
CAML: Machine Learning-based Predictable, System-Level Anomaly Detection ∗

Jiguo Song∗, Gerald Fry†, Curt Wu†, Gabriel Parmer∗

∗The George Washington University

{jiguos, gparmer}@gwu.edu
† Charles River Analytics

{gfry, cwu}@cra.com

Abstract—Security challenges are increasing in distributed
cyber-physical systems (CPSs), which integrate computation and
physical processes. System security is complicated by both the
temporal and safety constraints of CPSs. In this paper, we
investigate the potential for using system-level anomaly detection
in a component-based RTOS to detect system compromises and
aberrant behavior. We investigate a machine learning-based
anomaly detection framework, CAML, which monitors for and
identifies cyber attacks in system-level services within bounded
time. We leverage past work in system fault recovery to pre-
dictably recover the system to an uncompromised state. We also
evaluate the effectiveness of CAML in an avionics simulator-
based CPS environment with injected cyber attacks. Our results
and analysis indicate that CAML has promise to effectively
enhance CPS robustness by securing the underlying RTOS
against system-level cyber attacks with only small performance
degradation.

I. INTRODUCTION

Cyber-physical systems (CPSs) are integral to many do-

mains such as health care, military, and industrial control.

Due to strict timing constraints and limited resources, they

must carefully balance between cost, size, weight, energy and

safety. Threat and vulnerability mitigation is emerging as an

extremely important concern regarding CPS design, as these

systems often interact with the physical world through the

integration of computation, actuation, sensing, and physical

processes. The threats in CPSs are not only from the design

errors or software bugs in the increasing complexity of

system, but can also be from malicious attacks against the

system by attackers who intentionally want to create chaos.

Much research [1][2] has been done in the past to address

different kinds of cyber-attacks, including deception attacks,

DoS attacks, and even physical attacks against the actuator or

plant. It is important for safety critical CPSs to continue to

function even under the presence of malicious attacks. CPSs

also must often meet temporal constraints and defend against

cyber-attacks that can cause deadline misses to maintain the

system correctness (i.e., avoid unbounded priority inversion).

An intrusion detection system (IDS) is an effective way to

detect the malicious attacks in the embedded system and

respond without missing deadlines, before the control system

is affected leading to physical system failure.

Unfortunately, the security of the system can also be

compromised due to vulnerabilities within the underlying

∗This material is based upon work supported by the National Science
Foundation under Grant No. CNS 1149675, ONR Award No. N00014-14-
1-0386, and ONR STTR N00014-15-P-1182. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science
Foundation or ONR.

real-time operating system (RTOS), on which the application-

specific components of the control system typically rely.

For example, if a malicious attacker compromises the RTOS

scheduler, erroneous behavior in the control system might

lead to physical system failure (e.g., a vehicle could lose con-

trol of its brakes and fail to stop before an accident occurs).

In this paper, we focus on how to detect and recover from

cyber-attacks in low-level system services by the malicious

adversary, while continuing to maintain operationally correct

system behavior within bounded time. The contributions in

this work include:

• a machine learning-based, predictable anomaly detection

framework for cyber-attacks in system-level services, and

• an evaluation of the effectiveness of fault detection and

recovery using a flight simulator under the presence of

injected attacks in a component-based RTOS.

II. THREAT MODEL

A typical cyber-physical system (CPS) consists of physical,

control, actuation and sensing subsystems. The computing

stage in the control system performs processing on the

collected data and calculates the control commands that can

be sent to the actuators to manipulate the physical system. A

Real-Time Operating System (RTOS), on which the applica-

tion (e.g., a PID controller) relies, is often used in the com-

puting stage. Figure 1 shows a CPS that uses a component-

based RTOS in its computing stage, which contains system-

level components such as the scheduler, memory manage-

ment, file system (FS), synchronization, event management,

and timer. The PID controller, as an application component,

communicates with the physical system through the network

component (e.g., processes sensor data and sends control

signals to a remote avionics system).

