
1

The Need for Power Debugging in the Multi-Core
Environment

Jie Chen, Guru Venkataramani, Gabriel Parmer
The George Washington University, Washington, DC

F

Abstract—Debugging an application for power has a wide array of
benefits ranging from minimizing the thermal hotspots to reducing the
likelihood of CPU malfunction. In this work, we justify the need for
power debugging, and show that performance debugging of a parallel
application does not automatically guarantee power balance across
multiple cores. We perform experiments and show our results using
two case study benchmarks, Volrend from Splash-2 and Bodytrack from
Parsec-1.0.

Index Terms—Multi-cores, Power Debugging, Power Imbalance.

1 INTRODUCTION

Multi-core processors have fueled computing perfor-
mance to greater scales by offering parallelism on chip.
As processors include higher order numbers of cores,
power consumption is becoming an important constraint
for nearly all types of computer systems.

In particular, uneven power consumption across dif-
ferent cores could complicate heat dissipation and elec-
tric supply in multi-core systems [13]. This is because
local thermal hotspots are largely dependent on power
over time. Also, as processor demands rapidly change
the current consumption over a short timeframe, supply
voltage perturbations may occur. This leads to power-
delivery subsystem having large parasitic inductance
causing voltage ripples on the chip’s supply lines. As
voltage ripples become significant and exceed the toler-
ance range, CPUs may begin to malfunction [7]. Such
undesired effects can be avoided if we balance the
power consumption across the cores, and reduce the
total power where possible.

Existing research is mostly dedicated for debugging
performance and load balance in applications [1], [8].
Although, performance is critical to realizing the promise
of multi-core architectures, we note that achieving power
balance between the cores is equally important for scala-
bility of systems, and reducing the cooling costs of large
scale machines.

The main goal of this article is to motivate the need
for power debugging in the multi-core environment.

Manuscript submitted: 14-Oct-2011. Manuscript accepted: 30-Dec-2011.
Final manuscript received: 30-Dec-2011.

Specifically, for a parallel application running on a multi-
core processor, we show that balanced performance be-
tween threads does not automatically guarantee power-
balance across the cores. We define performance balance
as each thread taking equal amount of execution time
inside a parallel section, and power balance as each
core consuming equal amounts of power (in a Symmet-
ric Multi-core system). The degree of performance (or
power) imbalance between threads is measured as the
difference between the highest and the lowest execution
time (or power). While performance debugging is pri-
marily just about reducing the execution time of a slow
running thread, power debugging entails more careful
optimizations to distribute power across the threads. For
heterogeneous multi-cores, where individual cores can
have varying capabilities, careful allocation of power
budget to the cores is even more significant. In order
to effect proportional and balanced power consumption
across multiple cores, we note that understanding the
existence of power imbalance is necessary.

The main contributions of our work are:
• We motivate the need for power debugging, and

show that a performance balanced program can still
suffer from power imbalance.

• We study the power consumption by individual
threads on different µarchitectural units and observe
that power imbalance can stem from certain units
more than others. We also perform studies to explain
the power variations by mapping power to the code
executed and the events experienced by each thread.

• We conduct experiments using SESC simulator [17],
and applications from SPLASH-2 [19] and PARSEC-
1.0 [3]. We show our results using two case study
benchmarks namely Volrend (SPLASH-2) and Body-
track (PARSEC-1.0).

2 POWER DEBUGGING

2.1 Motivation

Intuitively, one can think of achieving power balance
simply by eliminating performance imbalance between
the threads. However, in reality, we find numerous in-
stances of parallel sections from real-world applications



2

TABLE 1
Performance and Dynamic Power imbalance in SPLASH-2 and PARSEC-1.0 benchmarks with 8 threads.

