
Toward Predictable, Efficient, System-Level Tolerance of Transient Faults∗
Jiguo Song, Gabriel Parmer

The George Washington University
Washington, DC

{jiguos,gparmer}@gwu.edu

Abstract—As embedded and real-time systems increase in
complexity, and as chip process technologies continually decrease
feature size, transient faults increasingly threaten system failure.
This paper introduces C3, an system to tolerate system-level
faults (e.g. in the scheduler). When considering predictable
recovery of system-level components, we introduce recovery
interference, a side-effect of system-level recovery that causes
possibly unbounded priority inversion. We discuss an interface-
driven recovery technique that is effective, efficient, and uses
on-demand recovery to avoid recovery interference.

I. INTRODUCTION

The ability of embedded and real-time systems to tolerate
unexpected changes in their environment is of increasing
importance. An important class of environmental influences
that can manifest in faulty software behavior are those induced
by micro-architectural effects that deviate from the specified
behavior. As chips continue toward smaller processes (e.g.
down to a 22nm feature size and beyond), the likelihood of
incorrect results increases due to manufacturing error, heat
damage, and other physical effects. Additionally, Single-Event
Upsets (SEUs) due to environmental radiation can cause cor-
ruption of transistor state leading to bit-flips in chip structures.
Adapting to and tolerating these effects at the software level
is a contributing factor to continue process-driven progress
toward smaller, denser, and faster systems.

Tolerating faults in system-level components – that define
system scheduling, memory management, and I/O processing
– is important: nearly 65% of these hardware errors corrupt
OS state [1] before they’re detected. However, tolerating
these faults is particularly difficult: such components provide
services that are used by multiple applications (and other
system components), and when they fail, their internal state
must be rebuilt such that it is consistent with the service
previously provided to the rest of the system. For example, if
an application has previously opened a file, and written data
to it, then a file system that experiences a failure must be re-
constituted in a manner that includes the open, modified file; a
faulted physical memory manager/mapper must re-create state
the describes all memory mappings created in the system so
far.

Figure 1 depicts traditional fault tolerance of applications,
and our system for system-level service failure. The impact of
recovery for a system-level component affects all applications
that harness its functionality, at all priorities.

A complicating factor in reconstructing a consistent state in
a failed system component is that their consistency is defined

This material is based upon work supported by the National Science Foun-
dation under Grants No. CNS 1137973, CNS 1149675, and CNS 1117243.
Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

system

Application A Application B

sched mem mgr

high

prio

low

prio

syscalls

ipc

(a) Traditional Systems (b) C3

Fig. 1. (a) Traditional application-level, fault tolerance using a
technique such as check-pointing or recovery blocks for recovery.
(b) C3: for the recovery of failed system services, within bounded
time, and at the priority of any application that requires service.

by complicated interactions with many other components.
For example, a service request from a real-time task might
require memory allocation to hold file data in the file-system,
and recovery will be different before that file is updated,
and after. Concurrency in system components complicates
consistency as well, as the component state is defined by a
specific interleaving of the threads. In contrast, many real-time
tasks that accept input at job activation, and provide actuator
commands at the end have very well-structured interactions
with the system, thus enabling simple recovery techniques
such as the use of recovery blocks [2] that essentially enable
task state to be saved at activation, and restored if it fails.

Importantly, re-building the state of a system component
must be integrated into a schedulability analysis so that system
designers can have increased confidence in the temporal
behaviors of the system. This is complicated by the very
nature of systems components: they provide service to many
other system components, all of which can suffer delay during
their recovery. In this paper, we focus on an introduction to the
design and implementation of our Computational Crash Cart
system, C3, and discuss the decisions that impact schedula-
bility analysis, though we leave that analysis for future work.

