
Parallel Sections: Scaling System-Level Data-Structures ∗

Qi Wang
The George Washington University

interwq@gwu.edu

Timothy Stamler
The George Washington University

timstamler@gwu.edu

Gabriel Parmer
The George Washington University

Hewlett Packard Enterprise
gparmer@gwu.edu

Abstract
As systems continue to increase the number of cores within
cache coherency domains, traditional techniques for en-
abling parallel computation on data-structures are increas-
ingly strained. A single contended cache-line bouncing be-
tween different caches can prohibit continued performance
gains with additional cores. New abstractions and mecha-
nisms are required to reassess how data-structure consis-
tency can be provided, while maintaining stable per-core
access latencies.

This paper presents the Parallel Sections (PARSEC) ab-
straction for mediating access to shared data-structures. Fun-
damental to the approach is a new form of scalable mem-
ory reclamation that leverages fast local access to real-time
to globally order system events. This approach attempts
to minimize coherency-traffic, while harnessing the ben-
efit of shared read-mostly cache-lines. We show that the
co-management of scalable memory reclamation, memory
allocation, locking, and namespace management enables
scalable system service implementation. We apply PARSEC
to both memcached, and virtual memory management in a
microkernel, and find order-of magnitude performance in-
creases on a four socket, 40 core machine, and 30x lower
99th percentile latencies for virtual memory management.

1. Introduction
Multi- and many-core systems are increasing in prevalence
not only in server-based back-end systems, but also in em-

∗ This material is based upon work supported by the National Science
Foundation under Grant No. CNS 1149675 and ONR Award No. N00014-
14-1-0386. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or ONR.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, .
Copyright c© ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/

bedded and real-time systems. Effectively harnessing this
increasing parallelism enables continued performance in-
creases as transistors are committed to increasing cores.
However, writing software that can harness the capability
afforded by an increasing number of cores is challenging.

Shared memory multi-processors, and multi-core sys-
tems, are a common architecture to harness parallelism.
Though the shared memory abstraction is useful to provide a
unified version of data-structures across cores, the requisite
cache-coherency traffic can prohibit scalability. A cache-
line modified on a single core, while accessed or modified in
parallel on other cores, can result in significant overheads on
the order of microseconds [27]. Consistency of such data-
structures often involves lock hierarchies, and liveness of
nodes requires reference counting. Both locks and reference
counts have been significant impediments to scalability in
existing systems [6].

Solving the problem of the scalable implementation of
system data-structures is particularly important. If the com-
putational infrastructure (e.g. kernels) doesn’t scale, then ap-
plication scalability can be artificially upper-bounded. Sim-
ilarly, latency spikes suffered due to cache-coherency traf-
fic within the system, contribute to the “heavy tail” in data-
centers [19], and prevent usage in real-time systems. This pa-
per presents Parallel Sections (PARSEC), an abstraction for
parallel execution of operations on system-level structures.
PARSEC attempts to avoid stores to shared cache-lines when
accessing data-structures, until they are absolutely necessary
(e.g. to modify a data-structure node). Toward this, PARSEC
includes a form of Scalable Memory Reclamation (SMR) to
provide memory reclamation for parallel systems, a modi-
fied locking API that inter-operates with SMR, and a mecha-
nism for efficient and scalable lookup within data-structures.

We use SMR (not to be mistaken with Safe Memory
Reclamation [23]) as a catch-all name for the family of tech-
niques that provide delayed memory collection and reuse for
parallel systems that lack garbage collection. SMR imple-
mentations include epoch-based memory reclamation [17],
U-RCU [13], and hazard pointers [23]. In expanding on
these techniques, PARSEC eschews globally-scoped locks,
reference counts, and many other traditional techniques. In
doing so, it attempts to provide a foundation for implement-

ing system-level structures that will scale with increasing
hardware capabilities.

Previous SMR techniques avoid reference counts on data-
structure nodes by instead ensuring that data-structure ac-
cesses are surrounded with library calls to denote the start
and end of data-structure accesses. The goal is that access
to the data-structure proceeds in parallel, as opposed to with
mutual exclusion. This makes it difficult to know when a
node is being accessed, thus when its memory can be re-
claimed once freed. To determine if a node is referenced,
SMR implementations ascertain if any parallel thread is ac-
cessing the data-structure when the node is freed. If it is
possible that a reference exists (a thread is accessing the
data-structure), then the reclamation of the node’s memory
must be delayed. This technique is conservative as a parallel
thread that is accessing the data-structure might not be ac-
cessing the specific freed node. However, this conservative
technique enables implementations with no shared cache-
line stores on the read-path. However, data-structure mod-
ifications must be synchronized with these parallel accesses,
and with each other. RCU often serializes modifications to
avoid races, and updates the data-structure atomically by
first copying a node, then using a single atomic operation to
update it in the data-structure (hence the name, Read-Copy-
Update). However, the update path introduces shared cache-
line modifications that inhibit scalability (as shown in Sec-
tion 5).

PARSEC SMR uses local access to global real-time to
scale, even in the presence of modifications, and a special-
ized locking API to synchronize modifications at the granu-
larity of individual nodes. Real-time is used to establish an
ordering between data-structure node deallocation, and each
thread’s access to the data-structure to prevent the reuse of
the memory for a freed node that could still be referenced.
Contributions.
• We introduce PARSEC’s SMR mechanism that aggres-

sively avoids stores to non-core-local memory for scalable
data-structure access and modification.

• We detail the design of the PARSEC abstraction, including
the integration of SMR, memory management, and names-
pace management.

• We provide an evaluation of PARSEC’s SMR implemen-
tation in isolation, and applied to a popular application
(memcached).

• We detail and evaluate the application of PARSEC to the
memory mapping management subsystem of a kernel, and
compare to Linux.
This paper is organized as follows. Section 2 provides a

survey of approaches to parallel data-structure construction.
Section 3 introduces PARSEC and discusses its design, while
Section 4 details PARSEC’s use in a virtual memory mapping
manager. Sections 5, 6, and 7 evaluate PARSEC, discuss
related work, and conclude.

2. Parallel Data-Structures Background
PARSEC consists of two complementary components: first, a
scalable mechanism for tracking the existence of references
into data-structures to determine when memory can be freed
without requiring stores to contended cache-lines; second, a
collection of capabilities that use this facility to ease the im-
plementation of complicated data-structures. These include
scalable flat namespace lookup and management, and inte-
gration with fine-grained locking.

We introduce a simple abstract data-structure to under-
stand achievable scalability properties. The data-structure,
D consists of a set of nodes {n0, . . . , nM}. Operations pro-
vided on the data-structure include:
• observe(ni) which reads a node’s memory;
• modify(ni, . . . , nj) which issues stores to a node’s, or a

series of node’s memory;
• add(ni) which adds ni to D;
• delete(ni) removes it from D, and frees it.
These operations are almost always paired with lookup (e.g.
modify(lookup(p))) where
• ni = lookup(p) where p is a predicate satisfied by a

single node.
Operations executed in parallel are denoted as o0|o1.

Given this, PARSEC aims to enable scalable execution of
all operations except for:
• modify(ni, . . .) | modify(ni, . . .)
If the same node is modified with high frequency by multi-
ple cores, the unavoidable cache-line bouncing will prevent
scalability. In such cases, message passing [4] is likely the
main alternative.

Notably, the following should execute scalably:
• modify(ni, . . .) | modify(nj , . . .)
• observe(ni) | observe(ni) | observe(nj)

Modification to the structure of D via add(ni) and
delete(ni) is intrinsically data-structure specific. PARSEC
attempts to provide the tools to implement these scalably,
and we investigate its application to complex data-structures
in Section 5.

Unlike lookup structures as studied in [12], PARSEC
mainly focuses on data-structures whose structure directly
corresponds to the semantic organization of the represented
data. For example, we apply PARSEC to implement a vir-
tual memory subsystem that uses the recursive address-
space model in [20]. For this structure, D is a set of nodes,
each representing a specific page mapping into an address
space. These mappings are organized into trees, which can
be stored as hierarchical linked lists, where node deletion re-
moves an entire subtree, and individual nodes are looked up
in constant time. Similarly, virtual address tracking in Linux
(via vm area structs) and dentry-based in-memory file-
system organization are all similarly complex structures.
PARSEC’s techniques, especially for scalable memory recla-

mation, are complementary to the structures in [12] that
require SMR.

2.1 Mutual Exclusion and Non-Blocking
Data-Structures

Per-data-structure locks trivially ensure consistency (a se-
mantically valid ordering of operations) among node op-
erations by sequencing access to all nodes in D. How-
ever, this prevents scalable execution even of observe(ni) |
observe(nj); Amdahl’s law puts a hard limit on the achiev-
able speedup. Fine-grained lock hierarchies use separate
locks to protect access to each node, or groups of nodes. This
enables parallel access to different nodes, and attempts to
minimize the hold time of locks while performing lookup.
However, as the number of cores increases, the simple mod-
ification of a lock’s cache-line dwarfs the sequential hold-
time of the lock, thus preventing scalability.

