
Predictable, System-Level Fault Tolerance in Composite
Jiguo Song, Gabriel Parmer
The George Washington University

Washington, DC
{jiguos,gparmer}@gwu.edu

Intermittent faults are an increasingly challenging diffi-
culty in embedded and real-time systems. As process tech-
nologies shrink circuitry, it becomes increasingly susceptible
to transient faults from radiation sources such as cosmic
rays. Additionally, as software complexity increases, inter-
mittent faults such as race conditions challenge software re-
liability. Given these motivations, research has approached
the paired problems of recovering from a fault, and doing so
predictably. However, most past research has been limited in
focus to the predictable recovery of faults at the application-
level. Examples include systems infrastructures [2] enabling
application fault recovery, and scheduling theory [3] that
considers periodic faults, and the impact on schedulability
for recovery and re-execution of failed applications.

system

Application A Application B

sched mem mgr

high
prio

low
prio

syscalls

(a) Traditional Systems (b) C3

Figure 1: (a) Traditional application-level, predictable

fault tolerance using a technique such as check-pointing

or recovery blocks for recovery. (b) C3: for the recovery

of failed system services, within bounded time, and at

the priority of any application that requires service.

In this paper, we discuss a system we’re researching called
C3, the Computational Crash Cart. Table 1(a) depicts a
traditional system focused on application-level recovery, and
(b) C3 for predictable recovery of system-level services such
as the scheduler and memory manager. We implementing C3

in the Composite component-based operating system [1].

Challenges and techniques for predictable, system-
level fault recovery:

• Fault propagation. Service implementation in the ker-
nel in common monolithic systems makes fault propaga-
tion more likely. A fault in one logical service cannot be
prevented from corrupting memory in other, unrelated
system services. C3 uses Composite’s pervasive use of
hardware protection domains to constrain propagation.

• State recovery. When a system service fails, it is not
straightforward to recover its state. Such services are
highly concurrent, and contain data-structures describ-
ing many task’s resources. To illustrate the difficulties in
state recovery, we observe a traditional technique: check-
pointing. A checkpoint of the service has periods of in-
consistency with the state of a task – a scheduler that dis-
patches a task after a checkpoint will lose the accounting
for that time if it rolled back. Instead, C3 takes advantage
of communication protocols between tasks and services,
and records the state of all resources manipulated via that
communication. This communication is replayed when a
service fails to reestablish a consistent service state.

Operation Memory Manager Scheduler
Reboot: End to End 35.24(0.61) 46.34(1.65)
Reboot: Memory Ops 31.72(0.33) 36.86(1.72)

Composite: Invocations 2.10(0.23) 1.29(0.13)
C3: Invocations 2.31(0.08) 1.33(0.02)

Table 1: Recovery Costs (avg(stddev) in µsecs)

• Prioritized recovery. System services might be utilized
by both hard real-time tasks of different priorities, and
best-effort tasks. The recovery of a system service should
execute at the proper system priority. C3 does this via
1) explicit priority inheritance of the recovery process,
and 2) per-task recovery of their own state in the service
via replay. These techniques bound interference in the
recovery process, and minimize inter-task interference.

• Schedulable service failure. Traditional techniques [3]
for scheduling recovery do not apply to system service re-
covery as the timing of possibly all tasks in the system are
effected by recovery. We are currently defining schedula-
bility analysis for system recovery in C3.

We are not focusing on related problems such as fault de-
tection, and instead rely on complementary techniques [4].

Table 1 shows preliminary C3 experiments for the recov-
ery of the system scheduler and physical memory mapper,
measured on an Intel i7 at 2.4 Ghz. Each service executes in
a private memory protection domain (via page-tables), and
invocations are via RPC. For the memory manager, a task
maps a page, aliases it, and then removes both mappings (3
RPCs). For the scheduler, two threads switch back and forth
by blocking and waking up (2 RPCs and a thread switch).
End to end recovery costs measure the cost of these invoca-
tions when a fault occurs in the service. This necessitates re-
booting the service, and replaying the communication from
the tasks. We note that the costs of recovery are small (35
and 46 µsec) with small variation, and are dominated (over
80% of the cost) by mem_cpy and mem_set to reset the ser-
vice’s memory to an initial state. The overhead of tracking
communication between components differs for the services:
12% overhead for C3 invocations over native Composite for
the memory manager, and 2% for the scheduler.

Continued and future work. We believe these results
show the promise of C3, and system-level fault recovery.
Research remains to address the issues of schedulability, gen-
erality to other system services, ease of programming, and
a validation of the timing properties.

References
[1] The Composite component-based system:

http://composite.seas.gwu.edu.
[2] A. Egan, D. Kutz, D. Mikulin, R. Melhem, and

D. Mosse. Fault-tolerant rt-mach and an application to
real-time train control. Software Practice and
Experience, 1999.

[3] P. Mejia-Alvarez and H. Aydin. Scheduling optional
computations in fault-tolerant real-time systems. In
RTCSA, 2000.

[4] K. Pattabiraman, V. Grover, and B. Zorn. Protecting
critical data in unsafe languages. In Eurosys, 2008.


