
Proceedings of the ASME 2014 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2014
August 17–August 20, 2014, Buffalo, NY, USA

DETC2014-35609

TEMPORALLY CONSISTENT SIMULATION OF ROBOTS AND THEIR
CONTROLLERS

James R. Taylor
Positronics Lab

Department of Computer Science
George Washington University

Washington, DC 20052
Email: jrt@gwu.edu

Evan M. Drumwright
Positronics Lab

Department of Computer Science
George Washington University

Washington, DC 20052
Email: drum@gwu.edu

Gabriel Parmer
Department of Computer Science
George Washington University

Washington, DC 20052
Email: gparmer@gwu.edu

ABSTRACT
Researchers simulate robot dynamics to optimize gains, tra-

jectories, and controls and to validate proper robot operation.
In this paper, we focus on this latter application, which allows
roboticists to verify that robots do not damage themselves, the
environments they are situated within, or humans. In current sim-
ulations, robot control code runs in lockstep with the dynamics
integration. This design can result in code that appears viable
in simulation but runs too slowly on physical systems. Address-
ing this problem requires overcoming significant challenges that
arise due both to the speed of dynamic simulation running time
(simulations may run 1/10 or 1/100 of real-time or slower) and
to the variability of the running times (e.g., the speed of collision
detection algorithms depends on pairwise object proximities).
These difficulties imply that one must not only slow the control
software but also scale controller running speeds dynamically.
We describe the numerous architectural and OS-level technical
challenges that we have overcome to yield temporally consistent
simulation for modeling robots that use only real-time processes,
and we show that our system is superior to the status quo using
simulation-based experiments.

Introduction
As dynamic simulation becomes increasingly prevalent in

roboticists’ software development cycle, new needs are begin-
ning to emerge. This paper addresses one such nascent need:

validation that controllers for robots modeled with physically ac-
curate dynamic simulation will function as desired when trans-
ferred to physically situated robots.

There exist numerous technical reasons at the systems level
that make the above goal surprisingly difficult, including archi-
tectural challenges (adapting existing simulation software toward
meeting the goal), scheduling challenges (slowing the rate of ex-
ecution of the controllers to match the time evolution of simu-
lations), and timing challenges (timing processes with sufficient
precision to measure high frequency control loops).

The technical challenges become particularly tortuous when
accounting for simulations and controllers that may run on
symmetric multi-processing, distributed processing systems, or
GPUs and when supporting simulations that use higher-order,
adaptive, or implicit integrators. This paper does not address
these considerations and instead focuses on the time consistency
between control software and the simulation under simpler con-
ditions.

We also avoid consideration of simulations that run signif-
icantly faster than real-time (we currently wish to steer clear of
investigations into how to “drop” cycles from controllers yet still
achieve some minimum level of simulated robot performance).
This omission is reasonable due to the common desire for high
accuracy in robotic simulations, which often require on the or-
der of a second of computation to simulate a second of time.
Simulations to-date typically focus on physical accuracy (i.e., at-
tempting to produce output that matches real world phenomena).

1 Copyright c© 2014 by ASME



Our work focuses on temporal accuracy: slowing the execution
of user-level software such that it proceeds proportionately to
the advancement of virtual (simulated) time just as it would on
an actual robot.

For a simple example, if the simulation advances one second
of virtual time for every ten seconds that pass in the virtual world,
we would want to run the controller at 1/10 its nominal speed: if
the nominal speed were 100Hz, we would want the controller to
run at 10Hz. As experimental data in Figure 1 shows, the dispar-
ity between virtual and real time does not remain constant, so our
strategy must correspondingly adapt to such fluctuations dynam-
ically. The practical effect of ignoring this disparity in time is
that controllers which run (even slightly) more slowly than their
nominal frequency may cause robots or other controlled systems
to operate one way in simulation and another way on physically
situated systems, even if the fidelity of the simulation to reality is
nearly perfect.

