. Each of the edges in these sets are sorted with respect to their change

in benefit density, (bij − bisi
)/c∗ij . Edges in L are sorted in increasing order with respect to

their change in benefit density, while those in H are sorted in decreasing order. A summary

of the ssh algorithm follows (see Algorithm 1 for details):

(i) While there is a deficit of resources, edges are removed from the head of set L to

replace the corresponding edges in the current configuration. The procedure stops when

enough edges in L have been considered to account for the resource deficit.

(ii) While there is a surplus of resources, each edge in H is considered in turn as a

replacement for the corresponding edge in the current configuration. If eij ∈ H increases

the system benefit density and does not yield a resource deficit, it replaces eisi
, otherwise

it is added to a dropped list, D. The procedure stops when an edge is reached that yields
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a resource deficit.

(iii) At this point, we have a valid system configuration, but it may be the case that

some of the edges in H could lead to higher benefit if isolation were lessened elsewhere.

Thus, the algorithm attempts to concurrently add edges from the remaining edges in both

H and L. A new configuration is only accepted if it does not produce a resource deficit and

heightens system benefit.

(iv) If there is a resource surplus, edges from the dropped list, D, are considered as

replacements for the corresponding edges in the current configuration.

The cost of this algorithm is O(|E| · Nmax log(|E| · Nmax)), which is bounded by the

time to sort edges. The ssh algorithm itself is invoked via:

(1) Algorithm 2. Here, only an initial penalty vector based on Equation 4.2 is used to

derive the aggregate resource cost, c∗ij . The cost of computing the penalty vector and, hence,

aggregate resource cost is captured within O(| ~RS| · |E| ·Nmax). However, in most practical

cases the edge sorting cost of the base ssh algorithm dominates the time complexity. We

call this algorithm ssh oneshot as the aggregate resource cost is computed only once.

(2) Algorithm 3. This is similar to Algorithm 2, but uses Equation 4.3 to continuously

refine the aggregate resource cost given deficiencies in its previous value. The refinement in

this algorithm is conducted after an entire configuration has been found, thus we say it uses

coarse-grained refinement. This is in contrast to the fine-grained refinement in Section 4.1.3

that adjusts the aggregate resource cost after each isolation level is found. We found that

refining the aggregate resource cost more than 10 times, rarely increased the benefit of the

solution. This algorithm has the same time complexity as ssh oneshot, but does add a

larger constant overhead in practice.

4.1.6 Misprediction of Isolation Overheads

The proposed system can measure the number of component invocations across specific

isolation boundaries to estimate communication costs. However, it is difficult to measure

the cost of a single invocation. This can be due to many factors including secondary
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Algorithm 1: ssh: Successive State Heuristic

Input: ~s: current isolation levels, ~RS: resource surplus
b∗ij = (bij − bisi

)/c∗ij ,∀i, j // benefit density change1

// sorted list of lower isolation levels

L = sort by b∗({∀eij |ei ∈ E ∧ j < si})2

// sorted list of higher isolation levels

H = sort by b∗({∀eij |ei ∈ E ∧ j > si})3

D = φ // dropped set (initially empty)4

while ∃k, RSk < 0 ∧ L 6= φ do // lower isolation5

eij = remove head(L)6

if c∗ij < c∗isi
then7

~RS = ~RS + ~cisi
− ~cij8

si = j9

end10

eij = remove head(H)11

while (∄k, RSk + cisik − cijk < 0 ∨ b∗ij ≤ b∗isi
) ∧ eij do // raise isolation greedily12

if b∗ij > b∗isi
then // improve benefit?13

~RS = ~RS + ~cisi
− ~cij14

si = j15

else D = D ∪ eij16

eij = remove head(H)17

end18

replace head(eij , H)19

// refine isolation considering both lists

~s′ = ~s20

while H 6= φ ∧ L 6= φ do21

repeat // expend resources22

eij = remove head(H)23

if b∗ij > b∗is′
i

then // improve benefit?24
~RS = ~RS + ~cis′

i
− ~cij25

s′i = j26

else D = D ∪ eij27

until ∃k, RSk < 0 ∨ H 6= φ28

while ∃k, RSk < 0 ∨ L 6= φ do // lower isolation29

eij = remove head(L)30

if c∗ij < c∗is′
i

then31
~RS = ~RS + ~cis′

i
− ~cij32

s′i = j33

end34

// found a solution with higher benefit?

if
P

∀i bis′
i

>
P

∀i bisi
∧ ∄k, Rk < 0 then ~s = ~s′35

end36

while D 6= φ do // add dropped isolation levels37

eij = remove head(D)38

if j > si ∧ ∄k, RSk + cisik − cijk < 0 then39
~RS = ~RS + ~cisi

− ~cij40

si = j41

end42

return ~s43
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Algorithm 2: ssh oneshot

Input: ~RS: resource surplus, ~s solution vector
~p = init penalty vect( ~RS, ~s)1

c∗ij = aggregate resource(~p, ~cij), ∀i, j2

~s = ssh(~s, ~RS)3

return ~s4

Algorithm 3: ssh coarse

Input: ~RS: resource surplus, ~s solution vector
~p = init penalty vect( ~RS, ~s)1

i = 02

// refine penalty vector

while i < 10 do3

c∗ij = aggregate resource(~p, ~cij), ∀i, j4

~s′ = ssh(~s, ~RS)5

~p = update penalty vect( ~RS, ~p, ~s′)6

if
P

∀i bis′
i

>
P

∀i bisi
then7

~s = ~s′ // found better solution8

i++9

end10

return ~s11

costs of cache misses, which can be significant [UDS+02]. Given that the cost of a single

invocation can be mispredicted, it is essential to guarantee such errors do not prevent

the system converging on a target resource usage. We assume that the average estimate

of isolation costs for each resource constraint, or task, k, across all edges has an error

factor of xk, i.e., estimate = xk ∗ actual overhead. Values of xk < 1 lead to heuristics

underestimating the isolation overhead, while values of xk > 1 lead to an overestimation

of overheads. Consequently, for successive invocations of MMKP algorithms, the resource

surplus is mis-factored into the adjustment of resource usage. As an algorithm tries to

use all surplus resources to converge upon a target resource value, the measured resource

usage at successive steps in time, RMk(t), will in turn miss the target by a function of

xk. Equation 4.5 defines the recurrence relationship between successive adjustments to

the measured resource usage, RMk(t), at time steps, t = 0, 1, .... When xk > 0.5 for

the misprediction factor, the system converges to the target resource usage, RTk. This

recurrence relationship applies to heuristics such as ssh that adjust resource usage from the

current system configuration.
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RMk(0) = resource consumption at t = 0

RMk(t + 1) = RMk(t) + x−1

k RSk(t) | RSk(t) = RTk − RMk(t)

= x−1

k RTk + (1 − x−1

k )RMk(t)

RMk(t) = x−1

k RTk(
Pt−1

i=0
(1 − x−1

k )i) + (1 − x−1

k )tRMk(0)

RMk(∞) =

8

<

:

RTk if xk > 0.5

∞ otherwise

(4.5)

For algorithms that do not adapt the current system configuration, they must first

calculate an initial resource usage in which there are no isolation costs between components.

However, at the time such algorithms are invoked they may only have available information

about the resource usage for the current system configuration (i.e., RMk(t)). Using RMk(t),

the resource usage for a configuration with zero isolation costs between components (call

it RUk) must be estimated. RUk simply represents the resource cost of threads executing

within components. Equation 4.6 defines the recurrence relationship between successive

adjustments to the measured resource usage, given the need to estimate RUk. In the

equation, αk(t) represents an estimate of RUk, which is derived from the measured resource

usage in the current configuration, RMk(t), and an estimate of the total isolation costs at

time t (i.e., xk(
∑

∀i cisi
) | RMk(t) − RUk =

∑
∀i cisi

).

RMk(0) = resource consumption at t = 0

αk(t) = RMk(t) − xk(RMk(t) − RUk)

RMk(t + 1) = RUk + x−1

k (RTk − αk(t))

= x−1

k RTk + (1 − x−1

k )RMk(t)

(4.6)

Given that Equation 4.6 and 4.5 reduce to the same solution, heuristics that reconfigure

a system based on the current configuration and those that start with no component isola-

tion both converge on a solution when xk > 0.5. Equation 4.7 allows the system to estimate

the misprediction factor for total isolation costs. This equation assumes that overheads

unrelated to isolation hold constant in the system.
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xk = RMk(n−1)−RTk

RMk(n−1)−RMk(n)

= RSk(n−1)
RSk(n−1)−RSk(n)

(4.7)

4.2 Experimental Evaluation

This section describes a series of simulations involving single-threaded tasks on an Intel

Core2 quadcore 2.66 Ghz machine with 4GB of RAM. For all the following cases, isolation

benefit for each isolation instance is chosen uniformly at random in the range [0, 255] 1

for the highest isolation level, and linearly decreases to 0 for the lowest level. Unless

otherwise noted, the results reported are averaged across 25 randomly generated system

configurations, with 3 isolation levels (∀i,Ni = 3), and 3 task constraints (i.e., 1≤k≤3).