Contributions. (1) We introduce recovery interference that is
similar to priority inversion in the sense that lower priority
or best-effort tasks cause increases in the execution time of
high-priority tasks during recovery. This effect is due to the
recovery of objects (e.g. component-specific abstractions such
as files, pages, threads) in a faulted system component that
are not required by the high-priority task. The time taken to
recover these objects represents interference in high-priority
task execution. This recovery interference is unbounded when
we cannot place an a-priori bound on the number of objects
accessed only by low-priority/best effort tasks that must be
recovered. (2) We introduce an interface-driven approach to
recovering from system-level component faults. All commu-
nication between components is interposed on, and the state
of each object operated on by that interface is tracked during



normal execution. When a component fails, all components
that depend on it for service, transparently bring it into a con-
sistent state by using the functions in the interface themselves
to recreate the expected object state. Components additionally
introspect on the interfaces of components they depend on to
recreate the provided objects. (3) Using the interface-driven
component recovery support, we introduce two system fault
recovery techniques: eager recovery that at fault time rebuilds
a fully consistent state for the component, and on-demand
recovery. Eager recovery suffers from significant recovery
interference as recovery of even low-priority and best-effort
thread’s objects is done at component reboot time. On-demand
recovery, on the other hand focuses on recovering objects at
the priority of the thread operating on the object. In fact the
entire recovery process is conducted at the priority of the
highest-priority thread accessing the faulted component.

This paper is organized as follows: Section II discusses
related work, Section III describes the design and implementa-
tion of interface-driven, on-demand recovery in C3, Section IV
evaluates the system, and Section V concludes and discusses
future work.

II. RELATED WORK

Fault tolerance mechanisms. Many fault tolerance mech-
anisms have been studied for user-level tasks including N-
version programming [3], and redundant multi-threading [4].
These techniques require N times the amount of resources to
perform the redundant computation, and their focus has not
been on low-level systems components. In contrast, recovery
blocks [2] rely on re-execution of a task when a fault occurs.
These techniques are less applicable to highly concurrent sys-
tem components with complex dependencies on other system
services.
System-level fault tolerance. A number of systems tolerate
system faults using external trusted stores [5], or separating
client data [6]. C3 provide an efficient, predictable recovery
solution that focuses on considering and minimizing recovery
costs on the timing properties of the system.
Predictable fault tolerance. Past schedulability analysis with
fault tolerance focus on application recovery (often with
temporal replication or job re-execution). A sample of this
research includes [7], [8]. In this paper, we investigate system
support for the schedulability analysis of low-level component
failures by providing low bounds on recovery, and avoiding
recovery interference. We believe this will motivate future
work on the supporting schedulability analysis.

III. FAULT TOLERANCE IN C3

C3 focuses on interface-driven, on-demand recovery of
failed system components, motivated by the following goals.
G1 Minimizing fault propagation. In traditional monolithic

operating systems, a failure in system services can propa-
gate broadly to other system services. Boundaries to prevent
errant memory writes from corrupting arbitrary memory
are required. Even with memory protection boundaries,
any channel for communication between components can
propagate faults. Though this channel for propagation can-
not be completely removed, it should be minimized by

only enabling communication when required, and statically
defining the correct ranges of passed data.

G2 Component µ-reboot. When a system component fails, it
must be µ-rebooted [9]. The overhead of this operation is
unavoidable, and no other component that requires the com-
ponent’s service can proceed until µ-reboot is completed.
This operation must then be both efficient and predictable.

G3 Rebuild a consistent state. System services are unique in
that their internal data-structures often represent side-effects
in other components and applications. These include open
files, and file contents, pages that have been mapped into
other components, and runqueues of threads that execute
in other components. These data-structures must be recon-
structed after µ-reboot and placed into a consistent state
with the rest of the system.

G4 Predictable recovery. The system must be able to bound
the extent of recovery for real-time tasks, and should pre-
vent recovery interference to higher-priority tasks. Notably,
to the largest extent possible, the recovery procedure should
be performed at the priority of the highest-priority task
that requires the failed service. Figure 2 emphasizes the
difficulty in providing predictable recovery.

G5 Fault detection. An erroneous condition is dealt with as
a fault after it is detected. The sequence in Figure 2 begins
after successful detection. This paper does not focus on
fault detection, instead relying on programmer annotation
(asserts) and hardware faults (e.g. page-faults).

Fig. 2. A timeline of recovery for a system that includes the
time for reinitializing the component, and the data-structures in the
component for objects provided to a high-priority and low-priority
thread. (a) does traditional eager recovery with recovery inversion
for time spent recovering low-priority objects, and (b) on-demand,
priority-driven recovery that executes recovery of objects as they are
operated on by threads. Thus these objects are recovered for lower-
priority threads at the correct priority.