Contributions
Our contributions in this paper include a new dynamic

robotic simulation architecture (Section 2) and technical details
of the requisite operating system (Linux)-level mechanisms (Sec-
tion 3) for ensuring temporal consistency in dynamic simulation.
We have targeted these contributions for the robotics and controls
communities by focusing on commodity software, namely open
source robotics simulators and “vanilla” (unmodified) Linux dis-
tributions, to avoid investing considerable time into infrastruc-
ture. In Section 4, we validate our architecture and technical
contributions using dynamic simulation and show how the previ-
ous state of the art violates temporal consistency.

1 Background
For the remainder of this paper, we use the term robotic

simulation to refer to the simulation of robotic dynamics
and robotic perception. Such simulations have been in use
since the Stage [2] simulator (robotic simulation software
like SD/FAST [3] existed prior to this time, but was gener-
ally minimalistic and rarely modeled either environmental con-
tact/collision or simulated perception). The leading software for
simulating robot dynamics and perception includes Webots [4],
OpenHRP [5], Gazebo [6], and V-REP [7].

2 System description
We now describe our temporally consistent implementa-

tion, which was developed to run in Linux given its ubiquity in
Robotics. Our system aims to present a single interface to con-
trollers, whether such controllers control simulated or physically
situated hardware. Present systems for each operate differently
as shown in Figures 2 (physically situated) and 3 (simulated).

Shared 
memoryController qd, q̇d, q̈dqd, q̇d, q̈d

y(t): sensory data 

y(t): sensory data 

Policy

LIDAR
RobotMotor servos

u(t): motor torques

motor
commands

IMU, q, q̇

Kinect

RGB

FIGURE 2. Depiction of the architecture of a physically situated
robotic system. Modules in double stroke (controller, LIDAR, etc.) gen-
erally run at some independent frequency. Named variables include
qqqd , q̇qqd , q̈qqd (desired robot position, velocity, acceleration), yyy(t) (“raw”
sensory data, e.g., point clouds), and u(t) (motor torques). This archi-
tecture does not depict planners or any other non-realtime processes;
kinematic commands are determined by a policy (as might be deter-
mined via Optimal Control [8]) which presumably gives a fast mapping
from dynamic state to kinematic commands.

Simulation (dynamics 
computation + 

integration step)
Control loop u(t): motor

commands

robots' states, perceptual data

(loops indefinitely)

FIGURE 3. Depiction of the architecture of typical dynamically sim-
ulated robot systems, where the simulator and the control loop run in
lockstep. This architecture eliminates the possibility of race conditions
(the control loop only operates while the simulation is “frozen” in time,
and vice versa), but is not representative of actual robot control archi-
tectures (embedded in Figure 2).

Our PR2 robot’s architecture (depicted in Figure 2) is common
to other robots with real-time requirements.

Figure 4 presents our unifying architecture. To enact this
system, we must redefine the scheduling (in an operating sys-
tem’s sense) of the simulation, and we do so while avoiding all
OS kernel modifications. Thus our approach is broadly applica-
ble and practically deployable. This system provides constructs
for controller scheduling (so that the system can suspend and re-
sume controllers as desired), high resolution timing (for timing
controllers), and interprocess communication (used for sending

2 Copyright c© 2014 by ASME



0 100 200 300 400 500 600 700 800 900 1000
0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052

simulation iteration

co
m

pu
ta

tio
n 

tim
e 

pe
r i

te
ra

tio
n

Illustration of simulation time variability

FIGURE 1. Plot of experimental data modeling 1,000 boxes moving on an enclosed planar surface using ODE [1]. The plot shows that the time
required to compute a simulation iteration is highly variable: the maximum time is over 50% higher than the minimum time in this experiment. Thus,
the execution time granted to the robot controller changes over time proportionately to the rate of simulated time.

messages and to enact the shared memory module depicted in
Figure 2).

2.1 Architecture
The architecture of the temporally consistent system is de-

picted in Figure 4, and centers around the Coordinator. Pro-
cesses communicate via notifications—signals that events (e.g.,
requests for state or raw sensory data, motor commands issued)
have occurred—and updates—signals that shared memory has
been modified.