With the exception of the results in Figures 4.5 and 4.6, the surplus resource capacity of

the knapsack is 50% of the total resource cost of the system with maximum isolation. The

total resource cost with maximum isolation is 10000 2.

4.2.1 MMKP Solution Characteristics

In this section we investigate the characteristics of each of the MMKP heuristics. The

dynamic programming solution is used where possible as an optimal baseline. We study

both the quality of solution in terms of benefit the system accrues and the amount of run-

time each heuristic requires. The efficiency of the heuristics is important as they will be

run either periodically to optimize isolation, or on demand to lower the costs of isolation

when application constraints are not met. In the first experiment, the system configuration

is as follows: |E| = 50 and the resource costs for each edge are chosen uniformly at random

such that ∀i, k, ciNik ∈ [0, 6]. Numerically lower isolation levels have non-increasing random

costs, and the lowest isolation level has ∀i, k, ci1k = 0.

1Isolation benefit has no units but is chosen to represent the relative importance of one isolation level to
another in a range of [0..255], in the same way that POSIX allows the relative importance of tasks to be
represented by real-time priorities.

2Resource costs have no units but since we focus on CPU time in this paper, such costs could represent
CPU cycles.
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Figure 4.3: MMKP solution characteristics: (a) MMKP benefit, and (b) heuristic run-times.

Figure 4.3(a) shows the normalized benefit of each heuristic with respect to the dynamic

programming optimal. The x-axis represents the fraction of the maximal usable resource

surplus used as the knapsack capacity. The ks fine approach uses the heuristic defined in

Section 4.1.3. Heuristics prefixed with max start with maximum component isolation, while

those prefixed with min start with minimal isolation. Generally, the ks fine algorithm

achieves high benefit regardless of knapsack capacity. The other algorithms achieve a lower

percentage of the optimal when they must alter many isolation levels, but the coarse refine-

ment versions always achieve higher benefit relative to the oneshot approaches. Altering

the number of edges does not affect the results significantly, except for very a small number

of edges, so we omit those graphs.

Figure 4.3(b) plots the execution times of each heuristic while varying the number of

edges in the system. The dynamic programming solution does not scale past 50 edges for 3

task constraints, so is not included here. The oneshot algorithms’ run-times are dominated

by sorting, while all coarse algorithms demonstrate a higher constant overhead. Contrarily,

the ks fine refinement heuristic takes significantly longer to complete because of its higher

asymptotic complexity.

4.2.2 System Dynamics

In the following experiments, unless otherwise noted, a system configuration is generated

where |E| = 200. Resource costs are chosen uniformly at random as follows: ∀i, k, ci3k ∈
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[0, 100), ci2k ∈ [0, ci3k ], and ci1k = 0. Note that using resource costs chosen from a bi-

modal distribution to model a critical path (i.e., much communication over some isolation

boundaries, and little over most others) yield similar results.

Dynamic Communication Patterns: The first dynamic system behavior we inves-

tigate is the effect of changing communication patterns between components within the

system. Altering the amount of functional invocations across component boundaries af-

fects the resource costs for that isolation instance. Thus, we altered 10% of the isolation

instance (i.e., edge) costs after each reconfiguration by assigning a new random cost. All

algorithms are able to maintain approximately the same benefit over time. Table 4.1 shows

the percentage of isolation instances that have their isolation weakened, averaged over 100

trials.

Algorithm Isolation Instances with Weakened Isolation

ks oneshot 3.4%
ks coarse 4.2%
ssh oneshot 2%
ssh coarse 2.5%
ks fine 3%

Table 4.1: Effects of changing communication costs on MPD policies.
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Figure 4.4: Resources used (a) without correction, and (b) with correction for misprediction
costs.

Misprediction of Communication Costs: As previously discussed in Section 4.1.6,

misprediction of the cost of communication over isolation boundaries can lead to slow con-

vergence on the target resource availability, or even instability. We use the analytical model
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in Section 4.1.6 to predict and, hence, correct isolation costs. This is done conservatively,

as Equation 4.7 assumes that overheads unrelated to isolation hold constant. However, in

a real system, factors such as different execution paths within components cause variabil-

ity in resource usage. This in turn affects the accuracy of Equation 4.7. Given this, we

(1) place more emphasis on predictions made where the difference between the previous and

the current resource surpluses is large, to avoid potentially large misprediction estimates

due to very small denominators in Equation 4.7, and (2) correct mispredictions by at most

a factor of 0.3, to avoid over-compensating for errors. These two actions have the side-effect

of slowing the convergence on the target resource usage, but provide stability when there

are changes in resource availability.

Figure 4.4(a) shows the resources used for isolation by the ssh oneshot policy, when

misprediction in isolation costs is considered. Other policies behave similarly. In Fig-

ure 4.4(b), the initial misprediction factor, x, is corrected using the techniques discussed

previously. The system stabilizes in situations where it does not in Figure 4.4(a). Moreover,

stability is reached faster with misprediction corrections than without.
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Figure 4.5: Dynamic resource availability: (a) resources consumed by τ1, and (b) system
benefit.

Dynamic Resource Availability: In Figure 4.5(a), the light dotted line denotes a

simulated resource availability for task τk | k = 1. The resources available to τ2 deviate by

half as much as those for τ1 around the base case of 5000. Finally, resource availability for

τ3 remains constant at 5000. This variability is chosen to stress the aggregate resource cost
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computation. Henceforth, traditional knapsack solutions that start with minimal isolation

will be denoted by ks. Consequently, we introduce the ks oneshot and ks coarse heuris-

tics that behave as in Algorithms 2 and 3, respectively, but compute a system configuration

based on an initially minimal isolation state. We can see from the graph that those algo-

rithms based on ssh and ks coarse are able to consume more resources than the others,

because of a more accurate computation of aggregate resource cost. Importantly, all algo-

rithms adapt to resource pressure predictably. Figure 4.5(b) shows the total benefit that

each algorithm achieves. We only plot reconfigurations of interest where there is meager

resource availability for τ1 (in reconfiguration 17), excess resource availability for τ1 (in 24),

a negative change in resource availability (in 30), and a positive change in resource avail-

ability (in 36). Generally, those algorithms based on ssh yield the highest system benefits,

closely followed by ks fine.
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Figure 4.6: Solution characteristics given all system dynamics.

Combining all Dynamic Effects: Having observed the behaviors of the different
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algorithms under each individual system dynamic, we now consider the effects of them

combined together. Here, we change the cost of 10% of the isolation instances in the

system, while the resource availability is changed dynamically in a manner identical to the

previous experiment. We assume an initial misprediction factor of x = 0.6. Additionally,

we employ a conservative policy in which the algorithms only attempt to use 30% of all

surplus resources for each reconfiguration.

Figure 4.6(a) presents the resource usage of task τ3. Resource availability is again

denoted with the light dotted line. Figure 4.6(b) presents the resource usage for τ1. Due

to space constraints, we omit τ2. In both cases, the ssh algorithms are able to use the

most available resource, followed closely by ks coarse. The key point of these graphs is

that all heuristics stay within available resource bounds, except in a few instances when

the resource usage of the current system configuration briefly lags behind the change in

available resources. Figure 4.6(c) plots the system benefit for the different algorithms.

As in Figure 4.5(b), we plot only reconfigurations of interest. In most cases, algorithms

based on ssh perform best, followed by ks fine. Of notable interest, the ssh oneshot

algorithm generally provides comparable benefit to ssh coarse, which has an order of

magnitude longer run-time. Figure 4.6(d) shows the amount of reconfigurations the different

algorithms make, that lessen isolation in the system. Although we only show results for

several reconfigurations, ssh oneshot performs relatively well considering its lower run-

time costs.

Next, the feasibility of mutable protection domains is demonstrated by using resource

usage traces for a blob-detection application, which could be used for real-time vision-

based tracking. The application, built using the opencv library [Ope] is run 100 times.

For each run, the corresponding execution trace is converted to a resource surplus profile

normalized over the range used in all prior experiments: [0,10000]. We omit graphical

results due to space constraints. 17.75% of components maintain the same fault isolation

for all 100 system reconfigurations, while 50% maintain the same isolation for at least

15 consecutive system reconfigurations. This is an important observation, because not all
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isolation instances between components need to be changed at every system reconfiguration.

On average, 86% of available resources for isolation are used to increase system benefit.

Over the 100 application trials, task constraints are met 75% of the time. 97% of the time,

resource usage exceeds task constraints by no more than 10% of the maximum available for

isolation.

4.3 Conclusions

This chapter investigates a collection of policies to control MPDs. The system is able

to adapt the fault isolation between software components, thereby increasing its depend-

ability at the potential cost of increased inter-component communication overheads. Such

overheads impact a number of resources, including CPU cycles, thereby affecting the pre-

dictability of a system. We show how such a system is represented as a multi-dimensional

multiple choice knapsack problem (MMKP). We find that, for a practical system to sup-

port the notion of mutable protection domains, it is beneficial to make the fewest possible

changes from the current system configuration to ensure resource constraints are being met,

while isolation benefit is maximized.