A malicious adversary can use various techniques to attack

the CPS at any stage. For example, the adversary might

intercept the information over the communication channel,

compromise the key, forge messages to the operator, or

prevent normal requests from being processed, causing Denial

of Service (DoS). The adversary can also attack services

within the RTOS. For example, in Figure 1, a PID controller

periodically receives incoming data from the sensing subsys-

tem and needs to access the FS to log the information, before

it can send the computed control signal to the remote avionics

system. A malicious attacker, Noise (shown in the figure as a

red demon), could compromise the FS, resulting in corrupted

information, or could delay the delivery of actuation control

commands. For example, Noise could delay the execution in

the FS (e.g., by executing an infinite loop) to prevent other

PID TCP Noise

MM

Event

Scheduler

RamFS

Lock

Timed Block

...

SMC

Kernel

EMPML
...

Application Noise ML-based

 monitoring

System-level Services

Computing

Physical

System

CAML

Actuation Sensing
E.g., Avionics system

Fig. 1: A CPS control system that consists of a component-

based RTOS and a PID controller application. CAML in-

frastructure is shown in the blue oval area and a red demon

represents the malicious adversary.

applications from accessing the FS service, causing deadline

misses. The attacks in system-level services could eventually

cause the physical system to deviate from its expected behav-

ior, which could result in a catastrophic failure of the safety-

critical system. To address this problem, we propose CAML,

a machine learning-based intrusion detection infrastructure

that focuses on predictably detecting and recovering from

system-level anomalies due to cyber-attacks in a component-

based RTOS. CAML monitors the system control flow and

timing behavior using extensions to our previous work on

C’MON [3] (Section IV), uses machine learning algorithms

to detect anomalies (Section III), and uses C3 [4] techniques

to predictably recover system-level services (Section IV).

Though our initial analysis focuses on attacks that affect

timing behavior, potentially leading to physical system failure

(e.g., an aircraft crash), future work will expand the detection

capability of CAML for other types of security threats.

III. MACHINE LEARNING ALGORITHMS

In this section, we describe two unsupervised learning

algorithms used for CAML to identify system anomalous

behavior: algorithmic sequence learning (ASL) and a density-

based clustering algorithm, density-based spatial clustering of

applications with noise (DBSCAN).