2.1.1 Coordinator The Coordinator manages interac-
tions between user-level software and the simulation. The Co-
ordinator intercepts and manages inter-process communication
(IPC), scheduling, time management, and time accounting. The
Coordinator ensures that () simulation time is accurately main-
tained and measured for each component; () state requests
(“raw” sensory data) and motor commands are obtained from the
appropriate virtual time; and () simulations of multiple, inde-
pendently controlled robots indeed appear to be independently
controlled to the roboticist.

The Coordinator is a parent process and creates individual,
user-level “child” processes. Additionally, the Coordinator cre-
ates signal handlers for timing and may also create threads to
detect blocking states from child processes.

2.1.2 Simulation plug-in Simulation libraries are
wrapped by a plug-in API that exposes interfaces for setting
motor commands, stepping forward in time, and retrieving state

data.

3 Technical details
This section describes the most significant technical details

of our system and technical challenges (and their resolution), to-
ward guiding possible future efforts of others. Technical chal-
lenges include () modifications to operating system scheduling
policies; ()accounting for process time accurately; () schedul-
ing (blocking, resuming) processes at high timer resolution; and
() streamlining API infrastructure toward minimizing effort to
interface with existing simulation libraries. These challenges and
their resolution are described in the remainder of this section.

3.1 Scheduling
Operating systems provide scheduling policies to multiplex

multiple threads onto processors. Unfortunately, these poli-
cies do not provide the specific temporal control required by
this research. Though kernel modifications could close this se-
mantic gap between the requirements of the temporally con-
sistent system and scheduling policies of the kernel, doing so
would require users to recompile and reinstall their kernels, and
would be inherently non-portable across different operating sys-
tems. Instead, the Coordinator utilizes the POSIX API, sup-
ported by most systems in a novel manner to implement the re-
quired scheduling policy in user-level without special privileges.
Thus, practitioners can use our simulation infrastructure with the
minimal infrastructure investment equivalent to installing a non-
temporally consistent simulation environment. The Coordina-
tor controls the scheduling of the simulator using both the real-

3 Copyright c© 2014 by ASME



Coordinator

Controlled processes

Shared 
memory

Simulation 
library

Simulation
plugin

Wakeup 
thread

u(t)

x(t), ẋ(t), u(t)

x(t+h), ẋ(t+h), 
y(t+h)

x(t+h), ẋ(t+h), 
y(t+h)

Task 
controllerController qd, q̇d, q̈d

Motor servos
(dummy)

x(t), y(t) request

u(t) update simulate 
forwardu(t)

wake

x(t), y(t)

FIGURE 4. Components of our temporally consistent system (Coordinator, Shared Memory, Simulation plug-in) are outlined in bolder stroke. User-
implemented components (controllers) are depicted using dash strokes. Notifications passed via IPC are depicted using dashed directed edges with
italicized text. Notifications passed via direct function calls are depicted using dashed directed edges with boldfaced text. Data passed via direct
function calls or shared memory access is depicted using solid directed edges.

time scheduling policies within Linux and the controlled block-
ing/preemption of controllers. Linux provides three schedul-
ing policies; two of these, SCHED FIFO and SCHED RR, are
real-time scheduling policies (any thread scheduled under those
policies will be executed with a higher priority than normal
threads). The Coordinator is scheduled as a real-time thread
(using sched setpolicy(.)) with the highest priority (via
sched setparam(.)) so that the operating system will prior-
itize the simulation over all other processes running on the sys-
tem, thus enabling the Coordinator control over the time alloca-
tion onto the CPU. Though this results in the starvation of other
processes on the system, it is common for even low-end desktops
to have multiple cores, in which case the temporally consistent
system will use one core while the rest are available for general
computation. In future work, the number of cores used by the
consistent time framework might be configurable to partition the
system between the simulator and other computations.