We compare several MMKP approaches, including our own successive state heuristic

(ssh) algorithms. Due primarily to its lower run-time overheads, the ssh oneshot algo-

rithm appears to be the most effective in a dynamic system with changing component

invocation patterns, changing computation times within components, and misprediction of

isolation costs. The misprediction of isolation costs is, in particular, a novel aspect of this

work. In practice, it is difficult to measure precisely the inter-component communication

(or isolation) overheads, due to factors such as caching. Using a recurrence relationship that

considers misprediction costs, we show how to compensate for errors in estimated overheads,

to ensure a system converges to a target resource usage, while maximizing isolation benefit.

The key observation here is that heuristic policies exist to effectively adapt the current

system configuration to one with an improved dependability and predictability in response
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to dynamic execution characteristics of the system. The next chapter discusses the practical

issues and feasibility of implementing MPD in a real system.



Chapter 5

Mutable Protection Domains: Design and

Implementation

Whereas Chapter 4 investigates the policy used to place protection domains in a system

(implemented in the MPD policy component), this chapter focuses on the design and im-

plementation of Mutable Protection Domains in Composite. MPDs represent a novel ab-

straction with which to manipulate the trade-off between inter-protection domain invocation

costs, and the fault isolation benefits they bring to the system. It is not clear, however, how

they can be provided in a CBOS that requires efficient component invocations, and must

work on commodity hardware, such as that which uses page-tables to provide protection

domains. In this chapter, these questions are answered, and an empirical evaluation of a

non-trivial web-server application is conducted to study the benefits of MPD. Section 5.1

discusses how component invocations are conducted in Composite. Section 5.2 details the

implementation challenges, approaches, and optimizations for MPD. Section 5.3 gives an

overview of the design of a component-based web-server that is used to evaluate MPD in

Section 5.4. Section 5.5 concludes the chapter.
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Figure 5.1: Two different invocation methods between components (drawn as the enclos-
ing solid boxes). (a) depicts invocations through the kernel between protection domains
(shaded, dashed boxes), (b) depicts intra-protection domain invocations

5.1 Component Invocations

Researchers of µ-kernels have achieved significant advances in Inter-Process Communica-

tion (IPC) efficiency [BALL90, Lie95, SSF99, GSB+02]. In additional to the traditional

constraint that invocations between components in separate protection domains must incur

little overhead, Composite must also provide intra-protection domain invocations and the

ability to dynamically switch between the two modes. This section discusses the mechanisms

Composite employs to satisfy these constraints.

Communication is controlled and limited in Composite via a capability system [Lev84].

Each function that a component c0 wishes to invoke in c1 has an accompanying capability

represented by both a kernel- and a user-capability structure. The kernel capability struc-

ture links the components, signifies authority allowing c0 to invoke c1, and contains the

entry instruction for the invocation into c1. The user-level capability structure is mapped

both into c0 and the kernel. When components are loaded into memory, code is synthesized

for each user-capability and linked into c0. When c0 invokes the function in c1, this code is

actually invoked and it parses the corresponding user-capability, which includes a function

pointer that is jumped to. If intra-protection domain invocations are intended by the MPD

system, the function invoked is the actual function in c1 which is passed arguments directly

via pointers. If instead an inter-protection domain invocation is required, a stub is invoked

that marshals the invocation’s arguments. The current Composite implementation sup-

ports passing up to four arguments in registers, and the rest must be copied. This stub then
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invokes the kernel, requesting an invocation on the associated capability. The kernel iden-

tifies the component to invoke (c1), the entry address in c1 (typically a stub to demarshal

arguments), and c1’s page-tables which it loads and, finally, the kernel upcalls into c1. Each

thread maintains an stack of capability invocations, and when a component returns from an

invocation, the kernel pops off the component to return to. These styles of invocations are

depicted in Figure 5.1. To dynamically switch between inter- and intra-protection domain

invocations, the kernel need only change the function pointer in the user-level capability

structure from a direct pointer to c1’s function to the appropriate stub.

An implication of this component invocation design is that all components that can pos-

sibly be dynamically placed into the same protection domain must occupy non-overlapping

regions of virtual address space. This arrangement is similar to single address space

OSes [CBHLL92] in which all applications share a virtual address space, but are still iso-

lated from each other via protection domains. A number of factors lessen this restriction:

(i) those components that will never be placed in the same protection domain (e.g. for

security reasons) need not share the same virtual address space, (ii) if components grow to

the extent that they exhaust the virtual address space, it is possible to relocate them into

separate address spaces under the constraint that they cannot be collapsed into the same

protection domain in the future, and (iii) where applicable, 64 bit architectures provide an

address range that is large enough that sharing it is not prohibitive.

Pebble [GSB+02] uses specially created and optimized executable code to optimize IPC.

Composite uses a comparable technique to generate the stub that parses the user-level

capability. This code is on the fast-path and is the main intra-protection domain invocation

overhead. When loading a component into memory, we generate code that inlines the

appropriate user-capability’s address to avoid expensive memory accesses. To minimize

overhead, we wish to provide functionality that abides by C calling conventions and passes

arguments via pointers. To achieve this goal, the specifically generated code neither clobbers

any persistent registers nor does it mutate the stack.

The MPD policy component must be able to ascertain where communication bottlenecks
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exist. To support this, the invocation path contains counters to track how many invocations

have been made on specific capabilities. One count is maintained in the user-level capability

structure that is incremented (with an overflow check) for each invocation, and another is

maintained in the kernel capability structure. System-calls are provided for the MPD policy

component to separately read these counts. In designing invocations in Composite, we

decided to maintain the invocation counter in the user-level capability structure despite the

fact that it is directly modifiable by components. When used correctly, the counter provides

useful information so that the MPD policy better manipulates the trade-off between fault-

isolation and performance. However, if components behave maliciously, there are two cases

to consider: (i) components can alter the counter by increasing it to a value much larger

than the actual number of invocations made between components which can cause the MPD

policy to remove protection domain boundaries, and (ii) components can artificially decrease

the counter, encouraging the MPD policy to erect a protection boundary. In the former case,

a malicious component already has the ability to make more invocations than would reflect

realistic application scenarios, thus the ability to directly alter the counter is not as powerful

as it seems. More importantly, a component with malicious intent should never be able to be

collapsed into the protection domain of another untrusting component in the first place. In

the latter case, components could only use this ability to inhibit their own applications from

attaining performance constraints. Additionally, when a protection boundary is erected, the

MPD policy will obtain accurate invocation counts from the kernel-capability and will be

able to detect the errant user-capability invocation values. Fundamentally, the ability to

remove protection domain boundaries is meant to trade-off fault-isolation for performance,

and should not be used in situations where a security boundary is required between possibly

malicious components. The separation of mechanisms providing fault isolation versus those

providing security is not novel [SBL03, LAK09].

As with any system that depends on high-throughput communication between system

entities, communication overheads must be minimised. Composite is unique in that com-

munication mechanisms can switch from inter- to intra-protection domain invocations and
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back as the system is running. This process is transparent to components and does not re-

quire their interaction. Composite employs a migrating thread model [FL94] and is able to

achieve efficient invocations. Section 5.4.1 investigates the efficiency of this implementation.

5.2 Mutable Protection Domains

A primary goal of Composite is to provide efficient user-level component-based definition

of system policies. It is essential, then, that the kernel provide a general, yet efficient,

interface that a MPD policy component uses to control the system’s protection domain

configuration. This interface includes two major function families: (1) system calls that

retrieve information from the kernel concerning the amount of invocations made between

pairs of components, and (2) system calls for raising protection barriers, and removing

them. In this section, we discuss these in turn.

5.2.1 Monitoring System Performance Bottlenecks

As different system workloads cause diverse patterns of invocations between components,

the performance bottlenecks change. It is essential that the policy deciding the current

protection domain configuration be informed about the volume of capability invocations

between specific pairs of components.

The cos cap cntl(CAP INVOCATIONS, c0, c1) system call returns an aggregate of the

invocations over all capabilities between component c0 and c1, and resets each of these

counts to zero. Only the MPD policy component is permitted to execute this call. The

typical use of this system call is to retrieve the weight of each edge in the component graph

directly before the MPD policy is executed.

5.2.2 Mutable Protection Domain Challenges

Two main challenges in dynamically altering the mapping between components to protection

domains are:
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(1) How does the dynamic nature of MPD interact with component invocations? Specif-

ically, given the invocation mechanism described in Section 5.1, a thread can be executing

in component c1 on a stack in component c0, this imposes a lifetime constraint on the

protection domain that both c0 and c1 are in. Specifically, if a protection boundary is

erected between c0 and c1, the thread would fault upon execution as it attempts to access

the stack in a separate protection domain (in c0). This situation brings efficient component

invocations at odds with MPD.

(2) Can portable hardware mechanisms such as page-tables be efficiently made dy-

namic? Page-tables consume a significant amount of memory, and creating and modifying

them at a high throughput could prove quite expensive. One contribution of Compos-

ite is a design and implementation of MPD using portable hierarchical page-tables that is

(1) transparent to components executing in the system, and (2) efficient in both space and

time.