On the other hand, non-blocking data-structures [12]
avoid the use of locks, instead directly relying on atomic
instructions such as fetch-and-add (faa) and compare-and-
swap (cas) for synchronization. These include both lock-
free structures that guarantee progress for some operation,
and wait-free operations that guarantee progress for each
operation. The correctness of such algorithms are defined
by linearizability – a point when the sequencing of par-
allel modifications to memory is guaranteed [18]. Non-
blocking algorithms use SMR to provide scalable lookup
(observe(ni) | observe(ni) | observe(nj)). However,
add and delete usually involve complicated, data-structure
specific logic that considers all parallel interleavings.

PARSEC uses a scalable implementation of SMR to pro-
vide scalable lookup, and a collection of wait-free algo-
rithms to support the parallel processing of complex data-
structures. PARSEC locks integrate with SMR to enable
locks to be taken only for the node(s) to be modified.

2.2 Scalable Memory Reclamation and PARSEC

We posit that SMR is a key to scalable data-structure ac-
cess. The intuition is that scalable performance is only possi-
ble when cache-coherency traffic is minimized, and such co-
herency traffic (especially for observe(ni) | observe(ni) |
observe(nj)) is avoided only by completely eliding stores
to globally visible cache-lines. This implies that cores access
D in parallel without any explicit synchronization. However,
this complicates reference tracking and memory reclama-
tion, which motivates SMR.
PARSEC Interface. The PARSEC interface for accessing a
data-structure, and for memory management follow.
• ps enter(struct ps *) – Declare the start of a section in

which references to nodes in D exist.
• ps exit(struct ps *) – Declare the end of that section.

No references to nodes within D can remain.
• void *ps alloc(struct ps *, size t sz) – Allocate

memory for use within the data-structure.

• ps free(struct ps *, void *node) – Deallocate a node.
SMR implementations fundamentally exist to ascertain if

a freed node that as been disconnected from D is still pos-
sibly accessed by a parallel thread. In addition to the equiv-
alent functions to ps enter and ps exit, SMR implemen-
tations such as RCU and epoch-based memory reclamation
implement a function, synchronize that is based on the
concept of a grace period [13]. It is called at time t1, and en-
ables this thread to block waiting for a grace period between
times [t1, t2] where t2 is a time when no references exist to
nodes removed from D before t1. A node ni made unreach-
able within D, and freed at t0 (< t1) can be reclaimed and
reallocated after t2.

PARSEC does not expose this synchronization interface,
instead using a modified version directly within its memory
deallocation logic. Additionally, PARSEC finds grace peri-
ods for the time in the past, when a specific node was freed.
• int ps quiesce(struct ps *, tsc t t) – Return true if

all parallel threads have quiesced (i.e. a grace period has
elapsed) at a point in time in the past, t. That is, return true
if and only if

∀c∈cores tcenter > t ∨ tcenter < tcexit
where tcenter and tcexit are the times (for example, mea-
sured using the CPU time-stamp counters) for core c’s en-
try and exit from the parallel section. The time t corre-
sponds to the when ps free was called, and is compared
against the ps enter and ps exit times of each core. It
determines if each thread has ps exited all parallel sec-
tions that could have been active at t.
In contrast to the traditional synchronize, freed mem-

ory is queued so this t is in the past, thus increasing the
chance of quiescence. Additionally, ps quiesce is wait-free
– it does not block spinning on the state of other threads.
This last fact means that memory is allocated if no memory
can be reclaimed (i.e. a grace period hasn’t elapsed) to avoid
the significant performance and latency impact that blocking
could incur.

In this paper, we use the SMR read path to denote threads
that use only ps enter() and ps exit(), and the up-
date path to include the freeing of memory and the use of
synchronize/ps quiesce after an update to D.
PARSEC locks. With traditional locking, freeing a node
(nf) requires taking a lock containing nodes with refer-
ences to nf , removing the references, unlocking, and freeing
nf ’s memory. Parallel access to the data-structure are syn-
chronized with the free via the lock. With PARSEC SMR-
mediated access to data-structures, lookups in the data-
structure are not synchronized with parallel frees, thus the
locking API must be subtly different than a traditional inter-
face (i.e. POSIX pthreads). Specifically, the references to a
node to be freed are not protected by locks, thus to handle
the case where a thread tries to acquire a lock on an already
freed object, PARSEC locks are specialized to check if the
node has already been freed. Thus, the PARSEC lock inter-

void observe (D , i d e n t i f i e r) {
ps_enter (D−>ps) ;
n = lookup (D , i d e n t i f i e r) ;
/ / p r o c e s s on t h e node
ps_exit (D−>ps) ;

}

void modify (D , i d e n t i f i e r) {
ps_enter (D−>ps) ;
node = lookup (D , i d e n t i f i e r) ;
i f (ps_lock_take (node , node−>l o c k)) {

/ / modify t h e node
ps_lock_release (node , node−>l o c k) ;

}
ps_exit (D−>ps) ;

}

void delete (D , i d e n t i f i e r) {
ps_enter (D−>ps) ;
node = lookup (D , i d e n t i f i e r) ;
i f (ps_lock_take (node , node−>l o c k)) {

/ / c l e a n u p & u p d a t e D
ps_lock_release_free (node , node−>l o c k) ;

}
ps_exit (D−>ps) ;

}

Figure 1. Example PARSEC pseudocode for observe, modify, and
delete.
face includes slight variations on the typical take (lock) and
release (unlock) operations to support interoperability with
SMR.
• int ps lock take(void *node, struct ps lock *) – At-

tempt to take a lock for a node, node. Return false if the
node has been freed, thus cannot be locked.

• void ps lock release(void *, struct ps lock *) – Re-
lease a taken lock for a node.

• void ps lock release free(void *, struct ps lock *)
– Release a node’s lock, and simultaneously free the node.
ps lock take will fail if the node being locked has been

previously freed due to a parallel deletion. Such a case could
result from a race between (a) chasing the pointer to the
node and accessing the node, and (b) freeing and remov-
ing reachability to the node. ps lock release free atom-
ically marks the node as freed, and releases the lock. This
ensures that any other thread contending the lock will fail to
achieve access upon seeing it freed. The integration of lock-
ing with SMR is the key to this interface. The node is passed
to each function as the memory header of the node includes
the status of the node (i.e. free or allocated).

Figure 1 shows an implementation of three operations of
D implemented using PARSEC. Each uses lookup to find
the node of interest and either processes on it, modifies it,
or frees it. Though modification and deletion use locks, they
are used to provide mutual exclusion only on those nodes
that require modification. In this example, these locks are not
used to serialize access to the nodes for read-only (observe)
access, nor for lookups. As such, care must be taken to pre-
serve intra-data-structure links (i.e. next pointers in linked
lists) so that lookups always find valid nodes, just as with
RCU-enabled data-structures. We have found that this con-
straint is not generally difficult for system data-structures.
File system hierarchies, virtual memory nodes, and hash-

tables don’t require complex changes in node linkages. PAR-
SEC includes lookup facilities to map between a scalar
identifier, and a node in the data-structure to ease this bur-
den. To avoid locks in observe, modify must ensure that
changes are made atomically (which RCU handles with copy
and update). Where this atomic modification of nodes is dif-
ficult, locks can also be used in observe. Figure 1 motivates
the specialized PARSEC lock API. A thread can attempt to
modify a node while another thread has the node’s lock and
is in delete. Though modify followed a valid pointer to the
node, when the lock is released, the node is no longer active
– it has been freed. Thus, modify is notified of this case via
ps lock take’s return value. Section 3.6 provides a com-
plete treatment of the consistency properties of PARSEC.

3. PARSEC Design
PARSEC Goals. PARSEC focuses on the following goals:
G1 Scalable-by-default parallel access. For cases where

data-structure consistency does not require explicit syn-
chronization (for example, observe(ni) | observe(nj)),
PARSEC must avoid these expensive operations.

G2 Support for general workloads. Many parallelization
techniques make trade-offs in favor of read-heavy work-
loads. Though read-heavy optimizations are essential
for efficient lookup, updating the structure is also quite
common in systems code.

G3 Integration with traditional consistency methods. When
synchronization on specific nodes within the data-structure
is required, PARSEC must integrate with conventional
synchronization techniques, which generally means locks.
In this case, PARSEC should still provide scalable lookup
of nodes within the structure before utilizing the tradi-
tional techniques.

G4 Predictable latency. Common operations in PARSEC
should be wait-free, thus avoiding the introduction of
low-probability, high-latency spikes. This is essential
for real-time systems, but is additionally increasingly
important in data-centers to avoid the “heavy tail” [19].