Application Parallel Section Num. of Dynamic % of Appln. Avg. Performance Avg. Dynamic
(File/Function) Instances Exec. Time Imbalance Power Imbalance

Volrend adaptive.c/ray trace(...) 3 28.39% 0.02% 14.32%
(SPLASH-2)
Barnes load.C/maketree(...) 4 69.03% 1.95% 17.25%
(SPLASH-2)
Cholesky solve.C/Go(...) 1 16.23% 4.64% 36.31%
(SPLASH-2)
Bodytrack WorkerGroup.cpp/ 82 78.64% 1.08% 9.61%
(PARSEC-1.0) WorkerGroup::Run()
Canneal annealer thread.cpp/ 1 0.08% 1.98% 13.47%
(PARSEC-1.0) annealer thread::Run()

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0 1 2 3 4 5 6 7 

execution time dynamic power 

Thread ID 

(a) Volrend

0	
  
0.1	
  
0.2	
  
0.3	
  
0.4	
  
0.5	
  
0.6	
  
0.7	
  
0.8	
  
0.9	
  
1	
  

0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
  

execu1on	
  1me	
   dynamic	
  power	
  

Thread	
  ID	
  

(b) Bodytrack

Fig. 1. Execution time and Dynamic Power of parallel
sections normalized to the thread with the highest ex-
ecution time. Individual cores are 4-wide, out-of-order
processors.

such as SPLASH-2 [19] and PARSEC-1.0 [3], where per-
formance is mostly balanced and the dynamic power
remains imbalanced across the cores. We note that both
of our benchmark suites have been extensively studied
and are well-tuned for performance.

Table 1 shows example parallel sections with 8 threads
running on 8 cores and their corresponding performance
and power imbalance. In all of our experiments, by
default, we use SESC [17], a cycle-accurate, multi-core
architecture simulator, to model an 8-core Intel Core i7-
like processor running at 3 GHz [9]. Each core is 4-
wide, out-of-order with 32 KB private L1 caches, 256

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0 1 2 3 4 5 6 7 

execution time dynamic power 

Thread ID 

(a) Volrend

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0 1 2 3 4 5 6 7 

execution time dynamic power 

Thread ID 

(b) Bodytrack

Fig. 2. Execution time and Dynamic Power of parallel
sections normalized to the thread with highest execution
time. Individual cores are 4-wide, in-order processors.

KB private L2 cache and a 16 MB shared L3 cache [12].
For power estimation, we use Wattch model [5]. Fur-
thermore, we focus on dynamic power consumption; we
plan to consider leakage power as part of our future
work.

In benchmarks like volrend, barnes and bodytrack,
certain parallel sections, that account for a significant
amount of the total execution time, have less than 2%
performance imbalance and up to 17.25% imbalance in
dynamic power consumption between the threads. We
find that performance balance across the threads can be
achieved through hardware optimizations such as out-
of-order execution, prefetching data, and so on. How-



3

0	
  
0.5	
  
1	
  

1.5	
  
2	
  

2.5	
  
3	
  

3.5	
  
4	
  

IT
LB
	
  

IC
AC

HE
	
  

BP
RE

D	
  
RO

B	
  
RE

N
AM

E	
  
RE

GF
IL
E_
RD

	
  
SC
HE

DU
LE
R	
  

IN
T_
AL
U
	
  

FP
_A

LU
	
  

DL
1_
RD

	
  
L2
CA

CH
E	
  

DT
LB
	
  

LD
_S
T_
Q
	
  

RE
GF

IL
E_
W
R	
  

DL
1_
W
R	
  

D
yn

am
ic

 P
ow

er
 (W

) 

IF ID/ISSUE EXE MEM WB 

(a) Volrend

0 

0.5 

1 

1.5 

2 

2.5 

3 

IT
LB

 
IC

A
C

H
E 

B
PR

ED
 

R
O

B
 

R
EN

A
M

E 
R

EG
FI

LE
_R

D
 

SC
H

ED
U

LE
R

 
IN

T_
A

LU
 

FP
_A

LU
 

D
L1

_R
D

 
L2

C
A

C
H

E 
D

TL
B

 
LD

_S
T_

Q
 

R
EG

FI
LE

_W
R

 
D

L1
_W

R
 

D
yn

am
ic

 P
ow

er
 (W

) 

IF ID/ISSUE EXE MEM WB 

(b) Bodytrack

Fig. 3. Breakdown of dynamic power consumption by
individual µarchitectural units across 8 threads.

ever, the power consumption by individual functional
units and the processor cores is still determined by the
amount of work to be performed. Therefore, we make a
case that achieving performance balance between threads does
not automatically guarantee power balance between the cores.