In the rest of Section 5.2 we discuss the primitive abstractions exposed to a MPD policy

component used to control the protection domain configuration, and in doing so, reconcile

MPD with component invocations and architectural constraints.

5.2.3 Semantics and Implementation of MPD Primitives

merge split

Figure 5.2: MPD merge and split primitive operations. Protection domain boxes enclose
component circles. Different color/style protection domains implies different page-tables.

Two system-calls separately handle the ability to remove and raise protection domain

boundaries. merge(c0, c1) takes two components in separate protection domains and

merges them such that all the components in each co-exist in the new protection domain.

This allows the MPD policy component to remove protection domain boundaries, thus

communication overheads, between components. A straightforward implementation of these
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semantics would include the allocation of a new page-table to represent the merged domain

containing a copy of both the previous page-tables. All user and kernel capability data-

structures referencing components in the separate protection domains are updated to enable

direct invocations, and reference the new protection domain. This operation is depicted in

Figure 5.2(a).

To increase the fault isolation properties of the system, the Composite kernel provides

the split(c0) system call. split removes the specified component from it’s protection

domain and creates a new protection domain containing only c0. This ability allows the

MPD policy component to improve component fault isolation while also increasing com-

munication overheads. This requires allocating two page-tables, one to contain c0, and the

other to contain all other components in the original protection domain. The appropriate

sections of the original page-table must be copied into the new page-tables. All capabilities

for invocations between c0 and the rest of the components in the original protection domain

must be updated to reflect that invocations must now be carried out via the kernel (as in

Figure 5.1(a)).

Though semantically simple, merge and split are primitives that are combined to per-

form more advanced operations. For example, to move a component from one protection

domain to another, it is split from its first protection domain, and merged into the other.

One conspicuous omission is the ability to separate a protection domain containing multiple

components into separate protection domains, each with more than one component. Se-

mantically, this is achieved by splitting off one component, thus creating a new protection

domain, and then successively moving the rest of the components to that protection domain.

Though these more complex patterns are achieved through the proposed primitives, there

are reasonable concerns involving computational efficiency and memory usage. Allocating

and copying page-tables can be quite expensive both computationally and spatially. We

investigate optimizations in Section 5.2.5.
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5.2.4 Interaction Between Component Invocations and MPD Primitives

Thread invocations between components imply lifetime constraints on protection domains.

If in the same protection domain, the memory of the invoking component might be accessed

(i.e. function arguments or the stack) during the invocation. Thus, if a protection barrier

were erected during the call, memory access faults would result that are indistinguishable

from erroneous behavior. We consider three solutions to enable the coexistence of intra-

protection domain invocations and MPD:

(1) For all invocations (even those between components in the same protection domain),

arguments are marshalled and passed via message-passing instead of directly via function

pointers, and stacks are switched. This has the benefit of requiring no additional kernel

support, but significantly degrades invocation performance (relative to a direct function call

with arguments passed as pointers).

(2) For each invocation, a record of the stack base and extent and each argument’s base

and extent are recorded and tracked via the kernel. In the case that faults due to protection

domain and invocation inconsistencies result, these records are consulted, and the relevant

pages are dynamically mapped into the current component’s protection domain. This option

again complicates the invocation path requiring memory allocation for the argument meta-

data, and increased kernel complexity to track the stacks and arguments. In contrast to the

previous approach, this overhead is not dependent on the size of arguments. A challenge

is that once memory regions corresponding to these arguments or the stack are faulted in

from an invoking component, how does the kernel track them, and when is it appropriate

to unmap them?

(3) The MPD primitives are implemented in a manner that tracks not only the current

configuration of protection domains, but also maintains stale protection domains that cor-

respond to the lifetime requirements of thread invocations. This approach adds no overhead

to component invocation, but requires significantly more intelligent kernel primitives.

A fundamental design goal of Composite is to encourage the decomposition of the

system into fine-grained components on the scale of individual system abstractions and
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policies. As OS architects are justifiably concerned with efficiency, it’s important that

component invocation overheads are removed by the system when necessary. Thus the

overhead of intra-protection domain component invocations should be on the order of a

C function call. In maintaining a focus on this design goal, Composite uses the third

approach, and investigates if an implementation of intelligent MPD primitives is possible

and efficient on commodity hardware using page-tables.

The semantics of the MPD primitives satisfy the following constraint: All components

accessible at the beginning of a thread’s invocation to a protection domain must remain ac-

cessible to that thread until the invocation returns. Taking this into account, Composite

explicitly tracks the lifetime of thread’s access to protection domains using reference count-

ing based garbage collection. When a thread τ enters a protection domain A, a reference to

A is taken, and when τ returns, the reference is released. If there are no other references to

A, it is freed. The current configuration of protection domains all maintain a reference to

prevent deallocation. In this way, the lifetime of protection domains accommodates thread

invocations. The above constraint is satisfied because, even after dynamic changes to the

protection domain configuration, stale protection domains – those corresponding to the

protection domain configuration before a merge or split – remain active for τ .

There are two edge-cases that must be considered. First, threads might never return

from a protection domain, thus maintaining a reference count to it. This is handled by

(1) providing system-call that will check if the calling thread is in the initial component

invoked when entering into the protection domain, and if so the protection domain mapping

for that thread is updated to the current configuration, decrementing the count for the

previous domain, and (2) by checking on each interrupt if the above condition is true of the

preempted thread, and again updating it to the current protection domain configuration.

The first of these options is useful for system-level threads that are aware of MPD’s existence

and make use of the system-call, and the second is useful for all threads.

The second exceptional case results from a thread’s current mappings being out of sync

with the current configuration: A thread executing in component c0 invokes c1; the current
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configuration deems that invocation to be direct as c0 and c1 are in the same protection

domain; however, if the thread is executing in a stale mapping that doesn’t include c1, a

fault will occur upon invocation. In this case, the page-fault path is able to ascertain that

a capability invocation is occurring, which capability is being invoked, and if c0 and c1 are

the valid communicating parties for that capability. If these conditions are true, the stale

configuration for the thread is updated to include the mappings for c1, and the thread is

resumed.

Discussion: Efficient intra-protection domain invocations place lifetime constraints on

protection domains. In Composite we implement MPD primitive operations in a manner

that differentiates between the current protection domain configuration and stale domains

that satisfy these lifetime constraints. Protection domain changes take place transparently

to components and intra-protection domain invocations maintain high performance: Sec-

tion 5.4.1 reveals their overhead to be on the order of a C++ virtual function call. When a

thread invokes a component in a separate protection domain, the most up-to-date protec-

tion domain configuration for that component is always used, and that configuration will

persist at least until the thread returns.

5.2.5 MPD Optimizations

The MPD primitives are used to remove performance bottlenecks in the system. If this ac-

tion is required to meet critical task deadlines in an embedded system, it must be performed

in a bounded and short amount of time. Additionally, in systems that switch workloads

and communication bottlenecks often, the MPD primitives might be invoked frequently.

Though intended to trade-off performance and fault isolation, if these primitives are not

efficient, they could adversely effect system throughput.

As formulated in Section 5.2.3, the implementation of merge and split are not practical.

Each operation allocates new page-tables and copies subsections of them. Fortunately, only

the page-tables (not the data) are copied, but this can still result in the allocation and

copying of large amounts of memory. Specifically, page-tables on ia32 consist of up to 4MB
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of memory. In a normal kernel, the resource management and performance implications

of this allocation and copying is detrimental. For simplicity and efficiency reasons, the

Composite kernel is non-preemptible. Allocating and copying complete page-tables in

Composite, then, is not practical. This problem is exacerbated by 64 bit architectures

with larger page-table hierarchies. Clearly, there is motivation for the OS to consider a

more careful interaction between MPD and hardware page-table representations.

c
0

pages c
1

pages

A B C

Figure 5.3: Composite page-table optimization. The top two levels are page-tables, and
the shaded bottom level is data pages. Separate protection domains differ only in the top
level.

An important optimization in Composite is that different protection domain configu-

rations do not have completely separate page-tables. Different protection domain config-

urations differ only in the page table’s top level, and the rest of the structure is shared.

Figure 5.3 shows three protection domain configurations: an initial configuration, A, and

the two resulting from a split, B and C. Each different protection domain configuration

requires a page of memory, and a 32 byte kernel structure describing the protection do-

main. Therefore, to construct a new protection domain configuration (via merge or split)

requires allocating and copying only a page.

In addition to sharing second level page-tables which makes MPD practical, Composite

further improves each primitive. In particular, it is important that merge is not only

efficient, but predictable. As merge is used to remove overheads in the system, the MPD

policy must be able to mitigate bottlenecks quickly. In real-time systems, it might be

necessary to, within a bounded period of time, remove performance overheads so that a

critical task meets its deadline. An implication of this is that merge must require no

memory allocation (the “out-of-memory” case is not bounded in general). To improve



71

merge, we make the simple observation that when merging protection domains A and B to

create C, instead of allocating new page-tables for C, A is simply extended to include B’s

mappings. B’s protection domain kernel structure is updated so that its pointer to its page-

table points to A’s page-table. B’s page-table is immediately freed. This places a liveliness

constraint on the protection domain garbage collector scheme: A’s kernel structure cannot

be deallocated (along with its page-tables) until B has no references. With this optimization,

merge requires no memory allocation (indeed, it frees a page), and requires copying only

B’s components to the top level of A’s page-table.