A. COMPOSITE Component-based OS

We implement the C3 prototype on top of the COMPOSITE
component-based OS (composite.seas.gwu.edu). Abstractions,
mechanisms, and policies for resource management and us-
age are defined in separate, fine-grained components. Each
component exports a set of interfaces including functions that
other components can invoke, and has a set of dependencies
on components with functions it can invoke. By default,
protection domains (provided by hardware page-tables) isolate
each separate component, requiring invocations between com-
ponents to be mediated by the kernel to switch page-tables.
Additionally, a capability-based access control mechanism
limits communication between components. This fine-grained
isolation, and controlled communication helps provide G1.
Fault detection. COMPOSITE converts hardware exceptions
such as page-faults into component invocations of special

composite.seas.gwu.edu


handler functions. In this way, a fault produces execution in a
recovery component that implements the recovery procedure.
Support for µ-reboot. We observe that the initial phase
of recover where the memory of the failed component and
execution in it is re-initialized must be completed before
any additional recovery of state is performed. It therefore
represents the bare-minimum cost of recovery (designated as
“reinitialization” in Figure 2). In C3, we optimize this cost by
avoiding to clean up the previous component (e.g. analogous
to killing the process), and also avoid recreating a new one
(fork a new process to replace the previous). Instead, we reuse
the existing component by reinitializing its memory. This
avoids the costs memory management operations for page-
table, and component meta-data recreation. Thus the costs
of µ-reboot are bounded by a function of the size of the
component image, and the cost of execution in cos_init
– the component equivalent of the main function. This
optimized and predictable support for µ-reboot satisfies G2
and aids in G4.

B. Interface-driven State Replication and Reconstitution

Component’s interfaces are explicit, and COMPOSITE has
mechanisms to enable the stubs that marshal and demarshal
invocation arguments to be customized. C3 uses this support
to provide light-weight stubs that: 1) uses a parametrized
state machine to track the current state of individual objects
(memory pages, threads, locks, files descriptors) that are
operated on by the interface – for example, tracking the
file path, current offset into the file, and data being written,
2) includes a number of introspection functions that can be
used to ascertain the current state of an object provided by
an interface, 3) include recovery functions – triggered when
a depended-on component fails – that recreate a consistent
state for each object (toward G3) through use of the normal
functions in the interface (e.g. by re-opening and seeking to
the current position), 4) and check for out-of-specification
arguments to aid in the detection of faulty communication
(toward G5).
Interface introspection. When a component is µ-reboot, it
will introspect on the interfaces it depends on to recreate
its own state for any objects previously provided to it –
for example, open network connections, or to notify that
component that it no longer needs those objects – for example,
any locks that were only pertinent to pre-µ-reboot execution.

C. Demand-driven Recovery

A key question we address in C3 is when should the state
for the objects previously provided by a failed component be
rebuilt using the interface-driven technique? We have evalu-
ated two designs: (1) Eager recovery in which part of the µ-
reboot process is to upcall into each component that depends
on the failed component, and have them recreate all objects via
interface functions. (2) Demand-driven recovery in which no
object recovery via interfaces are recreated immediately upon
failure. Instead, this recreation is performed on-demand: when
a client component performs an operation on a component
(e.g. a file read, blocking a thread, or mapping a page), the
stub is notified that a failure has happened in the past, and it

recreates the current state of the object. Figure 2(b) depicts
the difference between these two approaches in at timeline
starting with fault detection.

The significance of these two options is substantial: eager
recovery results in execution at the time of µ-reboot to
recovery all object state that existed in the component when
it failed. This imposes recovery interference as lower-priority
objects are recovered while higher-priority tasks must wait. If
best-effort tasks utilize a shared service with real-time tasks
(e.g. the scheduler), and they have no bound on the number
of objects they can create (threads), recovery interference is
unbounded. C3 is therefore focused – by G4 – on on-demand
recovery to enforce timing bounds on recovery parameterized
only by component re-initialization time, and the number and
type of objects each thread uses.