The Coordinator launches all controllers with the same
scheduling policy and a priority immediately below that of the
Coordinator. Using this scheduling arrangement on a single pro-
cessor, the Coordinator must block in order for controllers to run,
and an activated Coordinator will preempt all controllers. In or-
der to maintain this dynamic, the Coordinator blocks waiting for
either data from a controller sent over an OS pipe, or for a spe-
cific amount of time to elapse. The select(.) system call is
used to block waiting on either event. This controlled block-

ing enables the Coordinator to effectively schedule the controller.
The Coordinator may also create a wakeup thread using the same
scheduling policy and a priority just below that of the controllers
to wake the Coordinator on an unexpected user-level blocking
event (e.g., a page fault or system call).

3.2 Inter-process communication
The Coordinator IPC facilities are composed of a set of no-

tification channels and a shared message buffer. Notification
channels permit two-way communication between the Coordi-
nator and controllers and facilitate communication between the
Coordinator and all monitoring facilities (e.g., signal handlers
and wakeup threads). The shared message buffer is created in
shared memory between the Coordinator and the controller, and
is used for passing state and “raw” sensory data from the simula-
tor and for passing requests for the controller to block for a given
amount of time. This interface tightly mimics the I/O subsystem
of a POSIX system (such as Linux).

3.3 Process time measurement
We achieve accurate process timing by querying timestamps

using the current cycle of the processor’s time stamp counter
register. This register, available on most processors, and on
x86 and x86-64 processors through the rdtsc instruction, is
a simple, monotonically increasing counter of the elapsed cy-
cles since boot. To maintain accurate time, this mechanism re-

4 Copyright c© 2014 by ASME



quires () knowing the processor speed; () the processor speed
remaining constant during the operation of the temporally con-
sistent system (or the use of “invariant time stamps” in mod-
ern processors); and () the temporally consistent system (in-
cluding all threads and processes for controllers and Coordina-
tor) to remain active on only one processor core. Therefore,
we read the processor speed from the /proc file-system, we
disable all power saving and throttling features, and we confine
the measured process to run on a single processor core using the
sched setaffinity(.) system-call family.

3.4 Tracking the time consumption of computation
The Coordinator aims to run the controller for a controlled

amount of time before switching back to the simulator, thus
effectively scheduling both computations. To do this schedul-
ing, the Coordinator must block for a specified extent. We
use hardware support for high resolution system timers (called
hrtimers in Linux), to enable preemption of the controller.
These timers enable a timing event to be generated a specific
number of cycles into the future. This timer is set to cause a
signal in the Coordinator, thus activating it (and ending the con-
troller’s CPU share) at a controlled time in the future. To sched-
ule a controller, the duration of the timer is based on the desired
(if any) frequency of the controller (e.g., controllers would have
desired frequency; planning processes would not) and computed
from the time at which that process was last activated. When
the signal handler is invoked, a timestamp is recorded, and a no-
tification including the timestamp is sent to Coordinator. The
Coordinator tracks the amount of computation time of the con-
troller via the difference between the timestamp when the con-
troller is switched to and the timestamp when it is preempted.
hrtimers have a granularity that is determined by the hard-
ware and OS, and are only guaranteed to fire at or after the inter-
val requested. Without adjusting for timer error, controller timing
would be skewed (it is exceedingly improbable that a timer will
fire precisely at the requested time) and error will accumulate.
Timer error is measured by the differential between the controller
interval and the timestamp difference. To account for this error,
we maintain the accumulated error as measured with the cycle-
accurate rdtsc and adjust the subsequent timer interval by the
accumulated error.

3.5 User-level process details
Process control A controller may be blocked by one of two

mechanisms: either by explicit suspension triggered by a timer
that is caught by the Coordinator, or by blocking due to request-
ing sensor data or to wait for a span of time. The Coordinator
blocks on read from a controller notification channel (either for
a timer that interrupts the controller or a request from the con-
troller) for information from the environment. If the controller
sends a notification to the Coordinator, the controller becomes

suspended, and the Coordinator unblocks due to the notifica-
tion (as per the scheduling policy described in §3.1). The Co-
ordinator uses system signals (notably SIGSTOP) to explicitly
block the user-level process—thereby preventing unaccounted
running—if the Coordinator enters an unanticipated blocking
state during its operation or during simulation computations.