Algorithmic Sequence Learning. The ASL algorithm is

based on the episode mining technique in [5]. ASL can be

applied to temporal, sequentially ordered datasets to predict

events or describe frequent patterns. ASL identifies patterns in

sequences based on frequency and consistency by examining

all sub-sequences of events within a specified window and

enumerating associative IF-THEN rules that map antecedents

to consequents (i.e., sub-sequences of events that are likely

to co-occur). The algorithm calculates the confidence (prob-

ability) that the sequence identified by the THEN-clause will

follow the observation of the sub-sequence identified by the

IF-clause. For example, in a component-based RTOS, if the

sequence of components that a thread invokes follows a

pattern, then ASL generates rules that predict that sequence,

given an observed subsequence. If a component is compro-

mised (e.g., an attacker causes the FS component in the

sequence to invoke an additional component before returning),

then these rules will be violated. Parameters to the rule

generation algorithm include minimum support and minimum

confidence thresholds. These parameters affect the number

of resulting rules and their confidence. Minimum support

specifies the minimum number of times a pattern must occur

for it to be of interest, and minimum confidence specifies

the minimum percentage of the time that the consequent is

observed given that the antecedent is observed. ASL generates

association rules which can then be used as conditions that

incoming events are tested against. If an event sequence is

recorded that matches an antecedent, but the events that follow

do not match the rule’s consequent, then we flag this as a

potential anomaly. The likelihood that this sequence of events

is actually anomalous is proportional to the confidence level

associated with the rule: the greater the confidence of the

rule, the stronger the expectation that it will hold, and the

greater the likelihood that a deviation represents a significant

anomaly. The frequency of false positives can be controlled by

only selecting rules that meet a certain minimum confidence

level; this avoids problematic situations where, for example, a

rule that holds only 60% of the time (has relatively low con-

fidence) would identify anomalies the remaining 40% of the

time. We extended the original ASL algorithm to detect novel

events. Our updated ASL algorithm adds a rule whenever a

new event is detected that includes a novel event. For example,

a thread invokes the FS component for the first time. These

novel rules are somewhat different from the standard rules

because they are violated immediately; however they are still

subject to the same thresholds (i.e., frequency and support),

so multiple violations may be required to trigger an anomaly

detection. We call them “null rules” because the rule would

take the form of {X} implies {null}, where X is a novel

event. The “null rules” ensure that we have a way to track

novel events and trigger notifications when the frequency and

support of novel events exceeds thresholds.

Density-based Spatial Clustering of Applications w/ Noise.

Another algorithm, DBSCAN, finds clusters based on how

densely packed the data points (i.e., events like component in-

vocations with time stamps) are [6], and we have successfully

applied these algorithms to detect anomalous behavior in sen-

sor networks. One key advantage of density-based algorithms

over a more traditional k-means clustering approach is that

the number of clusters does not need to be defined a priori.

A cluster is also defined by local relationships between data

points, so its overall shape can be quite irregular provided

its constituent data points satisfy the density requirements.

Density-based clustering can be applied to continuous multi-

dimensional data and is especially well-suited for data that

SMC EMP

..
....

2

1

3

all events
event stream 1raw event

system component

event stream

event stream

anomaly

detection

4

ML

..
.

anomaly

detection

event stream n

4

Fig. 2: CAML system-level anomaly detection infrastructure. SMC and τm are the component and task for logging events.

EMP and τemp are the component and task for multiplexing events. ML and τml are the component and task that run anomaly

detection machine learning algorithms.

does not conform to a regular distribution. For example, the

execution time of different threads in a specific component

can form a cluster even if the time does not follow any

known distribution. There are two primary parameters in the

algorithm can be defined by the user: ε, which defines the

neighborhood radius around a point for grouping points into

a cluster, and minPts, which defines the minimum number

of points to form a cluster. In the detection model, data points

that cannot be classified into any existing cluster are labeled

as anomalies. DBSCAN checks each event (data point), and

if more than minPts exist within a ε-neighborhood, then a

normal cluster can grow by collecting reachable points. After

all data points are considered, the events that could not be

assigned to any cluster will be treated as anomalous events.

IV. SYSTEM DESIGN

In this section, we will first briefly review COMPOSITE

and C’MON [7], upon which CAML is built. Then we will

discuss the CAML infrastructure.

A. COMPOSITE and C’MON background

CAML is built on top of the COMPOSITE component-based

OS. Components in COMPOSITE are user-level, hardware

isolated (via page-tables) code and data that implement some

functionality and export an interface of functions through

which other components can harness that functionality. Com-

ponents implement system policy and low-level services such

as scheduling, physical memory management and mapping,

synchronization, and I/O management, as shown in Figure 1.

C’MON [7] is a system-level latent fault monitor located

between the kernel and rest of system components. It tracks

system-level communication events and timing, such as in-

vocations (IPC) between components, interrupts and thread

dispatching. By harnessing the event logging interface code,

C’MON enables monitoring of all interactions between each

component and the rest of the system beyond.

B. CAML infrastructure

CAML extends the C’MON event logging infrastructure

and focuses on more general system-level anomaly detection

by incorporating additional event pre-processing and machine

learning techniques. As Figure 2 shows, CAML consists

of three components: the event logging component, SMC,

the event multiplexing component, EMP, and the machine

learning component(s), ML.