IV. EVALUATION

We evaluate three important system components: 1) the
system scheduler, 2) the system physical memory manager and
mapper, and 3) a RAM-based file system. These components
export the following objects, respectively: threads – that are
created, blocked, woken, and destroyed; memory pages – that
are granted, aliased (for shared memory), and revoked [10];
and files – that are opened, closed, read, and written.

Experiments are run on an Intel i7-2760QM running at 2.4
Ghz. Though these numbers might not be representative of
constrained system performance, many non-deeply embedded
domains aren’t as constrained by size and power. Future work
will involve evaluating on more constrained systems.
Workload. The results are generated for each system compo-
nent while running the following workload:
• Scheduler (Sched): Two threads essentially perform a ping-

pong, blocking and waking each other in turn.
• Memory Manager (MM): Real-time threads are granted

memory pages and use those as a statically-allocated
region; no further interactions are made with the memory
manager. Best-effort subsystems are granted a number
of pages, and these pages are aliased three times, and
then revoked, which removes all aliases. This process is
completed to synthesize memory strain in the system.

• RAM File System (FS): Files are opened, written to, read
from, and closed.

A. Recovery Performance and Predictability

In this section, we evaluate (1) The cost of the re-
initialization phase of component µ-reboot including a) the
amount of time spent reinitializing memory, and b) the amount
of time spent re-initializing execution in cos_init. (2) The
cost of interface-driven re-creation of a consistent state for
each object. This cost, combined with the number of objects,
bounds the recovery interference cost of eager recovery, and
the per-task cost of on-demand recovery.

Table I shows the costs of different phases of µ-reboot
(memory reinitialization includes memcpy and memset, and
execution reinitialization is execution of cos_init), and
the cost to recreate, using interface functions, each object
provided by each component. Objects used by best effort
threads can be more expensive to recover (see the workload



Component µ-reboot – memory init. µ-reboot – execution init. RT task object recovery BE task object recovery
Sched 7.52 (0.10) 10.15 (1.00) 0.76 (0.06)∗ ← same
MM 16.06 (0.13) 4.00 (0.19) 0 (0) 5.23 (0.14)
FS 6.37 (0.06) 2.66 (0.08) 26.30 (2.20) / 5.00 (1.21)∗ ← same

TABLE I
THE AVERAGE (STDDEV) COSTS IN µ-SECONDS OF KEY RECOVERY OPERATIONS. ∗ SEE IN-TEXT QUALIFICATION.

description) than for real-time threads. We observe a large
deviation between the first file re-created and the rest due
to stack initialization [11], thus “first/rest” for file object
recovery. The per-thread recovery cost in the scheduler is
incurred at recovery time, not on-demand as recovery is
performed using introspection on the kernel interface. In on-
demand recovery, the best-effort threads are recovered during
idle time, thus avoiding interfere with real-time threads.
On-demand recovery. The per-object overheads for the ob-
jects used by real-time threads will impact only the execution
of those individual threads when a recovery happens. This
cost will factor into the schedulability test for each thread.
The best effort (and lower-priority thread) overheads will not
effect real-time threads.
Eager recovery. The per-object overheads for all threads
would need to be factored into the response-time analysis
for each thread, even those of the highest priority. Given a
sufficiently large number of objects used by lower-priority (in-
cluding best-effort) threads, this can have a highly-detrimental
effect on recovery timing guarantees for real-time tasks.
Perspective: Linux forking overheads. To put these numbers
into perspective, we compare the cost of µ-reboot in C3 to
the cost of forking a child process in Linux. Specifically, a
child process faults, and a notification is delivered via wait
to the parent, that re-forks the child. This process takes 42.64
+ N (1.61) µ-seconds, where N is the number of pages in a
static array in the child (when the child starts execution, it
touches these pages to make sure they are mapped in). As the
binary becomes larger, it comparably takes longer to fork it.
Note that a direct comparison to C3 cannot be made here, as
Linux does not implement system services as processes, thus
Linux cannot be used for system-level recovery. We include
these numbers only to put the relative performance of recovery
in C3 into perspective.