Initialization During initialization, a controller must first con-
nect to the notification channels it shares with the Coordina-
tor and the shared message buffer. The controller then notifies
the Coordinator of successful initialization by requesting ini-
tial state. The Coordinator services this request by activating
the dynamics component which in turn fulfills the request by
writing state information into the shared buffer. The Coordina-
tor follows by notifying the controller that the requested state
is available in the shared buffer. The controller reads the state
from the shared buffer, computes an initial command, and pub-
lishes the initial command to the shared buffer. It follows the
initial command exchange by generating an initial timestamp
and then passing into its own main loop.

Loop The main process loop, which is presented in Algorithm 1,
begins by triggering an implicit block via writing to the Coor-
dinator notification channel. The timestamp generated during
initialization or a timestamp generated upon waking from the
blocking event is written to the channel as the signal to wake
the Coordinator. Upon waking due to a controller notification,
the Coordinator explicitly blocks the controller (so that it cannot
run without being explicitly unblocked by the Coordinator) and
schedules the controller based upon the notification timestamp
and any accumulated error. Upon timer signal, the Coordinator
unblocks the controller and then implicitly blocks itself by wait-
ing on read from the notification channels effectively yielding
to the controller process. The controller is then active and free
to complete its internal cycle of requesting state, computing a
command, and publishing (as described in the initialization step
and using a simulation time computed from the interval of the
controller). The controller then cycles by triggering its own im-
plicit blocking through writing a notification to the Coordinator.

Algorithm 1 CONTROL LOOP

1: while true do
2: Send sleep notification to Coordinator (includes previous

timestamp) {triggers an implicit block on controller}
3: Collect timestamp
4: Get current apparent time {via API call}
5: {Roboticist’s code goes here}
6: end while

5 Copyright c© 2014 by ASME



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

time (according to controller)

tim
e 

(a
cc

or
di

ng
 to

 s
im

ul
at

or
)

Time parity between controller and simulator

 

 

Callback model
Time consistent system

FIGURE 5. Data plot (see §4) using the callback model with Gazebo (blue/solid) and our temporally consistent system (red/dashed); the latter
exhibits exactly the behavior we were seeking. The callback model data shows that Gazebo advances approximately 1/10th of a second for every
second that the controller advances (and thus we should not expect simple transference from simulation to in situ).

0 20 40 60 80 100 120
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Controller iteration

In
st

an
ta

ne
ou

s 
di

sp
ar

ity
 c

ha
ng

e

Change in disparities over time (using experimental data obtained via Gazebo)

FIGURE 6. Plot depicting instantaneous changes in time disparities using data plotted in Figure 5; note that the disparities slowly decrease over
time.

3.6 Coordinator details
Process control The Coordinator releases the processor by

blocking waiting-on-notification channels written to by either
timing signal handlers or controllers. Blocking the Coordinator
frees the processor and enables the controller to run if it is not
explicitly suspended.

Initialization The Coordinator first establishes all processor re-
strictions and scheduling requirements and then records cpu
statistics, opens all IPC resources, and initializes system timers.
The Coordinator then initializes all simulation components; fi-
nally, all controllers are initialized.