SMC component. The System Monitor Component (SMC)

tracks and logs system events. It does so by maintaining

per-component shared ring buffers with all other system-

level components. As 1 shows, when the system executes

and components communicate, the communication events are

published into these buffers as raw events that include the

event type, the cycle-accurate time stamp, and thread and

component information. A task, τm, in the SMC then copies

all raw events into a large buffer shared between the SMC

and EMP components (as 2 shows). Copying events happens

either periodically or when any per-component shared buffer

is full (defined as the time-trigger activation and buffer-trigger

activation in [7]). The EMP component pre-processes and

aggregates raw events into more abstract typed event streams

that are fed into different machine learning algorithms. EMP-

based event pre-processing logic reduces the code complexity

and the memory footprint of the SMC component. It also

avoids running complex computation at a high priority level.

EMP component. A task, τemp, executing in the EMP

component is responsible for multiplexing the raw events in

the large shared buffer. The task, τemp, periodically consumes

and processes the raw events in the following steps: (1)

examine the raw event; (2) extract the desired information

(i.e., thread and component identifier, order and location of

the events, etc.); and (3) aggregate the events into multiple,

different event streams. Event streams are categorized as per-

thread or per-component, and they provide an abstraction

of the system behavior and its execution characteristics. For

example, an event stream can be a sequence of component

invocations and return actions with timing information for a

particular thread. An event stream can also be specified within

a time window of fixed length. For example, a stream could

provide the number of times that any thread is interrupted in

a specific component within a period of time. Event streams

will be copied into per-stream buffers shared between the

EMP component and a set of ML components, and are

eventually used as the training data for machine learning

algorithms (as 3 shows).

ML components. A periodic task, τml, runs a machine

learning algorithm to detect anomalies (as 4 shows). Note

that different event streams can be directed to the different

ML components. To learn the pattern, τml extracts the high-

level system execution features from event streams and builds

a set of rules. The violation of the rules will be identified as

anomalies in the system using machine learning algorithms.

The execution of the tasks, τemp and τml, could be incorrectly

scheduled or delayed if an anomaly is presented in the

scheduler. Therefore, τm must ensure that τemp and τml

can be activated correctly and on time. CAML supports

recovering the affected system service (e.g., faulty scheduler,

memory manager, and/or FS) using C3 [8]. One challenge is

to accurately localize the faulty component before the proper

response can be made (e.g., recover the affected service

or quarantine the malicious user). The localization process

must determine which system service is actually affected and

the identification of the faulty service must be as accurate

as possible to reduce the false positives/negatives and their

impact on system-wide schedulability. A detailed approach

to fault localization is a work in progress.

V. SYSTEM TIMING ANALYSIS

In this section, we will present the response time analysis

for CAML and show that CAML can effectively detect

and recover from system-level anomalies without missing

deadlines.

A. Response Time Analysis (RTA) Model

The tasks, τm, τemp and τml are responsible for logging

events, multiplexing events, and running the machine learning

algorithm, respectively. The tasks’ periodicities are denoted as

pm, pemp, and pml, and the tasks’ WCETs are em, eemp, and

eml respectively. Note that pm < pemp < pml < periodicity

of other tasks in the system. We define Bsmc⇒emp as the

shared buffer between the SMC and EMP components, and

Bemp⇒ml as the shared buffer between the EMP and ML

components. When a per-component event logging buffer is

full, an invocation must be made to the SMC component

to start consuming the raw events. The worst-case cost of

this activation, INV m, and the maximum number of such

activations, Mm, are both defined as in [7]. The overall

structure of the RTA is based on a recurrence that finds a

fixed point less than the task’s deadline. If no fixed point is

found, the task is not schedulable:

(1)Rn+1

i = Rn
i (RTA) +Rn

i (C
3) +Rn

i (MON)

+Rn
i (EMP) +Rn

i (ML) +Rn
i (F)

where Rn
i (RTA) is the traditional response-time analy-

sis [9] and Rn
i (C

3) is the contribution from the C3 fault

recovery [8]. The contribution from τm logging and copying

events in the SMC component is given as

(2)
Rn

i (MON) =

⌈

Rn
i

pm

⌉

(Mm × INV m +Memp

× INV m + em→emp
copy)

where Mm × INV m is due to the buffer-trigger acti-

vation [7], and Memp is defined as
⌈∑

∀x
Bx

nosync

Bsmc⇒emp

⌉

− 1.