Composite optimizes a common case for split. A component c0 is split out of pro-

tection domain A to produce B containing c0 and C containing all other components. In

the case where A is not referenced by any threads, protection domain A is reused by sim-

ply removing c0 from it’s page-table’s top-level. Only B need be allocated and populated

with c0. This is a relatively common case because when a protection domain containing

many components is split into two, both also with many components, successive splits and

merges are performed. As these repeated operations produce new protection domains (i.e.

without threads active in them), the optimization is used. In these cases, split requires

the allocation of only a single protection domain and copying only a single component.

The effect of these optimizations is significant, and their result can be seen in Sec-

tions 5.4.1 and 5.4.4.

5.2.6 Mutable Protection Domain Policy

This focus of this paper is on the design and implementation of MPD in the Compos-

ite component-based system. However, for completeness, in this section we describe the

policy that decides given communication patterns in the system, where protection domain

boundaries should exist.

InChapter 4, we introduce a policy for solving for a protection domain configuration

given invocations between components and simulate its effects on the system. We adapt

that policy to use the proposed primitives. A main conclusion ofChapter 4 is that adapting
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the current configuration to compensate for changes in invocation patterns is more effective

than constructing a new configuration from scratch each time the policy is executed. The

policy targets a threshold for the maximum number of inter-protection domain invocations

over a window of time. Thus, the main policy takes the following steps:

(1) remove protection domain barriers with the highest overhead until the target thresh-

old for invocations is met,

(2) increase isolation between sets of components with the lowest overhead while re-

maining under the threshold, and

(3) refine the solution by removing the most expensive isolation boundaries while si-

multaneously erecting the boundaries with the least overhead.

It is necessary to understand how the protection boundaries with the most overhead

and with the least overhead are found. The policy in this chapter uses a min-cut algo-

rithm [SW97] to find the separation between components in the same protection domain

with the least overhead. An overlay graph on the component graph tracks edges between

protection domains and aggregates component-to-component invocations to track the over-

head of communication between protection domains. These two metrics are tracked in

separate priority queues. When the policy wishes to remove invocation overheads, the most

expensive inter-protection domain edge is chosen, and when the policy wishes to construct

isolation boundaries, the min-cut at the head of the queue is chosen.

5.3 Application Study: Web-Server

To investigate the behavior and performance of MPD in a realistic setting, we present a

component-based implementation of a web-server that serves both static and dynamic con-

tent (i.e. CGI programs) and supports normal HTTP 1.0 connections in which one content

request is sent per TCP connection, and HTTP 1.1 persistent connections where multi-

ple requests are be pipelined through one connection. The components that functionally

compose to provide these services are represented in Figure 5.4. Each node is a compo-
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Figure 5.4: A component-based web-server in Composite

nent, and edges between nodes represent a communication capability. Each name has a

corresponding numerical id that will be used to abbreviate that component in some of the

results. Rectangular nodes are implemented in the kernel and are not treated as compo-

nents by Composite. Nodes that are octogons are relied on for their functionality by all

other components thus we omit the edges in the diagram for the sake of simplicity. Indeed,

all components must request memory from the Memory Mapper component, and, for de-

bugging and reporting purposes, all components output strings to the terminal by invoking

the Terminal Printer. Nodes with dashed lines represent a component that in a real system
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would be a significantly larger collection of components, but are simplified into one for the

purposes of this paper. For example, the Static Content component provides the content

for any non-CGI requests and would normally include at least a buffer cache, a file system,

and interaction with a disk device. Additionally, CGI programs are arbitrarily complicated,

perhaps communicating via the network with another tier of application servers, or access-

ing a database. We implement only those components that demonstrate the behavior of a

web-server. Note that we represent in the component graph two different CGI programs, A

and B. Here too, the component graph could be much more complex as there could be an

arbitrarily large number of different CGI programs.

A web-server is an interesting application with which to investigate the effectiveness of

MPD, as it is not immediately obvious that MPD is beneficial for it. Systems that exhibit

only a single behavior and performance bottleneck, such as many simple embedded systems,

wouldn’t receive much benefit from dynamic reconfiguration of protection domains. In such

systems, MPD could be used to determine an acceptable trade-off between performance and

dependability, and that configuration could be used statically (as the performance charac-

teristics are also static). Systems in which workloads and the execution paths they exercise

vary greatly over time, such as multi-VM, or possibly desktop systems, could benefit greatly

from MPD. As completely disjoint bottlenecks change, so too will the protection domain

configuration. A web-server lies somewhere in between. The function of the application is

well-defined, and it isn’t clear that different bottlenecks will present themselves, thus find

benefit in the dynamic reconfiguration of protection domains.

5.3.1 Web-Server Components

We briefly describe how the web server is decomposed into components.

Thread Management:

Scheduler: Composite has no in-kernel scheduler (as discussed in Chapter 4), instead rely-

ing on scheduling policy being defined in a component at user-level. This specific component

implements a fixed priority round robin scheduling policy.
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Timed Block: Provide the ability for a thread to block for a variable amount of time. Used

to provide timeouts and periodic thread wakeups (e.g. MPD policy computation, TCP

timers).

Lock: Provide a mutex abstraction for mutual exclusion. A synchronization library loaded

into client components implements the fast-path of no contention in a manner similar to

futexes [FRK02]. Only upon contention is the lock component invoked.

Event Manager: Provide edge-triggered notification of system events in a manner similar

to [BMD99]. Block threads that wait for events when there are none. Producer components

trigger events.

Networking Support:

vNIC: Composite provides an virtual NIC abstraction which is used to transmit and

receive packets from the networking driver. The vNIC component interfaces with this

abstraction and provides simple functions to send packets and receive them into a ring

buffer.

TCP: A port of lwIP [lwI]. This component provides both TCP and IP.

IP: The TCP component already provides IP functionality via lwIP. To simulate the com-

ponent overheads of a system in which TCP and IP were separated, this component simply

passes through packet transmissions and receptions.

Port Manager: Maintain the port namespace for the transport layer. The TCP compo-

nent requests an unused port when a connection is created, and relinquishes it when the

connection ends.

Web Server Application:

HTTP Parser: Receive a data stream and parse it into separate HTTP requests. Invoke

the Content Manager with the requests, and when a reply is available, add the necessary

headers and return the message.

Content Manager: Receive content requests and demultiplex them to the appropriate

content generator (i.e. static content, or the appropriate CGI script).

Static Content: Return content associated with a pathname (e.g. in a filesystem). As
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noted earlier, this component could represent a much larger component graph.

Async. Invocation: Provide a facility for making asynchronous invocations between sepa-

rate threads in different components. Similar to a UNIX pipe, but bi-directional and strictly

request/response based. This allows CGI components to be scheduled separately from the

main web-server thread.

File Descriptor API: Provide a translation layer between a single file descriptor namespace

to specific resources such as TCP connections, or HTTP streams.

Connection Manager: Ensure that there is a one-to-one correspondence between network

file descriptors and application descriptors, or, in this case, streams of HTTP data.

CGI Program:

CGI Service: As mentioned before, this component represents a graph of components

specific to the functionality of a dynamic content request. It communicates via the File

Descriptor API and Async. Invocations component to receive content requests, and replies

along the same channel. These CGI services are persistent between requests and are thus

comparable to standard FastCGI [Fas] web-server extensions.

Assorted Others:

The Memory Mapper has the capability to map physical pages into other component’s

protection domains, thus additionally controlling memory allocation. The Terminal Printer

enables strings to be printed to the terminal. Not shown are the Stack Trace and Statistics

Gatherer components that mainly aid in debugging.

5.3.2 Web-Server Data-Flow and Thread Interactions

As it is important to understand not only each component’s functions, but also how they

interact, here we discuss the flow of data through components, and then how different

threads interact. Content requests arrive from the NIC in the vNIC component. They

are passed up through the IP, TCP, File Descriptor API components to the Connection

Manager. The request is written to a corresponding file descriptor associated with a HTTP

session through the HTTP Parser, Content Manager, and (assuming the request is for
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dynamic content) Async. Invocation components. The request is read through another file

descriptor layer by the CGI Service. This flow of data is reversed to send the reply from

the CGI Service onto the wire.

A combination of three threads orchestrate this data movement. A network thread

traverses the TCP, IP, and vNIC components and is responsible for receiving packets, and

conducting TCP processing on them. The data is buffered in accordance with TCP policies

in TCP. The networking thread coordinates with the main application thread via the Event

Manager component. The networking thread triggers events when data is received, while

the application thread waits for events and is woken when one is triggered. Each CGI service

has its own thread so as to decouple the scheduling of the application and CGI threads. The

application and CGI threads coordinate through the Async. Invocation component which

buffers requests and responses. This component again uses the Event Manager to trigger

and wait for the appropriate events.