B. Recovery Infrastructure Overhead

The interface-based tracking of state has an overhead on
all component-communication. For example, when a file is
opened, a data-structure on the client side is created to
describe that file’s path, mode, and offset; when a thread
blocks using the scheduler interface, a data-structure saves
this state. The cost, in µ-seconds, of non-faulty invocations
for our three studied components for the each iteration of the
workloads described above are 1.45 + 0.34 (0.04) – formatted
as “performance without tracking + overhead of tracking
(standard deviation of overhead)”, 0.52 + 0.09 (0.03), and
1.65 + 1.8 (0.17), for the scheduler, memory manager, and file
system, respectively. Though this overhead is not insignificant,
there is room for optimization and we believe it is acceptable
for systems that require pervasive fault tolerance.

C. Success-rate of Recovery

Fault Model. We are targeting transient faults introduced by
in on-chip structures. We mimic these faults using bit-flips

within registers. We inject these faults every timer-tick (100
times a second) by iterating through all threads and flipping
register’s bits only if they are executing within the target
component. Undetected faults are ignored when measuring
recovery success. Successful recoveries are defined by the
continued execution of the workload post-recovery.

In this manner we inject 80 faults into the scheduler, and
300 each into the memory manager and file system. For these
injected faults, we observed a 100% recovery rate as the
system is rebuilt via interfaces.

V. CONCLUSIONS AND FUTURE WORK

This paper has introduced the Computational Crash Cart
system for the efficient and predictable tolerance of system-
level faults. We’ve introduced recovery interference in which
lower-priority tasks cause possibly unbounded interference in
the run-times of higher-priority tasks due to the mechanisms
of service recovery. To address this issue, we’ve also discussed
the on-demand recovery of system components to ensure
that all phases of recovery are performed at the proper
task priority. We’ve shown the interface-driven recovery in
C3 is also efficient. In future work, we will address the
issue of creating a scheduling analysis for systems with such
support for system-level fault recovery. Source code and more
information about the system is found at the COMPOSITE
webpage: composite.seas.gwu.edu.

REFERENCES

[1] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the propagation of hard errors to software and
implications for resilient system design,” in Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XIII), 2008.

[2] B. Randell and J. Xu, “The evolution of the recovery block concept,”
in in software fault tolerance. John Wiley and Sons Ltd, 1994.

[3] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE
Trans. Softw. Eng., vol. 11, December 1985.

[4] B. Döbel, H. Härtig, and M. Engel, “Operating system support for re-
dundant multithreading,” in Proceedings of the tenth ACM international
conference on Embedded software, 2012.

[5] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Construction of a highly dependable operating system,” in Proceedings
of the Sixth European Dependable Computing Conference, 2006.

[6] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell,
“Curios: Improving reliability through operating system structure,” in
Proceedings of the 8th Symposium on Operating Systems Design and
Implementation (OSDI), San Diego, CA, December 2008.

[7] G. M. de A. Lima and A. Burns, “An optimal fixed-priority assignment
algorithm for supporting fault-tolerant hard real-time systems,” IEEE
Transactions on Computers, vol. 52, pp. 1332–1346, 2003.

[8] P. Mejia-Alvarez, H. Aydin, D. Mosse, and R. Melhem, “Scheduling
optional computations in fault-tolerant real-time systems,” in Proceed-
ings of the Seventh International Conference on Real-Time Systems and
Applications, ser. RTCSA ’00, 2000.

[9] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot–a technique for cheap recovery,” in Proceedings of the 6th
Symposium on Operating Systems Design and Implementation (OSDI),
December 2004, pp. 31–44.

[10] G. Parmer and R. West, “HiRes: A system for predictable hierarchical
resource management,” in Proceedings of the 17th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2011.

[11] Q. Wang, J. Song, G. Parmer, G. Venkataramani, and A. Sweeney,
“Increasing memory utilization with transient memory scheduling,” in
Proceedings of the 33rd IEEE Real-Time Systems Symposium (RTSS),
2012.

composite.seas.gwu.edu

	Introduction
	Related Work
	Fault Tolerance in C3
	Composite Component-based OS
	Interface-driven State Replication and Reconstitution
	Demand-driven Recovery

	Evaluation
	Recovery Performance and Predictability
	Recovery Infrastructure Overhead
	Success-rate of Recovery

	Conclusions and Future Work
	References