3.1 Scalability of Existing SMR Techniques
To understand the PARSEC implementation, we briefly dis-
cuss existing SMR techniques. Epoch-based scalable mem-
ory reclamation [17] and U-RCU [13]1 take core-local snap-
shots of a global value (epoch counter and quiescence pe-
riod, respectively) in their equivalent of ps enter. These
snapshots must be committed to memory before accessing
the data-structures to guarantee that other cores properly ob-
serve the subsequent access to the data-structures2. This path

1 We use the default urcu-mb variant that can be used by general, pre-
emptible applications.
2 A memory barrier is used to avoid store-to-load re-orderings. This paper
assumes an architecture such as x86 that supports the Total Store Order
(TSO) memory model. Extrapolation of the algorithms to looser models is
relatively straight-forward.

is scalable in the read-only case as threads read only global
values in cache-lines in the shared state, and store only to lo-
cal cache-lines. Consequently, observe(ni) | observe(ni)
| observe(nj) should scale.

Read-side scalability. When a thread synchronizes (i.e.
when D is updated, and nodes are freed), it first updates
the global value. This has the effect of invalidating all other
core’s cached data for that cache-line, and causing the cor-
responding coherency traffic when they next load the global
variable. This impedes the scalability of the read path, espe-
cially for high update rates. For example, with observe(ni)
| delete(nj), observe latency increases significantly (Sec-
tion 5.1).

Update-side scalability. synchronize iterates through
all other core’s core-local structures, and it must block (or
spin) until some predicate is satisfied by their local variables.
Though this predicate is different for epoch-based SMR and
U-RCU – progression through an epoch, or a quiescence
period, respectively – the impact is the same: loads are issued
to core-local cache-lines that are frequently modified by the
other cores. This causes significant cache-coherency traffic,
and impedes scalable performance of the update path. In
practice, this means that observe(ni) | delete(nj) and
delete(ni) | delete(nj) are not scalable. SMR techniques
often focus on read-mostly workloads for this reason.
Factors that impact SMR latency. Minimizing tail-end la-
tency is important in real-time and cloud systems [19, 27].
The goal is to both provide wait-free behavior for each op-
eration in the SMR interface, and to minimize the coherency
traffic required to make progress so that the latency of each
operation scales. We assume that the minimum latency for a
synchronize is lower-bounded by the latency a of a read-
side section. Existing implementations either block waiting
for all threads to elapse a grace-period, or don’t guarantee
progress by returning quiescence failure. In the former case,
update latency is compounded by the coherency-traffic la-
tency.

3.2 PARSEC Scalable Memory Reclamation
PARSEC introduces a SMR technique that alleviates cache-
coherency traffic hot-spots on the read and update paths dis-
cussed in Section 2.2 using a number of techniques. Key
to these techniques is the use of a simple mechanism pro-
vided by recent processors: consistent, or invariant Time-
Stamp Counters (TSC). The time-stamp counters are mono-
tonically increasing (modula wrap-around) cycle counts read
with specific instructions (i.e. rdtsc on x86). Invariant TSC
guarantees a constant cycle rate, regardless of each core’s
operating frequency. Invariant TSCs are available on recent
(all Nehalem and later) Intel x86 processors (as indicated by
the CPUID instruction, and described in the Intel 64 and IA-
32 Architecture Software Developers Manual, Volume 3B:
System Programmers Guide, 17.14.1), on which a constant
cycle rate is guaranteed regardless of ACPI P-, C-. and T-

states. The key to PARSEC SMR is that the thread-local
time-stamp counter provides a global ordering of events that
otherwise would requires synchronization through shared
cache lines. The events we are primarily concerned with are
(1) when a thread is in a parallel section, and (2) when a
node is made unreachable within D. A total ordering be-
tween these events provides all the information required to
know if reclamation of the node is possible. The synchro-
nization API is slightly modified to provide the more general
notion of quiescence at a specific TSC in the past. In PAR-
SEC, the TSC for which we must determine that no exist-
ing references can exist corresponds to when a specific node
was freed. This enables a number of optimizations within
the implementation of ps quiesce that cache other core’s
quiescence values to avoid loads to remote memory.
Using rdtsc for globally ordering events on x86. PARSEC
uses TSCs to provide local access to a global ordering of
events. On all Intel x86 processors running Linux that sup-
port an invariant TSC that we tested on, the TSCs on differ-
ent cores are offset by a small, but constant amount (on the
order of a couple thousand cycles). The OS can synchronize
TSCs using the IA32 TSC ADJUST Model Specific Register
(MSR). If necessary, the PARSEC library could account for
any remaining offset between cores with a constant by popu-
lating an offset table at initialization. Given that the absolute
differences on our systems are small, we apply a simple off-
set for comparisons between core’s TSCs.
Compensating for micro-architectural effects. As rdtsc
is not a serializing instruction, and the rdtscp serializing
variant can have significantly more overhead, PARSEC must
compensate for the possibility that out-of-order execution
will result in an inaccurate TSC. When entering into a paral-
lel section, the TSC is guaranteed to represent a time before
data-structure access due to a memory barrier that ensures
stores (including the TSC being written) commit. When a
node is freed, the TSC is again taken with the possibility of
pipeline reordering. In this case, reordering the rdtsc later
in the instruction stream is not a correctness issue as it can-
not result in reusing the node earlier. Reordering the rdtsc
earlier in the execution stream can result in a TSC that over-
laps with actual node access. This is avoided by using either
memory barriers, or by adding an additional offset to TSC
comparisons at least as long as the maximum reordering la-
tency. PARSEC, motivated by simplicity, uses the former.
Simplified PARSEC SMR implementation. Figure 2 de-
picts a simplified version of quiescence detection in PAR-
SEC. thdid() returns the current thread id, and
mem barrier() is a memory barrier to flush the store buffer.

Entrance into, and exit from the library are marked by
simply recording the corresponding cycle counts into that
thread’s per-thread structure3. Quiescence detection includes
simply iterating through all other core’s structures and wait-

3 We use per-thread and per-core interchangeably. Each system will chose
their most appropriate partitioning.

s t r u c t p a r s e c {
s t r u c t t h d d a t a {

t s c t e n t e r , e x i t ;
s t r u c t q u i e s c e q u e u e q u i e s c e q ;

} t h d i n f o [NUMTHDS] ;
} ;

void ps_enter (s t r u c t ps ∗ps) {
s t r u c t t h d d a t a ∗ t = ps−>t h d i n f o [thdid ()] ;
t−>e n t e r = rdtsc () ;
mem_barrier () ;

}

void ps_exit (s t r u c t ps ∗ps) {
s t r u c t t h d d a t a ∗ t = ps−>t h d i n f o [thdid ()] ;
t−>e x i t = rdtsc () ;

}

/ / A s i m p l e p s q u i e s c e (w i t h o u t any o p t i m i z a t i o n s)
i n t ps_quiesce (s t r u c t ps ∗ps , t s c t t s c) {

f o r (i n t i = 0 ; i < NUMTHDS ; i ++) {
s t r u c t t h d d a t a ∗ o t h e r = ps−>t h d i n f o [i] ;
i f (i == thdid ()) c o n t i nu e ;
i f (o t h e r−>e x i t > o t h e r−>e n t e r) c o n t i nu e ;
i f (o t h e r−>e n t e r > t s c) c o n t i nu e ;
re turn 0 ; / / n o t q u i e s c e d

}
re turn 1 ;

}

void p s f r e e (s t r u c t p a r s e c ∗ps , void ∗node) {
s t r u c t t h d d a t a ∗ t = ps−>t h d i n f o [thdid ()] ;
mem_header (node)−> t s c = rdtsc () ;
mem_barrier () ;
enqueue(& t−>q u i e s c e q , node) ;
whi le (keep_reclaiming ()) {

node = dequeue_peek(& t−>q u i e s c e q) ;
i f (! ps_quiesce (ps , mem_header (node)−> t s c))

break ;
reclaim (dequeue(& t−>q u i e s c e q)) ;

}
}

Figure 2. A simplified implementation of PARSEC.

ing for them to either (1) exit their read-side section (i.e.
when their exit timestamp is great than enter), or (2) enter
the library after the time at which we’re waiting for quies-
cence. This implementation demonstrates a key benefit to us-
ing TSCs: the read-side accesses only thread-local data, and
the machine’s TSC. Unlike other SMR techniques, there is
no global value that is read on the read-side, that is modified
when quiescing. In this simplified version, however, update
does not scale. Each core that calls ps quiesce generates
cache-coherency proportional to the number of cores in the
system.
ps free in Figure 2 adds the memory to be freed into

a quiescence queue, to be reclaimed (and re-used) at a later
point. It depicts how the freeing of a node must interact with
the PARSEC SMR. The memory is freed by placing it into
a quiescence queue (quiesce q) that is naturally ordered
by TSC, then the system attempts to reclaim memory that
has quiesced. Note that dequeue peek does not remove the
node from the queue, just retrieves it. Each invocation of
ps free there is a limit (encoded in keep reclaiming)
on how many nodes are reclaimed to bound the cost of
ps free.

Though omitted here for brevity, a simple proof by con-
tradiction ensures that two threads both attempting to qui-
esce cannot deadlock.