Bx
nosync is the buffer for a component, cx, for which no

synchronous buffer-triggered activation could arise. The term,

Memp × INV m, represents when the Bsmc⇒emp is full,

in which case we must switch to τemp and let it consume

the events. The last term, em→emp
copy , is the total overhead of

copying events from the SMC per-component buffers to the

buffer Bsmc⇒emp within pm. This overhead is proportional

to the number of events generated in pm. The contribution

due to τemp multiplexing events in the EMP component is

given as

(3)Rn
i (EMP) =

⌈

Rn
i

pemp

⌉

eemp

where eemp includes the overhead of processing events and

creating event streams. This is proportional to the number of

events generated within pemp. The contribution due to τml

running the machine learning algorithm is given as

(4)Rn
i (ML) =

⌈

Rn
i

pml

⌉

eml

where eml is the total overhead of consuming event streams

and detecting the anomalies. Though the the size of the

Bemp⇒ml could affect the system schedulability, to make

the analysis simple we make an assumption: the size of the

Bemp⇒ml is sufficient for holding all streamed events. This

is a reasonable assumption given the event streams contain

the aggregated information such as the thread WCET in the

component, the execution time since last thread activation,

and component invocations. Compared to tracing system-

wide events, the aggregated information requires much less

memory space. The contribution due to anomaly localization

and wasted computation is given as

(5)Rn
i (F) =

⌈

Rn
i

pft

⌉

(eml(localization) + pml + wf)

where eml(localization) is the fault localization overhead.

The sum of pml and wf is the wasted time due to the anomaly

since there is a period of computation within the faulty com-

ponent which cannot be trusted. This wasted computation1 is

the period of the machine learning task, pml, plus the WCET

of the system-level component, wf .

B. Schedulability Evaluation

We conducted schedulability evaluation in a system with

25 components and 50 tasks with average periodicity of

100 ms and an attack that occurs every 500 ms. Utilization

and schedulability are both represented as percentages. The

memory constraint is relaxed by assuming that there is enough

memory to hold all logged and streamed events.

Figure 3 shows how the CAML infrastructure affects system

schedulability while varying the event rate (evts/ms), which

is defined as the total number of events that occur in one

millisecond. The green line is the reference system without

CAML. The red, blue, and black lines show the schedulability

of the system with event rates of 200 evts/ms, 400 evts/ms and

800 evts/ms, respectively. A higher event rate has more impact

1We assume that the anomaly can be detected within one pml. To relax
this assumpation, Eq.5 must be modified to accommodate the situation in
which multiple pml are required for detection.

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

S
c
h
e
d
u
la

b
ili

ty

Utilization

25 components, 50 tasks, pavg=100ms, pft=500ms, pemp=0.2ms, pml=0.4ms, eml=0.02ms

No monitoring/recovery

Monitor+C
3

(200 evts/ms)

Monitor+C
3
+ML (200 evts/ms)

 (400 evts/ms)

(400 evts/ms)
 (800 evts/ms)

(800 evts/ms)

Monitor+C
3
+ML

Monitor+C
3

Monitor+C
3
+ML

Monitor+C
3

Fig. 3: Schedulability vs Utilization

on the system schedulability. The CAML infrastructure has

more impact on the system schedulability compared to the

system with only C’MON and C3, due to the machine learning

task, τml.