We pick two case studies, Volrend and Bodytrack,
based on their significant power imbalance despite al-
most perfect performance balance, and the number of
dynamic instances in their parallel section. In volrend,
the parallel section under consideration first pre-shades
and then non-adaptively raytraces from its node. In
bodytrack, the parallel section under consideration first
determines the rank value for each thread, fires off the
threads that calculate the weight of particles, and later
filter them based on calculated weights.

Figure 1 shows the normalized average execution
time and power consumption across all the dynamic
instances, and the range of normalized values are shown
on top of each bar. All the numbers are normalized
with respect to the execution time and power of the

TABLE 2
Correlation co-efficient between Scheduler (SCHED)

Power and Load/Store Queue (LD ST Q) Power against
the rate of load instructions.

Volrend Bodytrack
Thread ID Correlation between rate of Load

Instructions and Power consumed by
SCHED LD ST Q SCHED LD ST Q

0 0.99 0.99 0.99 0.98
1 0.97 0.98 0.99 0.98
2 0.98 0.98 0.99 0.99
3 0.99 0.99 0.99 0.99
4 0.97 0.98 0.99 0.99
5 0.97 0.99 0.99 0.98
6 0.98 0.98 0.99 0.99
7 0.85 0.91 0.99 0.99

slowest thread in the corresponding dynamic instance.
Our experimental results show that even though the
threads have well-balanced execution time (≈ 1%), dy-
namic power imbalance is still quite high (approximately
14.3% in volrend and 9.6% in bodytrack).

In order to find the reasons behind this power imbal-
ance despite the performance balance across the threads,
we repeat our experiments on SESC that models an 8-
core processor with in-order cores, while keeping all
other parameters unchanged. Figure 2 shows the results.
The intuition behind this experiment is that the dynamic
power needed to execute a set of instructions should rea-
sonably track performance in in-order cores (especially
in the absence of other hardware effects such as out-of-
order issue and speculative execution of instructions).
Experimentally, we verified that factors such as cache
hit and miss rates in L1 and L2, branch misprediction
rates remained unchanged between in-order and out-
of-order versions. We observed that the average IPC
(across cores) of 0.57 in 4-wide out-of-order dropped to
0.18 in 4-wide in-order for volrend, and similarly, the
average IPC dropped from 0.89 in 4-wide out-of-order to
0.18 in 4-wide in-order for bodytrack. This proves that
hardware optimizations such as out-of-order execution,
while improving performance, may not necessarily aid
power balance between the cores.

2.2 Breakdown by µarchitectural components
To characterize power consumption behavior by the
multi-core application and effect changes in program
code for more balanced power consumption across cores,
fine-grain information is necessary. We perform experi-
ments to measure the power consumption in individual
µarchitectural units across all threads. Figure 3 shows
the results of our experiments. We note that the sched-
uler and load/store queue (LD ST Q) are major power
consuming units in both benchmarks. For example, in
volrend, LD ST Q shows up to 23% variation in power
between ThreadID #2 and ThreadID #6, even though
these threads have similar performance.



4

To further explain the variations in power consump-
tion between threads on specific µarchitectural units, we
correlated power consumed by Scheduler and load/store
queue against the rate of load instructions executed by
the core. Table 2 shows the results of our experiments.
In bodytrack, we observed strong correlation (≥0.98)
across all of the threads. In volrend, we find high
correlation coefficients (>0.9) for LD ST Q. From these
experiments, we infer that variations in power consumed
by these µarchitectural units are caused by the rate of
load instructions executed by the core. Note that this
behavior may vary across applications– for example,
in an application dominated by branch instructions, a
branch predictor with higher misprediction rate may
lead to power imbalance between different cores.

3 RELATED WORK

A number of prior works have proposed µarchitecture
power estimation models. As examples, Wattch [5] pro-
vides high-level simulator framework to quantify power
for major units of the processor based on structure
types and wire delay; McPAT [14] has an integrated
power, area, and timing modeling framework for multi-
core processor configurations; Intel’s Architecture Level
Power Simulator (ALPS) [18] was developed to profile
power consumption from individual Functional Units in
Pentium 4 processor chip; IBM’s PowerTimer toolset [4]
facilitates early-stage power and performance analysis
of processor design. We note that such frameworks
can be used to observe the power consumption of the
µarchitectural units, and hence help programmers with
power debugging their software.