3.3 PARSEC SMR Implementation Optimizations
This implementation is simple, but has a number of inef-
ficiencies that we remedy in the PARSEC implementation.
These optimizations include:

1. Avoid rdtsc in PARSEC exit. The overhead of the rdtsc
instruction is around 20 cycles on our processor. Though
this cost as been declining over the years (on Pentium 4
processors, it was over 80 cycles), we optimize for using
only a single rdtsc on entrance. Upon exit, we simply
set the exit time to enter + 1. The key observation that
enables this is that quiescence only compares enter and
exit, thus to signal that a thread has exited PARSEC exit
need only be greater than enter.

2. Leverage quiescence already performed by other threads.
A particularly impactful optimization is that each core
stores its last computed quiescence value in the same
cache-line as enter/exit. This is directly used in future
calls to possibly completely avoid accessing other thread’s
cache-lines. Further, when walking through other thread’s
structures, their computed quiescience TSC is used if it
is sufficient. This optimization means that ps quiesce
likely will not iterate through all other thread’s structures,
thus avoiding significant coherency overhead.

3. Avoid redundant calculations of quiescence. Iterating
through each other thread’s local structures causes cache-
coherency traffic in the likely case that the remote cache-
line is in the modified state. Additionally, they will be
bounced back to the remote core when modified next. To
optimize, we locally cache data for each of the remote
threads. This data includes their last-observed enter and
exit values, and the time when this thread cached those
values (stored as cached). When determining if a thread
has quiesced at a given time, t, the local values of enter
and exit can be used if cached ≥ t. The trade-off this
approach makes is in memory usage. Each thread caches
data for each other thread, thus requiring a total of O(N2)
memory where N is the number of threads. For OS-level
code, we believe this overhead is acceptable as such track-
ing can be performed per-core rather than per-thread, thus
limiting the amount of tracked data.

4. Spread coherency traffic across cores. Given the previ-
ous optimizations that avoid accessing all thread’s struc-
tures in ps quiesce, thread 0’s structure is disproportion-
ately accessed by other cores. A simple optimization is ap-
plied wherein each thread starts accessing other thread’s
structures at a fixed offset based on its thread id. This alle-
viates the hot-spot of the first thread structure’s cache-line.
In this way, the PARSEC runtime trades memory con-

sumption for wait-free allocation assuming that there is no
resource starvation. In Section 5.3, we see the case where

11

20

0

10
11 12

31 8

18 19

4

9

13

18

22 27

0 0

0

0

0

0

11

20

0

20
11 12

31 8

18 19

13

18

22

27

1112

31

0

8

0

11

20

0

31
11 12

31 8

18 19

22

27
1112

31 8

1918

q
s e

Per-thread cache
q = computed quiescence
s = start(enter), e = end(exit)

s e

s e

Per-thread cache
of other thread's
start and end

Accessed remote
cache line

tsc tsc
quiescence
free-list

Figure 3. Example of a thread (on the left in each frame) attempting to reclaim various nodes on the quiescence free list. The start and
end values are the PARSEC enter and exit TSCs. The left frame shows the second optimization were the last computed quiescence time
(10) is used to reclaim the first two nodes in the free-list without accessing other thread’s cache-lines. The middle frame shows the thread
iterating through the first two other threads, caching their start and end values for future use (for the third optimization). The second thread
has computed a quiescence time (20) that is sufficient to free the next two items, thus avoiding the coherency traffic for touching the third
thread’s cache (via the second optimization). The right frame shows the use of the local cache of the other thread’s start and end values (third
optimization). We must access the first thread’s values since our cached values were saved before the time we’re attempting to quiesce at
(using the cached value). We can avoid accessing the second thread as the cached start is after the time we’re attempting to quiesce at (22),
even though it could currently be in its parallel section (end < start). When accessing the third thread, we notice that it has exited its parallel
section (end > start), thus we can set our quiescence to the most recent possible TSC (31), and reclaim the remaining two nodes.

such starvation does happen. Wait-free allocation/dealloca-
tion is an important guarantee (G4) as PARSEC seeks to be
predictable, thus avoiding latency spikes that can result in
outlier response times that are prohibitive not only in em-
bedded systems, but also in data-centers [19]. Figure 3 gives
an example of some of these optimizations.
Nested parallel sections and granularity. Different paral-
lel sections (i.e. using different struct parsec) maintain
separate TSCs, and separately manage free memory. Thus,
parallel sections can be nested. An alternative implementa-
tion of PARSEC could also enable nested instances of a sin-
gle parallel section by maintaining a count of the number
of times the parallel section has been nested, and maintain-
ing the PARSEC TSC meta-data for the outer-most instance.
In general, we believe that parallel sections should be rela-
tively coarse (one per-system data-structure, or per-system).
Not only does this save memory on PARSEC structures, but
also simplifies system implementation. The main downside
of this is that if some system paths take significantly longer
than others, they might increase parallel section access la-
tency.

3.4 PARSEC Memory Management
PARSEC includes a slab allocator [5] for allocating and
freeing memory with a typical interface. A slab allocator
is used as opposed to a replacement for the more general
malloc/free interface as system data-structures commonly
use well-defined nodes with consistent sizes. Each alloca-
tion includes a header consisting of (1) a TSC field that,
when non-zero, indicates that the memory has been freed,

(2) a pointer used to track the memory in the quiescence
list, and (3) a pointer to the containing slab. The TSC is
used in PARSEC’s SMR facilities. PARSEC’s slab allocator
uses many of the accepted techniques for scalable memory
management [25] including thread-local allocation lists, and
optimized treatment of “remote frees”.

Figure 2 includes a simplified version of the code for
ps free. A quiescence queue holds all memory that has
been ps freed, but has not been reclaimed for reuse. All
such memory is tagged with the time it was freed which
is used to assess quiescence. The quiescence queue is nat-
urally sorted by quiescence times. The longer this queue is,
the higher the chance that more memory will have quiesced,
having accessed the fewest remote cache-lines. This leads
to a memory versus scalability trade-off. We haven’t thor-
oughly evaluated this trade-off, and we leave that as future
work.

3.5 PARSEC Locking and Consistency
Node modifications must synchronize with respect to each
other, and they must also be cognizant of concurrent lookups.
This requires that care is taken when modifying pointers that
connect nodes, as lookups proceed in parallel and follow
those pointers. A number of techniques to consider this syn-
chronization already exist. These include: (1) Direct atomic
updates to single word fields, where such a simple solution is
applicable. (2) Data-structure pointers can be updated using
Read-Copy-Update which copies a node, modifies the copy,
and uses a single atomic instruction to make an updated copy
of a node visible. Many RCU data-structures require mutual
exclusion between writers, thus prohibiting concurrent mod-

ification. For specific data-structures [1], this limitations has
been lifted. Read-Log-Update (RLU) [21] is a recent tech-
nique to atomically make multiple data-structure alterations
visible using fine-grained locks, and a means to coordinate
the redirection of readers. Both approaches benefit from the
scalable TSC-based SMR in PARSEC. In this work, we con-
sider another possibility: locks at the finest possible gran-
ularity – one for each node. This is a practical solution for
complicated data-structures and is the most accessible and
common to programmers.

Section 2.2 describes the locking API for PARSEC that in-
tegrates locks with SMR. As previously described, the point-
ers that bind nodes together must be valid at all points (even
after a node is freed) so that lookups don’t fail. RCU data-
structures share this constraint, thus are directly applicable.
Modifications to a node must be atomically visible either by
using direct atomic instructions, copying and updating as in
RCU, or by using PARSEC locks in observe.

The different operations on the data-structure D synchro-
nize with each other using different means:
• lookup(ni) | modify(ni) – lookup issues only data-

structure loads, while modify requires lock acquisition.
Synchronization between these operations is implicit:
pointers and data required by the lookup procedure must
be treated as immutable, or atomically update-able (i.e. us-
ing atomic instructions with RCU). Access to more com-
plex data requires a lock. However, this lock is at the finest-
possible granularity, causing cache coherency traffic only
to threads accessing the same node.

• modify(ni) | delete(ni) – The locking API in Sec-
tion 2.2 enables explicit synchronization between lock ac-
quisition and memory free. Lock acquisition can fail if a
contending thread frees the node, and a thread that owns a
lock frees the node by both releasing the lock, and freeing
the memory. The node is marked as free before the lock
is released, and a contenting thread takes the lock, then
checks if the node is freed.

• lookup(ni) | delete(ni) – PARSEC’s SMR ensures
that a node’s memory is not reclaimed until all concur-
rent lookups have completed. This maintains a consis-
tent state within the node, compensating for races between
deletion, when a node is removed from the structure (i.e.
made unreachable), and concurrent reads.

Both modify and delete require a thread to own the lock
for an object, so they are trivially consistent with other like
operations.

The modifications made while a node is locked, and the
locking requirements for different modifications, differ for
each structure. For example, a tree structure might require
that a parent is locked to perform modifications to its imme-
diate children.