5.4 Experimental Results

All experiments are performed on IBM xSeries 305 e-server machines with Pentium IV,

2.4 GHz processors and 904 MB of available RAM. Each computer has a tigon3 gigabit

Ethernet card, connected by a switched gigabit network. We use Linux version 2.6.22 as

the host operating system. Composite is loaded using the techniques from Hijack [PW07a],

and uses the networking driver and timer subsystem of the Linux kernel, overriding at the

hardware level all other control flow.

5.4.1 Microbenchmarks

Table 5.1 presents the overheads of the primitive operations for controlling MPD in Com-

posite. To obtain these measurements, we execute the merge operation on 10 components,

measuring the execution time, then split the components one at a time, again measuring

execution time. This is repeated 100 times, and the average execution time for each op-
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Operation µ-seconds

merge 0.608

split w/ protection domain reuse 1.357

split 2.130

Clone address space in Linux 30.678

Table 5.1: Mutable Protection Domains primitive operations.

eration is reported. In one case, the kernel is configured to allow the split optimization

allowing the reuse of a protection domain, and in the other this optimization is disabled.

Cloning an address space in Linux is a mature and efficient operation that is optimized by

copying only the page-table, and not data pages. Instead data pages are mapped in copy-on-

write. We include in the table the cost of replicating a protection domain in Linux measured

by executing the sys clone system call passing in the CLONE VM flag and subtracting the

cost of the same operation without CLONE VM. sys clone copies or creates new structures

for different process resources. As CLONE VM controls if the address space (inc. page-tables)

are copied or not, it allows us to focus on the cost of protection domain cloning. The process

that is cloned in the experiments contains 198 pages of memory, with most attributed to

libraries such as glibc. The efficiency of Composite MPD primitives is mainly due to

the design decision to share all but top-level page-table directories across different MPD

configurations. This means that only a single page, the directory, must be created when a

new configuration is created. Whereas Linux must copy the entire page-table, Composite

must only manufacture a single page. This optimization has proven useful in making MPD

manipulation costs negligible.

Operation µ-seconds

Inter-PD component invocation 0.675

Hardware overhead of switching between two PDs 0.462

Intra-PD component invocation 0.008

Linux pipe RPC 6.402

Table 5.2: Component communication operations.
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The efficiency of communication and coordination between components becomes increas-

ingly important as the granularity of components shrink. In Composite, the processing

cost of invocations between components in separate protection domains must be optimized

to avoid judicious removal of protection domain boundaries via MPD. Additionally, the

cost of invocations between components in the same protection domain must be as close

to that of a functional call as possible. This is essential so that there is no incentive for

a developer to produce otherwise coarser components, effectively decreasing the flexibility

and customizability of the system.

Table 5.2 includes microbenchmarks of invocation costs between components. Each

measurement is the result of the average of 100000 invocations of a null function on a

quiescent system, and thus represent warm-cache and optimistic numbers. An invocation

between two components in separate protection domains including two transitions from

user to kernel-level, two from kernel to user, and two page-table switches consumes 0.675

µ-seconds. A significant faction of this cost is due to hardware overheads. We constructed

a software harness enabling switching back and forth between two protection domains (to

emulate an invocation or RPC) with inline user-level code addresses, and the addresses of

the page-tables clustered on one cache-line to minimize software overheads and observed a

processing cost of 0.462 µ-seconds. With 31.555% software overhead in our implementation,

there is some room for improvement. Others have had success replacing the general c-based

invocation path with a hand-crafted assembly implementation [Lie93], and we believe this

approach might have some success here. However, these results show that little undue

overhead is placed in the invocation path, thus MPD coexists with a modern and optimized

IPC path.

Importantly, these uncontrollable hardware invocation overheads are avoided by merging

components into a single protection domain with an overhead of 0.008 µ-seconds, or 20

cycles. This overhead is on the order of a C++ virtual function call 1 which carries an

overhead of 18 cycles. We believe this overhead is small enough that there is no incentive

1Using g++ version 4.1.2
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for developers to coarsen the granularity of their components due to performance concerns.

We include the costs of a RPC call between two threads in separate address spaces

over a Linux pipe. Linux is not a system structured with a primary goal of supporting

efficient IPC, so this value should be used for reference and perspective, rather than direct

comparison.

5.4.2 Apache Web-Server Comparison

In measuring web-server performance, we use two standard tools: the apache benchmark

program (ab) [Apa] version 2.3, and httperf [htt] version 0.9.0. We compare against

Apache [Apa] version 2.2.11 with logging disabled and FastCGI [Fas] provided by

mod fastcgi version 2.4.6.
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Figure 5.5: Web-server throughput comparison.

Figure 5.5 presents a comparison of sustained connection throughput rates for Compos-

ite and different configurations of Apache. Using ab, we found that 24 concurrent connec-

tions maximizes throughput for all Composite configurations. Requests for static content

yield 6891.50 connections/second with a many-to-one mapping of components to protection

domains, and 10402.72 connections/second when every component shares the same protec-

tion domain. Serving dynamic CGI content yields 6170.74 and 10194.28 connections/second

for full and no isolation, respectively. For Apache, we find that 20 concurrent connections
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maximizes throughput for serving (cached) static files at 5139.61 connections/seconds, 32

concurrent connections maximizes throughput for module-generated content at 6121.27,

and 16 concurrent connections maximizes throughput at 2106.39 connections/second for

fastCGI dynamic content. All content sources simply return an 11 character string.

The three Apache configurations demonstrate design points in the trade-off between

dependability and performance. Apache modules are compiled libraries loaded directly

into the server’s protection domain. The module approach co-locates all logic for content

generation into the web-server itself. This has the advantage of minimizing communication

overhead, but a fault in either effects both. Serving a static file locates the source of the

content in the OS filesystem. Accessing this content from the server requires a system-call,

increasing overhead, but a failure in the web-server does not disturb that content. Finally,

fastCGI is an interface allowing persistent CGI programs to respond to a pipeline of content

requests. Because of program persistence, the large costs for normal CGI programs of

fork and exec are avoided. FastCGI, using process protection domains, provides isolation

between the dynamic content generator, and the server, but the communication costs are

quite high.

The comparison between Composite and Apache is not straightforward. On the one

hand, Apache is a much more full-featured web-server than our Composite version which

could negatively effect Apache’s throughput. On the other hand, Apache is a mature

product that has been highly optimized. We propose the most interesting conclusion of

these results is validation that a fine-grained component-based system can achieve practical

performance levels, and has the ability to increase performance by between 50% and 65%

by making some sacrifices in dependability.

5.4.3 The Trade-off Between Fault Isolation and Performance

Next we investigate the trade-off between fault-isolation and performance, and specifically

the extent to which isolation must be compromised to achieve significant performance gains.

Figure 5.6 presents two separate scenarios in which the server handles (1) static content
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Figure 5.6: The effect on throughput of removing protection domains.

Workload Sorted Edges w/ > 1% of Total Invocations

Static, HTTP 1.0 10→9, 17→16, 7→17, 9→7, 3→1, 9→11, 9→8,

14→15, 11→14, 7→8, 7→24, 8→1, 7→3, 15→8

CGI, HTTP 1.1 21→20, 20→18, 14→18, 11→14, 18→8, 10→9,

17→16, 7→17, 9→7, 8→1, 3→1, 9→11, 9→8, 7→8

Table 5.3: Edges with the most invocations from Figure 5.7(b) and (c).

requests, and (2) dynamic CGI requests, both generated with ab with 24 concurrent re-

quests. The system starts with full isolation, and every second the protection domains with

the most invocations between them are merged. When serving static content, by the time

6 protection domains have been merged, throughput exceeds 90% of its maximum. For

dynamic content, when 8 protection domains are merged, throughput exceeds 90%. The

critical path of components for handling dynamic requests is longer by at least two, which

explains why dynamic content throughput lags behind static content processing.

To further understand why removing a minority of the protection domains in the system

has a large effect on throughput, Figures 5.7(a) and (b) plot the sorted invocations made

over an edge (the bars), and the cumulative distribution function (CDF) of those invocations

over a second interval. The majority of the 97 edges between components have zero invo-

cations. Figure 5.7(a) represents the system while processing static requests. Figure 5.7(b)

represents the system while processing dynamic requests using HTTP 1.1 persistent con-
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Figure 5.7: The number of invocations over specific threads, and the CDF of these invoca-
tions for (a) HTTP 1.0 requests for static content, and (b) persistent HTTP 1.1 requests
for CGI-generated content.

nections (generated with httperf). In this case, 2000 connections/second each make 20

pipelined GET requests. In both figures, the CDF implies that a small minority of edges

in the system account for the majority of the overhead. In (b) and (c), the top six edges

cumulatively account for 72% and 78%, respectively, of the isolation-induced overhead.

Table 5.3 contains a sorted list of all edges between components with greater than

zero invocations. Interestingly, the top six edges for the two workloads contain only a

single shared edge, which is the most expensive for static HTTP 1.0 content and the least

expensive of the six for dynamic HTTP 1.1 content. It is evident from these results that

the bottlenecks for the same system under different workloads differ greatly. It is evident

that if the system wishes to maximize throughput while merging the minimum number of

protection domains, different workloads can require significantly different protection domain

configurations. This is the essence of the argument for dynamic reconfiguration of protection

domains.