Prior works have also studied runtime power estima-
tion. Isci et al. [10] use sampled multimeter power mea-
surements and estimates based on performance counter
readings to calibrate power consumption for individual
functional units. Powell et al. [16] measure utilization
statistics such as IPC, and build linear regression models
to estimate activity factor and dynamic power for the
core.

To reduce power consumption in multicores, prior
works look at putting idle threads into low power
states [13], stretching computation of non-critical thread
via DVFS [15], [6], [2] and so on. Kumar et al. [11]
reduce power consumption on heterogeneous cores by
scheduling threads on core with the best performance to
power ratio. We note such techniques can be applied as
power saving strategies once we identify code regions
that are responsible for high power consumption.

4 CONCLUSIONS AND FUTURE WORK

In this work, we propose the need for power debugging,
and show that performance debugging of a parallel
application does not automatically guarantee power bal-
ance across the multiple cores. Our experiments show
that significant power variations exist across threads
even for programs that have performance balance.

As future work, we plan to develop a hardware-
software cooperative framework that shall efficiently
aggregate power-related metrics and attribute them to
program code. This will help the programmer or the
software layers to power debug their code easily. We
will expand our studies to other non-scientific and com-
mercial applications that can yield us further insight into
power debugging. We will also study scalable ways to
extend our framework to large scale systems.

5 ACKNOWLEDGMENTS
This material is based upon work supported in part by
the National Science Foundation under Grant No. CCF-
1117243.

REFERENCES
[1] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of

performance asymmetry in emerging multicore architectures. In
ISCA, 2005.

[2] A. Bhattacharjee and M. Martonosi. Thread criticality predictors
for dynamic performance, power, and resource management in
chip multiprocessors. In ISCA, 2009.

[3] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. Princeton
University Technical Report TR-811-08, January 2008.

[4] D. Brooks, P. Bose, V. Srinivasan, M. K. Gschwind, P. G. Emma,
and M. G. Rosenfield. New methodology for early-stage,
microarchitecture-level power-performance analysis of micropro-
cessors. IBM J. Res. Dev., 47, September 2003.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA,
2000.

[6] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and
A. González. Meeting points: using thread criticality to adapt
multicore hardware to parallel regions. In PACT, 2008.

[7] M. S. Gupta, J. L. Oatley, R. Joseph, G-Y Wei, and D. M. Brooks.
Understanding voltage variations in chip multiprocessors using
a distributed power-delivery network. In DATE, 2007.

[8] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era.
Computer, 41(7), July 2008.

[9] Intel Corporation. Intel Core i7 Processor Family for the LGA-
2011 Socket. Datasheet, 1, 2011.

[10] C. Isci and M. Martonosi. Runtime power monitoring in high-end
processors: Methodology and empirical data. In MICRO, 2003.

[11] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas. Single-ISA Heterogeneous Multi-Core Architectures for
Multithreaded Workload Performance. In ISCA, 2004.

[12] D. Levinthal. Performance Analysis Guide for Intel Core i7 Pro-
cessor and Intel Xeon 5500 processors. Intel Performance Analysis
Guide, 2009.

[13] J. Li, J. F. Martinez, and M. C. Huang. The thrifty barrier: Energy-
aware synchronization in shared-memory multiprocessors. In
HPCA, 2004.

[14] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore architectures.
In MICRO, 2009.

[15] S. Park, W. Jiang, Y. Zhou, and S. Adve. Managing energy-
performance tradeoffs for multithreaded applications on multi-
processor architectures. In SIGMETRICS, 2007.

[16] M. D. Powell, A. Biswas, J. S. Emer, S. S. Mukherjee, B. R. Sheikh,
and S. Yardi. CAMP: A technique to estimate per-structure power
at run-time using a few simple parameters. In HPCA, 2009.

[17] J. Renau et al. SESC. http://sesc.sourceforge.net, 2006.
[18] D. M. Carmean S. H. Gunther, F. Binns and J. C. Hall. Managing

the impact of increasing microprocessor power consumption. In
Intel Technology Journal Q1 2001, 2001.

[19] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Methodological
Considerations. In ISCA, June 1995.