3.6 PARSEC Namespace Management
PARSEC includes facilities for namespace management.
Namespace management is included in PARSEC not by ne-
cessity (as with memory management), rather because they
are commonly used for lookup in system data-structures,
and are efficiently implemented using PARSEC SMR. A
PARSEC namespace manages a flat scalar namespace of
identifiers (ids) and is used to associate these ids with nodes
in the data-structure. System-level, request-driven code must
often translate between an opaque identifier (i.e. a safe to-
ken exposed to user-level), and a node within a kernel data-
structure. Allocation and management of file-descriptors
has been shown [6, 10] to be required for system scala-
bility. The Virtual Memory (VM) subsystem provides an-
other example . When page-faults occur within Linux, the
vm area struct corresponding to the address at which the
fault occurred is located via a lookup in a red-black tree pro-
tected via a read-write lock. The synchronization around this
lookup structure inhibits scalability [8, 9].

PARSEC namespaces address the scalability problems of
traditional implementations by providing lookup that does
not require stores to non-local memory, and scalable alloca-
tion/free of identifiers using the same PARSEC techniques
as memory allocation. The namespace facilities are imple-
mented using lock-less radix tries to put tight bounds on
lookup latency (proportional to the height of the tree). Leaf
entries contain identifier structures that are tracked as mem-
ory (i.e. they share the same header as slab memory objects).
When an identifier is deallocated, it is only reused after qui-
escence has been achieved for the time when it was deal-
located. This enables references within the data-structure to
the ids of other nodes. Separate allocation lists track different
sizes of id extents within a namespace, thus enabling the al-
location of multiple contiguous ids. This is useful, for exam-
ple, when multiple contiguous pages are requested by mmap.

Some applications might not utilize the namespace fa-
cilities of PARSEC (for example, see Section 5.2). How-
ever, they provide a reasonably common functionality, with
a focus on scalability by using the very support that PAR-
SEC provides for reclaiming deallocated namespace iden-
tifiers. Additionally, they emphasize a focus of PARSEC:
synchronization-free lookup. Thus we believe they are an in-
tegral aspect of the PARSEC abstraction.

3.7 Custom Grace Periods in PARSEC

Grace periods around memory reclamation are based on
the TSCs for all thread’s entry into and exit from parallel
sections. PARSEC provides the ability to provide a function
that provides a customizable semantic for grace periods.
When the allocator ascertains that a normal grace-period has
passed, and is going to reuse a previously allocated item, this
function is queried to determine if it can currently be reused.
This is used in conjunction with the grace periods required

by the SPECK [27] system to manage kernel resources, as
detailed in Sections 4 and 5.3.

4. PARSEC Example: Virtual Memory
Mapping Management

We investigate the application of PARSEC to the manage-
ment of process virtual address spaces within a the virtual
memory management code of a µ-kernel. This application
will be evaluated in Section 5, but we introduce its structure
here. We focus on a traditional µ-kernel interface for the re-
cursive model of address spaces [20]. The general seman-
tics of this structure have been adopted in capability man-
agement systems as well [14], showing its broad relevance.
The API enables the granting, aliasing, and (recursive) re-
vocation of memory pages across address spaces. The API
follows:
• vaddr t grant(size t npages) – Request the allocation

of npages new pages into the requesting address space.
Return the virtual address (vaddr t) of the base of the
mapping.

• void alias(pid t from, vaddr t mapfrom, pid t to,
vaddr t mapto, size t npages) – Create shared mem-
ory (aliasing npages physical frames) from the calling
address spaces into another specified address space.

• void revoke(pid t p, vaddr t mapat, size t npages)
– Remove all mappings that have been aliased from the
given mapat npages virtual addresses in the processes p,
including any recursive mappings.

This API is generally used in a µ-kernel for servers provid-
ing some service to clients to transfer mapped memory to
the clients, or vice-versa. When a process terminates, or re-
claims memory, it revokes granted and aliased pages.

The revoke call warrants an intelligent, tree-based back-
ing data-structure consisting of mapping structures. This
structure is often called the “mapping data-base”. Each alias
creates a parent/child relationship, and revoking a map-
ping must unmap the entire subtree (all children, grand-
children, etc. . .). Each physical frame is represented by a
frame structure which is the root of each of these mapping
trees. A similar structure is used to track memory in L4 µ-
kernels [26], and Linux tracks similar relationships using its
vm area structs.

To maintain consistency for parallel accesses to this data-
structure, the most naive implementation uses a lock for the
entire structure. A lock per-process for general operations
is insufficient as mappings between components refer to
each other. A lock per-frame is reasonable, but a mapping
between a process and virtual address to the actual frame
requires a data-structure with consistency guarantees. This is
required to implement O(1) alias and efficient revoke. As
with many tree structures, fine-grained locking can be used.
However, this often requires either root-first walks through
each frame’s mapping tree to adhere to parent-first lock-
ordering protocols, or per-mapping node reference counting

to enable direct pointers to mapping nodes, and per-virtual
address space locks.
Consistency in the mapping-database. Though the tree
structure can be walked directly, PARSEC namespaces are
used to enable direct lock- and reference counting-free
lookups of mapping nodes. At this point, traditional con-
currency mechanisms such as locks, or atomic operations
on simple pointers can be used. If traversals of the map-
ping tree can proceed in parallel with mapping update (e.g.
modification of the list of child alias mappings), then care
must be taken to make modifications to the data-structure
such that readers will not see the structure in an inconsistent
state. This is directly analogous to how RCU-based lists are
managed [13], for example. In our case, we err on the side
of ease of implementation, and rely on PARSEC namespace
lookups to find the target mapping node, and only traverse
the tree structure once we’ve taken a lock for the node. PAR-
SEC namespaces are used to allocate/deallocate, and lookup
virtual addresses (one namespace per-process), and physical
frames.

The use of mapping locks is similar to traditional fine-
grained locking structures except that the lock is taken only
on the node where it is required. Importantly, read-side par-
allel sections enable wait-free, scalable and efficient lookup
through the multiple namespaces to find the proper mapping
node, and locks are only used at that finest-granularity. Par-
allel modifications impacting different mapping structures
will scale (i.e. modify(ni) | modify(nj)). Given that proper
memory management discourages parallel munmap or mmap
to the same virtual address (as one of the parallel requests
must fail), this scalable access is the common-case .

5. Experimental Evaluation
The goals of our evaluation of PARSEC include:
• to micro-benchmark and understand the performance and

scalability properties of the PARSEC SMR techniques, and
compare them existing mechanisms,

• assess the scalability of PARSEC’s memory and SMR fa-
cilities when integrated into an application; and

• to evaluate the full complement of PARSEC’s capabilities
including the management of namespaces and different
quiescence periods in a system-level service.

5.1 Evaluation of PARSEC Quiescence and Reader
Overhead

Here we conduct a set of micro-benchmarks to evaluate
the overheads of PARSEC quiescence and “read-side” sec-
tions. We compare against general-purpose User-space RCU
(henceforth referred to as U-RCU), epoch-based SMR im-
plementation, read-write locks (specifically the brlock vari-
ant that optimizes for core-local read locks), and MCS locks
as a baseline for scalable locking. We utilize the epoch, br-
lock, and MCS locks that are implemented in the Concur-
rency Kit [7]. The goals of this evaluation are to (1) deter-

mine the overhead and scalability of these PARSEC opera-
tions, and (2) to compare them to comparable operations of
existing approaches. The U-RCU implementation is general
in that it can be used in preemptible, user-level code, and
only relies on the user to harness the previously introduced,
simple API. This implementation is described in Section 2.
We also compared against the version of U-RCU that uses
cross-core signals for quiescence, but found that the update-
path results very quickly degenerated to 10s of ms latencies,
so we don’t include those results here. Both the U-RCU and
epoch SMR implementations generate cache-coherency traf-
fic on both the read and the update paths when there are any
updates.

 0

 200

 400

 600

 800

 1000

 1200

1 10 20 30 40

 5

 10

 15

 20

 25

 30

M
ill

io
n
 O

p
e
ra

ti
o
n
s
 P

e
r

S
e
c
o
n
d

S
p
e
e
d
u
p

of Cores

Read-only Workload: Read Throughput

ParSec

U-RCU

Epoch

BRlock

Figure 4. PARSEC µ-benchmark: Read-only Workload
Benchmark configuration. To evaluate the performance of
U-RCU and PARSEC, we conduct experiments with no data
access inside the read-side section, to measure only the pure
overheads from each technique. Two types of operations are
considered:

1. read operations, which evaluates the overhead of the read-
side logic which includes ps enter and ps exit for PAR-
SEC, rcu read lock and rcu read unlock for U-RCU,
and comparable functions for epoch; and

2. update operations, which generally involve triggering the
synchronize interfaces for U-RCU and epoch, and in-
volves the freeing and allocation of a node (a cache-line in
size) in PARSEC.

These update operations emulate the synchronization needed
by a data-structure modification, e.g. delete a node from a
linked-list and then insert a new one, or adding a node to a
data-structure. The allocation operation in PARSEC detects
quiescence; but different from U-RCU, the quiescence in
PARSEC is relative to the time point in the past for the mem-
ory at the head of the quiescence queue. We also include
brlock and MCS locks in the evaluation as a point of con-
text.