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

S
c
h
e
d
u
la

b
ili

ty

Utilization

25 components, 50 tasks, pavg=100ms, pft=500ms, pemp=0.2ms, pml=0.4ms

ML_util 5%

ML_util 15%

ML_util 25%

ML_util 35%

ML_util 45%

ML_util 55%

Fig. 4: ML task utilization impact on schedulability

Figure 4 presents how machine learning task τml affects the

system schedulability. The WCET of eml is proportional to

the number of event streams. In Figure 4, the event rate is

fixed at 400 evts/ms, and pml is fixed at 0.4 ms. It can be seen

that the system running the task τml with low utilization can

achieve better schedulability even at a high task set utilization,

which means that the machine learning algorithm must be

efficient to ensure that the system is schedulable.

VI. EXPERIMENTS

A. FlightGear Simulator

To simulate the CPS, we used a physics-based flight sim-

ulator, FlightGear (http:/www.flightgear.org/). FlightGear in-

cludes a visual interface and multiple flight dynamics models

for realistic simulation of aircraft interacting with the physical

environment. In our experiments, we simulate a Cessna 172P

Skyhawk (1981 model) taking off from a landing strip with

minimal pilot interaction. The simulation environment sup-

ports remote interaction with custom software communicating

over network connections. We use this communication feature

to implement an autopilot program that executes on a machine

running our CAML framework on top of COMPOSITE on a

Intel i7-2760QM (2.4 Ghz with only single core enabled).

The autopilot program communicates over TCP connections

with the remote simulator, periodically receiving messages

at a rate of 3 Hz from the simulator containing data about

the current status (e.g., heading) of the aircraft. Based on the

information it receives, the autopilot sends commands back

to the simulator to adjust the aileron positions of the aircraft

to achieve and maintain a fixed target heading.

B. Experimental results

To analyze the effectiveness of the machine learning al-

gorithms for anomaly detection, we tested them on the

sequences of events that correspond to the observed sequences

of component invocations by the autopilot thread. We gener-

ated rules based on event sequences under normal system

behavior. We then applied these rules to the system under

faulty behavior, during which we introduced a malicious call

into the FS component that the component which implements

the autopilot PID controller needs to access.

Rules (ordered from highest ratio to lowest)

/
V

io
la

ti
o
n
 R

a
te

n
o
rm

a
l

V
io

la
ti

o
n
 R

a
te

fa
u
lt

y

10

12

14

16

18

8

6

4

2

0

Fig. 5: Ratio of ASL rule violations

Figure 5 shows the ratio of rule violations in faulty data

set versus normal data set when using ASL algorithm. The

ASL algorithm was trained with a window size of 5, a

minimum confidence value of 50%, and a minimum support

value of 1%. With these parameters, 60 seconds of training

data yielded 101 rules. An effective anomaly detection rule

generates either significantly more or fewer violations in the

faulty data set relative to the normal baseline. In the faulty

data set, 25 of the 101 rules had violation rates more than

50% higher than the baseline. Also, missing from the figure

are 8 rules were never triggered in the faulty scenario (i.e.,

the antecedent never appeared). Together 33 of the 101 rules

can be used to detect the presence of an anomaly.

For DBSCAN, we ran the algorithm multiple times at

different radius sizes to determine its effectiveness at anomaly

detection. We trained it on 60 seconds of data with a minimum

of 3 points required to form a cluster. We extracted two

thread-based features: length of execution and time since last

activation. The features were normalized across their ranges.

We tested across 10 different radius values from 0.005 to 0.05

with normal and faulty test data where a fault was a failure

of the file system.

DBSCAN
cluster radius

Anomalies
in normal scenario

Anomalies
in faulty scenario

Anomaly
rate increase

0.015 102 123 21

0.02 42 90 114

0.025 58 73 26

TABLE I: DBSCAN anomaly results

Table I shows the aggregate anomaly scores for each radius

and scenario with the anomaly rate increases in the presence

of fault. 7 of the 10 radii showed no statistical difference. The

radii (0.015, 0.02, 0.025) showed some differences, and we

repeated experiments with these three radii two more times

to determine its effectiveness at anomaly detection.