5.4.4 Protection Domains and Performance across Multiple Workloads

The advantage of MPD is that the fault isolation provided by protection domains is tailored

to specific workloads as the performance bottlenecks in the system change over time. To

investigate the effectiveness of MPD, Figures 5.8, 5.9, and 5.10 compare two MPD poli-
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Figure 5.8: The throughput improvement over a system with full isolation.

cies, both of which attempt to keep the number of invocations between protection domains

(and thus the isolation overhead) below a threshold. One policy only removes protection

boundaries, and the other both merges and splits (labeled in the figure as “Full MPD Pol-

icy”). The policy that only merges protection domains represents an oracle of sorts. If the

system designer were to statically make the mapping of components to protection domains,

the protection domain configuration at the end of the experiments represents a reasonable

mapping for them to make. It uses run-time knowledge regarding where invocation bottle-

necks exist to adapt the component, protection domain mapping. However, as in the static

mapping case, protection domain boundaries cannot be reinstated. We successively execute

the system through five different workloads: (1) normal HTTP 1.0 requests for dynamic

content from CGI service A, (2) HTTP 1.1 persistent requests (20 per connection) for CGI

service B, (3) HTTP 1.0 requests for static content, (4) HTTP 1.1 persistent requests (20

per connection) for CGI service A, (5) HTTP 1.0 requests for dynamic content from CGI

service B. A reasonable static mapping of components to protection domains that must ad-

dress the possibility of all of the workloads would be the protection domain configuration at

the conclusion of the experiment. Here we wish to compare MPD with this static mapping.

Each graph includes a plot for two separate policies: one where the threshold for allowed

inter-protection domain invocations is set to a calculated 10% of processing time, and the
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other with it set to 15%. These percentages are calculated by, at system bootup, measuring

the cost of a single invocation, and using this to determine how many of such invocations

it would take to use the given percent of processing time. 10% corresponds to 142857 invo-

cations, and 15% corresponds to 214285 invocations. These invocation counts approximate

the allocated isolation overhead and don’t capture cache effects that might change the final

overhead. Section 4.1.6 includes a technique for dealing with these unpredictable effects.

This is a very simple policy for managing the trade-off between overhead and fault isolation.

Certainly more interesting policies taking into account task deadlines, or other application

metrics could be devised. However, in this paper we wish to focus on the utility of the MPD

mechanisms for reliable systems, and ensure that more complicated MPD policies could be

easily deployed as component services.

Figure 5.8 plots the throughput relative to a full isolation system configuration for dif-

ferent workloads. We don’t plot the results for the HTTP 1.1 workloads generated with

httperf as that tool only sends a steady rate of connections/second, instead of trying to sat-

urate the server. All approaches could achieve the sending rate of 2000 connections/second

with 20 requests per connection.

All approaches maintain significant increases in performance. It is not surprising that
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Figure 5.10: The number of active protection domains.

the policies that only remove isolation increase performance over time. The full MPD

policies improve performance on average by 35% and 28% for 10% and 15% fault isolation

overhead, respectively.

Figure 5.9 measures two factors for each MPD policy, for each workload: (1) the total

number of component invocations made (depicted with the line extending above each bar),

and (2) the number of invocations that are made between components in separate protection

domains. Each policy respects their threshold for the maximum number of inter-protection

domain invocations. The number of invocations for the policies that only decreases isolation

are significantly below the target thresholds. This indicates that, indeed, there is value in

being able to dynamically create protection domain boundaries between components to

better use the trade-off between isolation and performance.

This premise is confirmed in Figure 5.10 which plots the number of protection domains

(25 being the maximum possible, 1 the minimum). Across all workloads, the policies that

both add and remove protection boundaries have on average 18.2 and 19.4 protection do-

mains for isolation overheads of 10% and 15%, respectively. In contrast, the final number of

protection domains for the policy that only removes protection domains is 11 and 12 for the

two thresholds. This indicates that the full MPD policies are able to adapt to the changing

bottlenecks of differing workloads by maintain higher levels of isolation. They do this while
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still achieving significant performance gains.

MPD Policy Component ↔ PD Mapping

HTTP 1.0 Requests for Static Content

10%, Full MPD (10,11,9) (17,16,7) (14,15) (3,1)

15%, Full MPD (17,16,7) (10,11,9)

HTTP 1.1 Requests to CGI Program A

10%, Full MPD (21,8,11,14,18,20) (17,16) (10,9)

15%, Full MPD (11,8,21,20,18,14) (10,9)

HTTP 1.0 Requests to CGI Program B

10%, Full MPD (9,10) (16,7,17) (23,25,22) (3,1)

15%, Full MPD (17,16,7) (9,10) (23,25,22) (3,1)

After all Workloads

10%, Remove PD Only (23,21,20,18,10,9,17,16,7,8,11,14,25,22) (3,1)

15%, Remove PD Only (10,8,7,16,17,9) (11,21,20,18,23,22,25,14) (3,1)

Table 5.4: Protection domain configurations resulting from different workloads and different
MPD policies.

Qualitatively, Table 5.4 represents the protection domain configuration for three of the

workloads and different MPD policies. Each group of comma-separated components sur-

rounded by parenthesis are co-resident in the same protection domain. Components that

are not listed (there are 25 total components) do not share a protection domain. This table

demonstrates that it is not only important to observe the number of protection domains

in a system, but also how large single protection domains become. By the final workload,

the MPD policy that with a tolerance of 10% overhead only removes isolation boundaries

has merged all of the most active components into the same protection domain. An error

in one of these could trivially propagate to a significant portion of the system. To capture

this undesirable behavior, we have found an intuitive fault exposure function useful. The

fault exposure of a component is defined as the total number of components whereby a

fault in them could trivially propagate to this component. Specifically, faults can trivially

propagate amongst a single component, but also between components in the same protec-

tion domain. Thus the total fault exposure of a system with two components in the same

protection domain is 4, as each component is susceptible to its own faults, and to that of

the other.
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Using this metric, the MPD policy that only removes protection boundaries has a fault

exposure averaged across all components of 4.52 and 8.36 for 10% and 15% overhead, re-

spectively, at the end of the experiment. In contrast, the MPD policies that both split and

merge protection domains have a fault exposure of 1.864 and 2.376, respectively, averaged

across each of the workloads. This reflects that dynamically merging and splitting protec-

tion domains is effective not only at increasing the number of protection domain boundaries

in the system, but also decreasing the possible trivial propagation effects of faults amongst

components.
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Figure 5.11: Processing overhead of MPD policies.

In addition to the MPD primitive operation’s microbenchmarks in Section 5.4.1, here

we report the processing costs of executing the MPD policy in a realistic environment.

Figure 5.11 depicts the percent of the processing time taken by the thread executing the

MPD policy. Each point represents the MPD policy thread’s processing time each second.

Each second, the MPD policy is run four times. The per-second overhead never exceeds a

quarter of a single percent of the total processing time. We conclude that both the primitive

operations, and the algorithm for computing the next protection domain configuration are

sufficiently efficient to promote frequent adaptation.
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5.5 Conclusion

Fine-grained component-based systems are desirable for their software-engineering benefits,

and for the system customizability and extensibility they provide. However, due to the

trade-off between fault isolation and performance, unless the performance of the system

with full isolation is sufficient, a mapping of components to protection domains must be

made. The primary hypothesis of this chapter is that a dynamic mapping that adapts

to the observed and varying bottlenecks of the system provides a better fault-isolation

to performance trade-off than a static mapping. In this chapter, we detail the design

and implementation of MPD in the Composite component-based OS including how an

efficient IPC system is coordinated with MPD, and an interface used efficiently control

MPD. Our proof-of-concept implementation demonstrates how the objective of dynamic

protection domains is achieved using commodity and portable architecture features such

as hierarchical page tables. Experiments demonstrate that a component-based web-server

is competitive in terms of performance with traditionally structured systems, and that

MPD be used to achieve a high level of performance while simultaneously maintaining most

hardware-provided protection boundaries.



Chapter 6

Future Work

This Chapter describes possible directions in which to take the foundations investigated in

this thesis.

6.1 Component-Based Scheduling

Platform for Hierarchical Real-Time Scheduling

In Chapter 3, we discussed how user-level component-based scheduling is provided in the

Composite OS. Hierarchical scheduling [RS01] is an important technique for delegating

the scheduling policy for different tasks amongst different component schedulers. This

technique is useful in, for example, separating tasks with strict timing constraints from best

effort tasks in hybrid systems. We provide a prototype of a deferrable scheduler that is

hierarchically arranged as a child to the parent fixed priority round robin scheduler.

A generic protocol governing the interaction between child and parent schedulers that

does not require the parent to trust the child is required. This protocol will have many

of the goals and concerns of scheduler activations [ABLL91] in that child schedulers must

inform parent schedulers of idle time, and parent schedulers must communicate information

ranging from when tasks block (e.g. waiting for I/O) to timer interrupts. The main chal-

lenge herein concerns ensuring that the bi-directional communication has (1) a bounded
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worst-case execution time for the deliverance of each event, and (2) reasonable average-case

overheads. Given a clear communication protocol implemented as a library, this should

lower the barrier to empirical hierarchical scheduling research.