Since an update operation involves quiescence state de-
tection, which often comes with cache-coherent traffic, it
impacts not only update performance, but also read perfor-
mance. To evaluate the overhead of read / update under dif-
ferent workloads, we generate request traces with different
read / update ratios. For each trace with a specific aver-
age update ratio, 10 million requests are generated follow-

ing a uniform distribution. To avoid expensive random num-
ber generation function calls within the evaluation loop, we
pre-generate the trace of which operation (read vs. update)
should be conducted, and each thread iterates through a sep-
arate partition within that trace. Thus more memory traffic
is generated than for the SMR operations in isolation. We
do not believe this significantly impacts the results as most
overhead results from coherency traffic.
Evaluation platform. All experiments in the paper are con-
ducted on a system consisting of four sockets of Intel Xeon
E7-4850, each one has 10 cores, clocked at 2.0 GHz. Hyper-
threading is disabled, leading to 40 cores in total. Benchmark
is run on different core counts (namely 1, 10, 20, 30 and 40)
to measure scalability. The minimal number of sockets is al-
ways used.
Benchmark Results. Figure 4 shows the read throughput of
both PARSEC and U-RCU with a read-only workload. The
“Speedup” is relative to the cost of PARSEC on a single core,
thus should only be directly related to the PARSEC lines.
With no updates, both U-RCU and PARSEC achieve near-
linear scalability as no shared cached-lines are modified.
The timestamp based quiescence-state tracking of PARSEC
has a straightforward read operation, which contributes to
lower overhead. All operations take under 100 cycles, so this
overhead would likely be dwarfed by data-structure latencies
in a real system. This experiment mainly confirms that the
overhead for using rdtsc in PARSEC does not preclude its
competitiveness, even in read-only workloads.

Figure 5 includes the read / update throughput for three
different update ratios: 10%, 50%, and 90% update requests
respectively. All the graphs reporting the update through-
put use a log-scale due to the wide gap between different
system’s throughput. With 10% updates, PARSEC maintains
roughly the same read performance as the read-only case,
because the update operation in PARSEC rarely loads the
cache-lines that are modified by readers (in their core-local
structures) because of the optimizations described in 3.4.
This is to say that the update operation likely doesn’t traverse
all other core’s structures, and when it finds a quiescence
TSC, it can apply it to significant portions of its already-
freed memory. With 50% and 90% updates, the read-path
throughput does decrease (from around 1150 million re-
quests/second down to 950) as it becomes more common for
the reader to write the TSC into a cache-line in the shared
state. Due to the quiescience optimizations, the update oper-
ation in PARSEC is relatively efficient and scalable, even up
to 90% updates.

On the other hand, the read performance of the other
SMR techniques is negatively impacted because the update
operation frequently modifies shared cache-lines, and moves
into a shared-state, cache lines that are soon to be stored to.
The throughput of the update operations of the other SMR
techniques is also significantly impacted by increased par-
allelism. This behavior quickly degenerates into each core

 0

 200

 400

 600

 800

 1000

 1200

1 10 20 30 40

 5

 10

 15

 20

 25

 30

M
ill

io
n
 O

p
e
ra

ti
o
n
s
 P

e
r

S
e
c
o
n
d

S
p
e
e
d
u
p

of Cores

10% Update Workload: Read Throughput

 0

 200

 400

 600

 800

 1000

 1200

1 10 20 30 40

 5

 10

 15

 20

 25

 30

M
ill

io
n
 O

p
e
ra

ti
o
n
s
 P

e
r

S
e
c
o
n
d

S
p
e
e
d
u
p

of Cores

50% Update Workload: Read Throughput

 0

 200

 400

 600

 800

 1000

 1200

1 10 20 30 40

 5

 10

 15

 20

 25

 30

 35

M
ill

io
n
 O

p
e
ra

ti
o
n
s
 P

e
r

S
e
c
o
n
d

S
p
e
e
d
u
p

of Cores

90% Update Workload: Read Throughput

ParSec

U-RCU

Epoch

BRlock

MCS

 0.25

 1

 4

 16

 64

 256

 1024

1 10 20 30 40
 0.01

 0.1

 1

 10

M
ill

io
n
 O

p
e
ra

ti
o
n
s
 P

e
r

S
e
c
o
n
d

S
p
e
e
d
u
p

of Cores

10% Update Workload: Update Throughput

 0.25

 1

 4

 16

 64

 256

 1024

1 10 20 30 40

 0.01

 0.1

 1

 10

M
ill

io
n
 O

p
e
ra

ti
o
n
s
 P

e
r

S
e
c
o
n
d

S
p
e
e
d
u
p

of Cores

50% Update Workload: Update Throughput

 0.25

 1

 4

 16

 64

 256

 1024

1 10 20 30 40

 0.01

 0.1

 1

 10

M
ill

io
n
 O

p
e
ra

ti
o
n
s
 P

e
r

S
e
c
o
n
d

S
p
e
e
d
u
p

of Cores

90% Update Workload: Update Throughput

Figure 5. PARSEC µ-benchmark: Read / Update Throughput

 1

 10

 100

 1000

 10000

1 10 20 30 40

C
o

s
t

(C
y
c
le

s
)

of Cores

10% Update Workload: Read Cost

1 10 20 30 40
of Cores

50% Update Workload: Read Cost

 0.01

 0.1

 1

 10

 100

1 10 20 30 40

C
o

s
t

(T
h

o
u

s
a

n
d

 C
y
c
le

s
)

of Cores

10% Update Workload: Update Cost

1 10 20 30 40
of Cores

50% Update Workload: Update Cost
ParSec

U-RCU

Epoch

MCS

Figure 6. PARSEC µ-benchmark: 99th Percentile Latency for Read / Update Workloads

loading cache-lines that are soon to be modified within the
core-local structures of each other core. Neither U-RCU nor
epoch-based SMR implementations are expected to scale
with significant update rates, however, it is impressive that
epoch maintains performance on-bar with MCS locks. Both
brlocks and MCS locks are present for context for the per-
formance and scalability of popular read-write, and scalable
spin-locks.

Figure 6 shows the 99th percentile latency of read and up-
date operations with 10% and 50% updates. The most impor-
tant factor here in maintaining a low latency is that PARSEC
is wait-free by design. This improves the latency and pre-
dictability of both read and update operations. This wait-free
design, compared to the synchronize operations in U-RCU
and epoch, combined with the update-path optimizations in
PARSEC result in a significant reduction in tail-end latency.

5.2 Memcached
To evaluate the use of PARSEC in an existing system, we use
memcached, an in-memory cache commonly used in data-
centers [24] to cache data-base results. We believe this ap-
plication is representative of many caching workloads (e.g.
the directory cache in kernels), and gives guidance for how
to adapt an existing code-base to use PARSEC.

As pointed out in [15], the stock memcached has a num-
ber of significant scalability bottlenecks caused by locks,
reference counting, and LRU list maintenance. These bottle-

 1

 4

 16

 64

 256

 1024

 4096

 16384

 1 10 20 30 40

C
o
s
t
(T

h
o
u
s
a
n
d
 C

y
c
le

s
)

of Cores

Memcached 99th Percentile Latency: 10% Update Workload

ParSec (No CRP)
ParSec

Modified MC
Stock MC

Figure 8. Memcached 99th Percentile Latency in log-scale. CRP
= Cache Replacement Policy

necks are sufficient to prevent scalable execution (see “Stock
MC” in Figure 7). The main optimization for scalability that
memcached performs is to use a concurrent hash-table where
each hash-table entry (and associated linked-list of items)
has a separate lock. Thus, before applying PARSEC to mem-
cached, we first improve the scalability by using the follow-
ing existing techniques from [15]: (1) use the CLOCK cache
replacement policy instead of the LRU in the stock imple-
mentation which prevents the modification an item’s cache-
line every time it is accessed; and (2) use MCS locks to re-
place the simple (unscalable) spin-locks. Both techniques
improve the scalability considerably. However, scalability
is still rather limited – as shown by the “Modified MC” in

 0

 10

 20

 30

 40

 50

 60

 70

 1 10 20 30 40

 5

 10

 15

 20

M
ill

io
n

 R
e
q

u
e

s
ts

 P
e
r

S
e

c
o
n

d

S
p
e
e

d
u
p

of Cores

Memcached Throughput: Read-only Workload

ParSec (No CRP)

ParSec

Modified MC

Stock MC

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 20 30 40

 2

 4

 6

 8

 10

 12

 14

 16

M
ill

io
n

 R
e
q

u
e

s
ts

 P
e
r

S
e

c
o
n

d

S
p
e
e

d
u
p

of Cores

Memcached Throughput: 10% Update Workload

ParSec (No CRP)