 1

 2

 4

 8

 16

 32

 64

 128

 256

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7

N
u
m

b
e
r

o
f
E

x
e
c
u
ti
o
n

Execution Time (ms)

Histogram of detection algorithm execution time

DBSCAN

ASL

Fig. 6: Machine learning execution time comparison

To assess the use of the ML algorithms in a real-time

system, Figure 6 shows the histogram of how task τml’s

execution time varies for two different machine learning

algorithms. The results show that the execution time of the

DBSCAN algorithm is mostly distributed between 0.1∼0.3

ms, and the ASL algorithm is spread between 0.3∼2.7 ms.

τm τemp τml τnoise

period
(ms)

110 130 170 610

exec
time (ms)

event copy
0.00002

event process
0.0002

3 (ASL)
0.5 (DBSCAN)

500

TABLE II: Task period and measured execution time

Table II shows the periodicity of task τm, τemp, τml, and

τnoise as configured in the experiment. We assume that

pm < pemp < pml < pnoise. The table also shows the cost

of copying an event into the shared buffer and the cost of

processing an event. After it is activated, the attacker task,

τnoise, keeps spinning 500ms in the FS to cause temporal

disturbance before it returns from the FS component.

0.00

0.02

0.06

0.25

1.00

4.00

16.00

64.00

256.00

1024.00

 10 20 30 40 50

E
xe

cu
tio

n
T

im
e

(m
s)

Time (second)

PID controller task with the presence of fault in FS

fault

DBSCAN w/ Recovery
ASL w/ Recovery

No Recovery

Fig. 7: PID controller with the injected attack

Figure 7 presents how the PID controller task, τpid, is affected

under the attack and how CAML effectively detects and

recovers the system with the setup from Section VI-A and the

system parameters from Table II. The normal behavior of τpid
is shown in Figure 7 from the beginning to 27s. The moment

that τnoise is activated and starts delaying itself by spinning

500 ms in the FS component is depicted as “fault” with a

red arrow in Figure 7. The execution time of τpid increases

quickly and results in unbounded priority inversion (shown

as the green line) without proper detection and recovery. In

contrast, the system with CAML successfully identifies the

anomaly (e.g., the execution time in FS has deviated from

its normal pattern and breaks the established rules). CAML

recovers the FS from the attack and τpid quickly returns to

its normal execution without missing deadlines.

VII. RELATED WORK

Operating System Monitoring and Intrusion Detection.

There has been much work done on OS monitoring in the

past. For example, [10] [11] [12] are the tools to trace timing

of execution within monolithic operating systems. OS intru-

sion detection through system call patterns has been studied

in [13], [14], and virtual machine introspection for intrusion

detection is studied in [15]. CAML differs from these related

efforts in that it applies statistical learning methods to analyze

system execution behavior in a component-based RTOS and

focuses on enabling the system to be resilient to cyber attacks

in low-level OS services without missing deadlines.

Machine learning-based anomaly detection. There have

been several efforts that have applied software-based machine

learning or statistical methods to detect anomalies and/or

failures in general purpose and real-time systems. In [16],

a probabilistic model-driven approach is used to detect in-

trusions in CPSs and to develop mitigating responses to

malicious attacks. A sequence matching approach is used

in [17] to detect anomalous user behavior in UNIX-based

systems. The authors in [18] investigated a hardware imple-

mentations of a Support Vector Machine (SVM) and cluster-

ing algorithms for anomaly detection in NoC-based systems.

The work most closely related to ours is [19], in which

the authors proposed Real-time Calculus [20]-based inter-

arrival curves and applied a semi-supervised sliding window-

based classification technique on a sequence of events for

anomaly detection. In contrast, CAML detects and recovers

from cyber attacks on software components that perform OS

functions with real-time constraints. The algorithms (ASL

and DBSCAN) used for CAML are unsupervised. CAML

extracts high-level features from the event traces with cycle-

accurate time stamps, which allows the events (i.e., event

streams for the thread or component) to be associated with

the timing information for more effective anomaly detection.