Hierarchical Composition of Schedulers

Composite provides the system mechanisms with which untrusted schedulers are executed

as user-level components. The true promise of hierarchical scheduling is that a given set of

applications can be coordinated in a manner that respects all their thread’s and scheduler’s

temporal constraints. This thesis provides the mechanisms with which a parent scheduler

can orchestrate these child schedulers and threads. An open problem is that of deciding

which parent scheduling policy to use and with what parameters, such that the timing

constraints of all applications on the system can be met. If all application’s requirements

aren’t mutually satisfiable (e.g. they total more than the available resource), and no parent

scheduler can provide the required levels of service, a negotiation or admission phase might

be required.

Multiprocessor Scheduling

Composite currently runs on uni-processor platforms. The move to chip multiprocessors

requires careful consideration of the necessary scheduling primitives. We anticipate this

move in Composite will revolve around two main difficulties. First, a means for asyn-

chronous, but bounded, communication across cores is necessary. On an architectural level,

this is provided by Inter-Processor Interrupts (IPIs), but the abstraction exposed from the

Composite kernel must be more general, not specific to any architecture, and must inter-

operate with the thread model of the kernel. Second, though restartable atomic sections

provide an efficient and convenient mechanism for providing atomic instructions, they do

not ensure synchronization across cores. In designing the scheduler data-structures, an in-

vestigation of the segregation of the structures into core-local and global sections is required.

This decision has implications on where true atomic instructions are required versus being



92

able to use restartable atomic sections.

6.2 Mutable Protection Domains Policy

The policy determining the mapping from components to protection domains given system

communication patterns can be extended in additional directions.

Hierarchical MPD Policy

We found in Chapter 5 that the MPD policy is computationally inexpensive. However, given

the super-linear cost of this algorithm, as the system scales up to an order of magnitude

more components, the run-time cost might become significant. A possible solution is to

decompose the system into multiple collections of components. The MPD policy can be run

separately on each collection. In such a case, a central MPD policy must coordinate between

the different application policies by notifying them how much communication overhead

must be removed from their specific collection. If each collection of components is chosen

to be the separate applications in the system, the MPD policy is application-specific. This

hierarchical policy is useful in that it allows the delegation of MPD policy amongst different

application subgraphs of the system. In such a case, each application is allowed to control

the placement of protection domains within its components.

MPD for Power Management

As investigated in this thesis, the MPD policy considers CPU performance as the primary

resource effected by protection domain placement and the resulting communication over-

heads. However, the overhead of inter-protection domain communication manifests itself

in the utilization of other system resources as well. Specifically, (1) the more protection

domains that are active, the more memory they consume (at most a page each) which

might be prohibitive on embedded systems, and (2) there is also a correlation between com-

munication overheads and power consumption. The second of these has perhaps greater
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implications on MPD policy as voltage or frequency scaling allow discrete changes to the

hardware’s power consumptions characteristics. The relationship between CPU usage and

power savings when considering these scaling techniques is not linear. MPD policy must be

adapted to take into account the stepped functions provided by the hardware.

6.3 Composite Design and Implementation

The Composite kernel has been designed and implemented with a number of assump-

tions including the use of page-tables to provide protection domains and execution on a

uni-processor. In improving the capabilities of Composite, these assumptions must be

addressed.

Specialized Architectural Support for MPD

Composite’s implementation of MPD uses page-tables that are portable across many dif-

ferent architectures. There are some disadvantages of this implementation choice. Namely,

this decision requires that switching between different page-tables involves the invalidation

of virtually-tagged caches. In commodity x86 processors, this means flushing the Transla-

tion Look-aside Buffer (TLB). Reestablishing cache contents induces additional overhead.

Some hardware provides Address Space IDs (ASIDs) allowing cache contents to contain an

additional token specifying which address space that content is associated with. The use

of ASIDs would remove the cost of reestablishing the cache from Composite, but it is

not clear how to assign ASIDs to stale protection domains. Other hardware features such

as ARM Protection Domains (PDs) can associate different ids with different items in the

cache, and allow multiple ids to be active at any point in time. The use of these hardware

features has the promise of making inter-protection domain component invocations more

efficient in Composite, but additional research must be conducted to understand how they

can be made to best interact with MPD. Composite should provide a portable MPD im-

plementation, but should be able to adapt to hardware features when possible to provide
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enhanced performance.

MPD on Multiprocessors

The main challenges to implement Composite on multiprocessors are:

(1) maintaining high inter-protection domain invocation performance (which implies

avoiding locks and atomic instructions when accessing kernel data-structures),

(2) maintaining efficient intra-protection domain invocations while still keeping accurate

invocation counts between components (which implies avoiding sharing the counter’s cache-

line across cores),

(3) TLB consistency across different cores (as merge and split modify protection do-

mains, this consistency might be necessary, but could be quite expensive), and

(4) concurrent execution of MPD primitives (merge and split) on multiple cores re-

quires coordination in modifying protection domain data-structures. Efficient mechanisms

for avoiding concurrent modification to data-structures such as protection domains are es-

sential, but providing them without performance impact to the primitives themselves or the

invocation path provides a challenge.

We believe each of these problems is addressable, but a thorough investigation is required.

Component Repository

The Composite kernel provides the basis for the development of component-based systems.

An interesting direction for future research involves the development of a corpus of com-

ponents that are practically useful in designing general, yet extensible OSes. In designing

the components, emphasis must be placed on the ability to use a wide variety of different

implementations throughout the system, thus providing the most configurability for specific

applications and problem domains.



Chapter 7

Conclusion

This thesis investigates the design and implementation of the Composite component-based

operating system. In placing a primary focus on defining system policies in user-level

components, Composite enables system extensibility by allowing application-specific com-

ponents to be used, and heightened dependability by allowing protection domains to be

placed around individual components. The fundamental contribution of this thesis is the

component-based control of both the temporal- and memory-isolation properties of the

system. A key observation is that the fault-isolation between components provided by

protection domains does not have to be binary, and can instead adapt to the temporal

constraints and execution patterns of the system. Fault-isolation between components can

exist at one time and not at another dependent on application inter-protection domain

communication overheads, and the temporal requirements of the application. Combined

with component-based scheduling, this marks a shift from existing systems by empower-

ing the system to explicitly control the trade-off between fault-isolation and performance,

and thus have greater control over the ability of the system to meet application temporal

requirements while still maintaining high fault-isolation.

Specific contributions of this thesis follow:

1. The design and implementation of untrusted, user-level component schedulers that

can efficiently control both application tasks, and the execution resulting from asyn-
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chronous hardware events. This enables the system scheduler to be tailored to a spe-

cific application-domain’s requirements, and isolates the scheduler from faults within

the rest of the system and vice-versa. In doing so, we describe a system implemen-

tation that solves how to provide synchronization around data-structures within the

scheduler, a mechanism for efficiently scheduling execution due to interrupts, and the

coexistence of schedulers with other system mechanisms such as component invoca-

tion.

2. In recognizing the trade-off between fault-isolation and communication costs between

components, we present Mutable Protection Domains that enable the system to erect

or remove protection domain boundaries between components in response to the com-

munication performance bottlenecks. In investigating MPD, we focus on two prob-

lems:

i. Given a graph of components, and the number of invocations made between each

component in a unit of time, we determine where to place protection domain bound-

aries in the system. In doing so, we formulate the problem as a multi-dimensional

multiple-choice knapsack problem, and find efficient heuristics for solving it. Impor-

tantly, we conclude that algorithms that formulate the next configuration of protection

domains from the previous are more effective than those that always start from a no

isolation configuration. We show that even in many cases when the system mispre-

dicts the cost of isolation, it will converge on the desired configuration and we provide

a framework to estimate and correct for this misprediction.

ii. We study the feasibility of a design and implementation of MPD in Composite.

We introduce simple primitives that are used to control the configuration of protec-

tion domains in the system, and detail how they coexist with efficient inter-component

communication, and are efficient, both in memory usage and processing cost. Though

the MPD mechanism is efficient, the rate at which it can be expected to compute

new configurations is limited by its processing time. An open area of investigation
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is to determine what is an ideal rate of recomputation of the protection domain con-

figuration. If computed on too small a time-scale, the invocation counts between

components will not reflect system-wide communication overheads, and only the com-

putation that took place since the last configuration was chosen. If computed on too

large a time-scale, the protection-domain configuration will not adapt to changing

workloads and quickly provide beneficial performance improvements.

3. An empirical evaluation of the Composite system in the context of a non-trivial web-

server application. This evaluation demonstrates that for this application a CBOS

(with a component-based scheduler) has performance levels competitive with mono-

lithic kernels and applications. Additionally, fault protection boundaries are sacrificed

where communication overheads are high to further increase system throughput. We

find that in the web-server, the location within a system of the highest communica-

tion throughput differs significantly across workloads, and the dynamic nature of MPD

is better able than static configurations to trade-off fault-isolation for performance.

To further validate the Composite system, empirical studies into other application

domains are necessary.
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