ParSec

Modified MC

Stock MC

 0

 5

 10

 15

 20

 25

 30

 1 10 20 30 40

 2

 4

 6

 8

 10

 12

 14

M
ill

io
n

 R
e
q

u
e

s
ts

 P
e
r

S
e

c
o
n

d

S
p
e
e

d
u
p

of Cores

Memcached Throughput: 20% Update Workload

ParSec (No CRP)

ParSec

Modified MC

Stock MC

Figure 7. Memcached Throughput w/ Different Workloads. CRP = Cache Replacement Policy
Fig. 7. PARSEC is used to further increase the scalability of
the system by utilizing its SMR and memory management
facilities.
PARSEC memcached. Cache memory is managed by PAR-
SEC. New items are allocated from the PARSEC allocator,
while freeing an item returns it to the allocator. Same as in
the stock memcached implementation, updating an existing
key is a 2-step operation: 1) allocate an item for the new
key, link it into the hash table, and after that 2) release the
unlinked old item. One notable difference in implementa-
tion of the PARSEC-based memcached is the cache eviction:
when eviction is required by the addition of new items, in-
stead of the existing behavior which reuses that memory for
the new item, the evicted item is returned to the free-list;
then another allocation is made to get memory for the new
item. The amount of memory for the PARSEC allocator is
relatively small (< 1,000 items), but the list is long enough
to enable wait-free quiescence, thus efficient reclamation of
items. Our initial plan was to replace the hash-table with a
manually managed namespace from PARSEC, however the
benefit in this case was not significant enough to warrant the
additional changes it would require.

After changing memcached to use PARSEC managed
memory, an additional improvement is made to alleviate
the contention caused by the CLOCK replacement policy
(using a lock-protected linked-list): instead of using a sin-
gle CLOCK list, 64 separate lists are created utilizing part
of the PARSEC namespace management. Hashing is used to
determine the target CLOCK list. Higher partitioning than
64 didn’t result in improvements.

The result of these changes is that get requests are satis-
fied without any lock acquisition or synchronization beyond
ps enter and ps exit. Updating the hash-table’s linked
lists still requires the acquisition of the hash-table entry’s
lock.

To evaluate the PARSEC-based memcached, we com-
pare four different implementations: 1) stock memcached,
2) modified memcached (w/ MCS lock and CLOCK re-
placement), 3) PARSEC memcached (w/ all improvements
above) and 4) PARSEC memcached with no cache replace-
ment policy. The last one removes the cache replacement
policy entirely, to show the upper bound of an ideal, scal-
able replacement policy. All implementations are based on
memcached version 1.4.22. Similar techniques to [15] are
used in the evaluation: traces with get / set requests are

generated using YCSB [11] with the specified set percent-
age, following a zipfian distribution. Each trace contains 10
million requests (16-Byte key and 32-Byte value), which
will be partitioned by multiple threads on different cores. To
concentrate the evaluation on cache scalability, the through-
put is measured locally in the single memcached process,
bypassing all the network related layers. Memory capacity
is made sufficient for the cache contents. One thread per-core
processes the generated requests by invoking memcached in
a tight loop.

Fig. 7 shows the cache throughput with 3 different con-
figurations: read-only, 10% set and 20% set. The 20%
updates is already higher then the typical real-world work-
load reported in [24]. The speedup shown in graphs is rela-
tive to the single-core PARSEC case. Note that in the read-
only case, PARSEC with no cache replacement policy is a
completely read-only workload – the only memory writ-
ing required in the PARSEC-based get operation is for the
CLOCK policy. In that case, the performance is limited by
the memory bandwidth, instead of cache-coherency. In all
cases, PARSEC memcached tracks the no replacement pol-
icy cases reasonably. Higher set ratios impact PARSEC
throughput, but not as dramatically as other approaches. Fig.
8. depicts the 99th percentile latencies for the systems. The
PARSEC-based approaches have lower latency by a factor of
32 on 40 cores.

5.3 Virtual Memory Management
To evaluate the full range of SMR, memory management,
namespace management, and customizable grace-periods,
we adapt the virtual memory manager in the COMPOSITE
component-based system [27] to use PARSEC. For the pur-
poses of this paper, SPECK is the kernel of COMPOSITE, and
is a modern µ-kernel with virtual memory mapping man-
agement defined in a user-level component (the process-
equivalent in COMPOSITE). That component has access to
the kernel’s APIs that enable it to map and unmap to the
page-tables of the components it manages. This virtual mem-
ory management’s component data-structures have already
been described in Sections 4. We focus on extending Wang
et al.’s work on SPECK as the kernel uniquely uses inter-
nal grace-periods to track kernel data-structure liveness, and
TLB entry liveness. PARSEC’s unique facilities for manag-
ing resource around different grace periods (Section 3.8) en-
able the use of the kernel’s scalable operations. This appli-

 1

 10

 100

 1000

 10000

 1 10 20 30

C
o

s
t

(T
h

o
u

s
a

n
d

 C
y
c
le

s
)

of Cores

Average mmap / munmap Cost: Single Page

Linux-mmap
Linux-munmap
ParSec-mmap

ParSec-munmap

 0.1

 1

 10

 100

 1000

 10000

 1 10 20 30

C
o

s
t

(M
ill

io
n

 C
y
c
le

s
)

of Cores

Average mmap / munmap Cost: 1024 Pages

Linux-mmap
Linux-munmap
ParSec-mmap

ParSec-munmap

Figure 9. Average Cost of mmap / munmap in Linux and COMPOSITE

 1

 10

 100

 1000

 10000

 100000

 1 10 20 30

C
o

s
t

(T
h

o
u

s
a

n
d

 C
y
c
le

s
)

of Cores

99th Percentile of mmap / munmap: Single Page

 0.1

 1

 10

 100

 1000

 10000

 1 10 20 30

C
o

s
t

(M
ill

io
n

 C
y
c
le

s
)

of Cores

99th Percentile of mmap / munmap: 1024 Pages

Linux-mmap
Linux-munmap
ParSec-mmap

ParSec-munmap

Figure 10. 99th Percentile Latency of mmap / munmap in Linux and COMPOSITE

cation of PARSEC harnesses the flexible support for multiple
quiescence periods as required by the SPECK µ-kernel.

This subsection evaluates the PARSEC-based memory
management component in COMPOSITE. The data-structure
used are detailed in Section 4. PARSEC is used to support
SPECK-specific supports the configuration of grace-periods
used to reclaim different resources (Section 3.8). SPECK
requires the following grace periods to be used when acti-
vating and deactivating different kernel resources: (1) ker-
nel memory resources cannot be reused until a grace period
has elapsed commensurate with a kernel worst-case execu-
tion time (maximum latency), and (2) the physical memory
and virtual address for a mapping, when unmapped, can-
not be reused until all TLBs have been flushed. Though
this can be done eagerly, COMPOSITE schedules predictable
TLB flushes, which removes the need for non-scalable TLB
shootdowns. A grace-period for these resources is commen-
surate with the inter-TLB flush latency (10ms in our sys-
tem). Namespace management in PARSEC is used to man-
age physical memory allocation, virtual memory allocation
(per-client address space), and to lookup the namespace for
a specific client. Note that SPECK supports safe user-level
management of kernel memory [27] as in [14]. However, the
kernel relies on the manager to decide which of the physical
frames the manager has access to, to use for any given map-
ping. Memory for the mapping structures is provided using
PARSEC’s memory management functions.

We capture the memory mapping trace from Metis [22] –
a shared-memory MapReduce library – that computes word
inverse indexing (similarly used in [9]). As the memory al-

locator [25] used by Metis never returns memory to OS,
memory unmap is not performed by the program. To evalu-
ate both mmap and unmap, we simply unmap all the mapped
regions after executing the trace once, and repeat the trace
again. The trace is based on a input size of 128MB, which al-
locates∼650MB of memory during MapReduce. Linux ker-
nel 3.10.10 is used to run the same traces for comparison.
Memory is touched after each mmap call to ensure physical
memory is committed. The map/unmap trace is repeated 10
times (i.e., for each core count in Linux and COMPOSITE).
The last core is reserved for system tasks, leaving 39 cores
used for the benchmark.

The trace contains two types of mapping requests: single
page and 1024 pages. Less than 5% of the requests are
for 1024 pages. Fig. 9 reports the average cost of each
case separately, while Fig. 10 reports the 99th percentile
latencies. In all cases, PARSEC in COMPOSITE has lower
overhead than the Linux equivalent, with the exception of
unmapping on ≤ 20 cores. This is because the Linux kernel
delays the expensive operations (e.g. TLB shootdown) to
future mmaps, which dominate the overhead in Linux.

In COMPOSITE with PARSEC, the overhead also in-
creases with more cores, but less severely. Though there is
little shared cache-line contention, overheads still increase
due to the sharing of other resources (e.g. LLC and mem-
ory bus), which are triggered by accessing a large amount
of memory concurrently. Linux arbitrates parallelism over
vm area structs and the page management structures us-
ing conventional means which carry significant scalability
overheads [6]. Though it has improved in avoiding TLB

shootdowns when possible, the PARSEC-based VM man-
ager still demonstrates performance at higher core counts
with an improvement of more than a factor of 100.