VIII. CONCLUSIONS

In this paper, we presented CAML: a machine learning-

based anomaly detection framework that predictably mon-

itors, identifies, and recovers from cyber-attacks in a

component-based RTOS. We evaluated the effectiveness of

CAML using two unsupervised machine learning algorithms

to detect injected attacks and showed that CAML shows

promise for enhancing system resilience to cyber-attacks in

system-level services without missing deadlines.

REFERENCES

[1] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo,
“S3a: Secure system simplex architecture for enhanced security and
robustness of cyber-physical systems,” HiCoNS ’13.

[2] C. Liu, C. Yang, and Y. Shen, “Leveraging microarchitectural side chan-
nel information to efficiently enhance program control flow integrity,”
CODES ’14.

[3] J. Song and G. Parmer, “C’mon: a predictable monitoring infrastructure
for system-level latent fault detection and recovery,” in Proceedings of

the 21st IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2015.
[4] J. Song, J. Wittrock, and G. Parmer, “Predictable, efficient system-level

fault tolerance in C3,” in Proceedings of the 2013 34th IEEE Real-Time

Systems Symposium (RTSS), 2013, pp. 21–32.
[5] H. Mannila, H. Toivonen, and A. Inkeri Verkamo, “Discovering frequent

episodes in sequences,” KDD ’95.
[6] C. Braune, S. Besecke, and R. Kruse, “Density based clustering:

Alternatives to dbscan,” 2015.
[7] J. Song and G. Parmer, “C’MON: a predictable monitoring infrastruc-

ture for system-level latent fault detection and recovery,” in RTSS, 2013.
[8] J. Song, J. Wittrock, and G. Parmer, “Predictable, efficient system-level

fault tolerance in C3,” in RTSS, 2013.
[9] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell, “Applying new

scheduling theory to static priority pre-emptive scheduling,” Software

Engineering Journal, 1993.
[10] B. Brandenburg and J. Anderson, “Feather-trace: A light-weight event

tracing toolkit,” in OSPERT, 2007.
[11] T. Bird, “Measuring function duration with ftrace,” in Proceedings of

the Linux Symposium, 2009.
[12] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic

instrumentation of production systems,” ATEC ’04.
[13] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong,

“Anomaly detection using call stack information,” S&P ’03.
[14] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast automaton-

based method for detecting anomalous program behaviors,” S&P ’01.
[15] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based

architecture for intrusion detection,” NDSS ’03.
[16] R. Mitchell and R. Chen, “Effect of intrusion detection and response on

reliability of cyber physical systems,” IEEE Transactions on Reliability,
2013.

[17] T. Lane, C. E. Brodley et al., “Sequence matching and learning
in anomaly detection for computer security,” in AAAI Workshop: AI

Approaches to Fraud Detection and Risk Management, 1997.
[18] A. Kulkarni, Y. Pino, M. French, and T. Mohsenin, “Real-time anomaly

detection framework for many-core router through machine learning
techniques,” ACM Journal on Emerging Technologies in Computing

(JETC), 2016.
[19] M. Salem, M. Crowley, and S. Fischmeister, “Anomaly detection using

inter-arrival curves for real-time systems,” ECRTS ’16.
[20] S. Chakraborty, S. Kunzli, and L. Thiele, “A general framework

for analysing system properties in platform-based embedded system
designs,” Date ’03.

	Introduction
	Threat Model
	Machine Learning Algorithms
	System Design
	Composite and C'Mon background
	CAML infrastructure

	System Timing Analysis
	Response Time Analysis (RTA) Model
	Schedulability Evaluation

	Experiments
	FlightGear Simulator
	Experimental results

	Related Work
	Conclusions
	References