6. Related Work
Mission: scalability. Both the Laws of Order [3], and the
scalability commutivity rule [10] provide a insight into a
core factor that determines an API’s or a data-structure’s
scalability. Generally, if operations within the API commute,
they can be implemented scalably. If not, they require ex-
pensive operations that modify shared cache lines. PAR-
SEC demonstrates that a scalable version of SMR can be
implemented, and uses that SMR (along with configurable
grace periods) to reclaim and reuse namespace descriptors,
a key to enabling the scalability of file-descriptors and vir-
tual memory pages. This is, in a sense, automating the advice
from [10].
Quiescence and memory reclamation. Read Copy Up-
date (RCU) and its user-level variant in U-RCU provide
quiescent-state detection [13]. RCU focuses on low over-
heads for read-mostly workloads, while modifications must
be require atomically visible and often rely on quiescence.
Epoch SMR [17] uses the passage of epochs, and per-epoch
limbo-lists to track grace-periods. To increase RCU scala-
bility, predicate RCU [2] attempts to lower the cost of qui-
escence by altering the RCU API. Citrus trees [1] are binary
trees that use RCU and enable concurrent writers. PARSEC
SMR scales well and uses the notion of ascertaining quies-
cence at a specific time in the past, paired with timestamped
frees to provide wait-free SMR.

Other implementations of SMR exist including quiescent-
state detection on context-switches in non-preemptible Linux
kernels, and the non-default API in U-RCU that uses qui-
escence (i.e. urcu-qsbr) Such approaches can often re-
move the memory barrier in ps enter, and rely on system,
or application-specific calls to declare a lack of references
into the data-structure at which points memory is reclaimed.
PARSEC only relies on applications to wrap data-structure
accesses in enter/exit calls, thus using a more conventional
API.
Parallel data-structures. ASCY [12] provides a survey of
lock-free, lookup data-structures. They provide guidance
for efficient parallel data-structure implementation by relat-
ing sequential memory accesses to the parallel structure’s.
RLU [21] enables multiple data-structure modifications that
atomically activate, thus co-existing with parallel lookups.
Both of these papers rely on SMR and some of the special-
ized ASCY structures also use locks.
Parallelism support within operating systems. Key scal-
ability bottlenecks in existing systems such as Linux often
center around liveness monitoring (e.g. reference counting),
and concurrency control (e.g. locks) [6]. Tornado [16] uses
distributed reference counts and clustered objects to provide
a programmatic framework for scaling. However, such tech-

niques often still rely on shared cache-lines which PARSEC
avoids. Corey takes a different approach by enabling appli-
cations to control the namespaces in the kernel used to ac-
cess resources. PARSEC shares the observation that names-
pace lookup and management significantly impact scalabil-
ity, but provides a framework for the implementation of scal-
able system services.

RCU relies on SMR and uses atomic updates of copied,
then modified, versions of nodes to handle updates. Up-
dates are often mutually serialized, and along with the over-
heads of the RCU SMR quiesce, the focus RCU is on read-
mostly workloads. Read-Log-Update (RLU) [21], on the
other hand, updates structures using a mechanism to make
multiple stores atomically visible along with locks to coor-
dinate writers. In this paper, we’ve focused on accommo-
dating a consistency API similar to traditional locks. Data-
structures that require atomic modifications to many nodes
would benefit from RLU. Both RCU and RLU rely on SMR
and could benefit from PARSEC SMR.

Bonzai trees [8] use RCU to implement scalable paral-
lel lookup of virtual memory structures in the Linux kernel.
Radix VM [9] applies a radix trie structure to the VM lookup
data-structures with embedded locks to shrink the granular-
ity of concurrency control. Scalability research in L4 [26]
introduces dynamic lock granularity on mapping trees, with
custom, kernel-specific lookup mechanisms. PARSEC pro-
vides a mechanism enabling generic data-structures to have
fine-grained locking with scalable lookup and memory man-
agement. It is informed by the previous work, and expands
on those ideas (e.g. radix tries and RCU).

7. Conclusions
This paper introduces the parallel sections abstraction, that
enables the implementation of data-structures with finest-
grained application of consistency mechanisms such as
locks, while enabling parallel lookups with no explicit syn-
chronization. PARSEC SMR provides memory reclamation
with liveness based on a global ordering of events, based
on local access to time. PARSEC namespace management
enables scalable descriptor allocation, and efficient lookup.
All PARSEC operations are wait-free, thus avoiding latency
spikes due to contention. Results show that PARSEC SMR
scales better and has higher performance for read and update
heavy workloads than existing SMR mechanisms. A PAR-
SEC-enabled memcached has a throughput between 2.5x and
5x higher, with 99th percentile latencies 30x lower. A virtual
memory mapping manager in a µ-kernel that uses PARSEC
outperforms Linux by up to a factor of 100x.
Acknowledgments. We’d like to thank our shepherd, Robert
Morris, and the anonymous reviewers for their feedback that
has significantly improved the quality of this paper. We’d
also like to thank Samy Bahra, the author of the Concurrency
Kit, for his useful feedback throughout the process.

References
[1] M. Arbel and H. Attiya. Concurrent updates with rcu: Search

tree as an example. In PODC, 2014.

[2] M. Arbel and A. Morrison. Predicate rcu: An rcu for scalable
concurrent updates. In PPoPP, 2015.

[3] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M.
Michael, and M. Vechev. Laws of order: Expensive synchro-
nization in concurrent algorithms cannot be eliminated. In
POPL, 2011.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schpbach, and A. Singhania. The Mul-
tikernel: A new OS architecture for scalable multicore sys-
tems. In Symposium on Operating System Principles (SOSP),
2009.

[5] J. Bonwick. The slab allocator: an object-caching kernel
memory allocator. In Proceedings of the USENIX Summer
1994 Technical Conference on USENIX Summer 1994 Tech-
nical Conference, 1994.

[6] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An analysis of linux
scalability to many cores. In OSDI, 2010.

[7] ck. Concurrency Kit: http://concurrencykit.org, retrieved
9/21/12.

[8] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. Scalable
address spaces using rcu balanced trees. In ASPLOS, 2012.

[9] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. RadixVM:
Scalable address spaces for multithreaded applications. In
EuroSys, 2013.

[10] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris,
and E. Kohler. The scalable commutativity rule: Designing
scalable software for multicore processors. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (SOSP), 2013.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
SoCC, 2010.

[12] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized
concurrency: The secret to scaling concurrent search data
structures. In Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, 2015.

[13] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais,
and J. Walpole. User-level implementations of read-copy up-
date. IEEE Transactions on Parallel and Distributed Systems,
2012.

[14] K. Elphinstone and G. Heiser. From L3 to seL4 what have we
learnt in 20 years of L4 microkernels? In SOSP, 2013.

[15] B. Fan, D. G. Andersen, and M. Kaminsky. Memc3: Compact
and concurrent memcache with dumber caching and smarter
hashing. In NSDI, 2013.

[16] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
Maximizing locality and concurrency in a shared memory
multiprocessor operating system. In OSDI, 1999.

[17] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Per-
formance of memory reclamation for lockless synchroniza-
tion. J. Parallel Distrib. Comput., 67(12), 2007.

[18] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Program. Lang.
Syst., 12(3):463–492, 1990. ISSN 0164-0925.

[19] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vah-
dat. Chronos: Predictable low latency for data center applica-
tions. In SoCC, 2012.

[20] J. Liedtke. On micro-kernel construction. In Proceedings of
SOSP, 1995.

[21] A. Matveev, N. Shavit, P. Felber, and P. Marlier. Read-log-
update: A lightweight synchronization mechanism for concur-
rent programming. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, 2015.

[22] Metis. Metis: https://pdos.csail.mit.edu/archive/metis/, re-
trieved 10/22/15.

[23] M. M. Michael. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Transactions on Parallel and
Distributed Systems, 2004.

[24] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling mem-
cache at facebook. In NSDI, 2013.

[25] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos.
Scalable locality-conscious multithreaded memory allocation.
In ISMM, 2006.

[26] V. Uhlig. The mechanics of in-kernel synchronization for a
scalable microkernel. SIGOPS Oper. Syst. Rev., 2007.

[27] Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer. Speck: A
kernel for scalable predictability. In RTAS, 2015.

	Introduction
	Parallel Data-Structures Background
	Mutual Exclusion and Non-Blocking Data-Structures
	Scalable Memory Reclamation and ParSec

	ParSec Design
	ParSec Goals
	Scalability of Existing SMR Techniques
	ParSec Scalable Memory Reclamation
	ParSec SMR Implementation Optimizations
	ParSec Memory Management
	ParSec Locking and Consistency
	ParSec Namespace Management
	Custom Grace Periods in ParSec

	ParSec Example: Virtual Memory Mapping Management
	Experimental Evaluation
	Evaluation of ParSec Quiescence and Reader Overhead
	Memcached
	Virtual Memory Management

	Related Work
	Conclusions