Loop The Coordinator’s loop (presented in Algorithm 2) begins
by blocking on select(.) from one of the notification chan-
nels. In the initial pass, the controller has been created but is
waiting on initial state information and so the initial select(.)

will result in the servicing of controller initial state. Upon re-
ceiving a notification from a controller, the Coordinator deter-
mines whether the notification is a shared memory event or a
scheduling event. If the notification is a shared memory event,
the Coordinator services the event for the controller and re-
turns to block waiting on select(.). If the notification is a
scheduling event, the Coordinator explicitly suspends the con-
troller thereby freeing the processor for other controllers, arms
the timer for the controller, and returns to block waiting on
select(.). Upon receiving a notification from a timer, the Co-
ordinator receives a timestamp from the timer, audits the time
between timer arming and firing, resumes the controller, and
returns to block waiting on select(.) thereby allowing the
controller to run. In this last case, additional time accounting
should be included to account for the time between resuming

6 Copyright c© 2014 by ASME



0 10 20 30 40 50 60 70 80
10−3

10−2

controller time

ag
gr

eg
at

e 
di

sp
ar

ity

Aggregate disparities between standard and corrective methods

 

 

time disparity (without correction)
time disparity (corrective method)

FIGURE 7. Plot depicting aggregate relative error (with respect to virtual time) with our temporally consistent system. Our initial system (without
the correction mechanism described in §3.8) exhibits some drift. Our system with the correction mechanism exhibits very low relative and absolute
error (less than 2% absolute error over the entire 100s simulation).

the controller and the activation of select(.).

3.7 Servicing events
When an actuator message is written to shared memory, the

Coordinator must ensure that the proper component is notified
of the shared memory update. Due to the indirect relationship
between the Coordinator and controllers, the Coordinator must
interpret the type of message placed into shared memory and de-
termine the appropriate action. When the controller communi-
cates with the simulated environment, the Coordinator mediates
the conversation. Any state or sensory requests from the con-
troller are retrieved from the simulation via the Coordinator.

3.8 Time accounting and timer arming
The Coordinator must maintain and track the temporal

progress of the controller (i.e., proper accounting); when it is
time to enable the controller’s progress, the Coordinator arms a
timer that corresponds to the maximum time step, or ∆ the con-
troller will make. We provide two system implementations: one
that should work given a perfect system with zero overhead and
one that recognizes that the costs of system calls made to start
timers, receive them via signals, and context switch between the
Coordinator and the controller all have non-zero costs. Thus,
our first implementation simply arms the timer for the amount
of time the Coordinator desires the controller to execute, and
blocks on select(.). In this system a near constant amount
of error (ε) between the amount of time the Coordinator wants
to execute the controller and how much CPU time the controller
actually receives is inevitable (causing the controller to actually
execute for ∆− ε). A naive solution might attempt to correct
for the error by artificially inflating the time step by some con-

stant value (thus arming the timer for ∆+ ε). However, this is
not possible, as these costs are very system-dependent and any
attempt to hard-code their cost will be incorrect for some sys-
tem. Instead, our second implementation measures and records
how much overhead the system experienced when it last ran the
controller, which we will call εi, for the ith execution of the con-
troller. The Coordinator then compensates for that error the next
time it executes the controller by increasing the amount of time
on the timer (thus the amount of time the controller executes) by
the overhead: for the ith execution of the controller, the timer is
armed with time ∆i = ∆+εi−1. This error compensation is taken
into account on each execution of the controller. Note that this
mechanism does not eliminate error for a specific time step of the
controller, but does remove error over longer timespans.

An important factor in the management of time in this sys-
tem is the fact that the kernel guarantees that when a hardware
timer is armed for a step of size ∆, the timer will always be de-
livered, in this case to the Coordinator, at any time in the future
≥ ∆. This is guaranteed by the kernel API and is motivated by
the intention of the system calls being to wait for at least a given
amount of time.

4 Experimental validation
Current robotics simulators are based on the callback model

and offer no real-time assurances. These callback-based systems
are often designed around simulation libraries focused on com-
puter games; such libraries are unconcerned with real-time con-
trol issues like temporal consistency. By not adhering to real-
time requirements, control systems in simulation can not be ex-
pected to perform as they do in real-world systems, even if the
simulated dynamics sync closely with reality.

7 Copyright c© 2014 by ASME



Algorithm 2 Coordinator loop algorithm
1: while true do
2: block on select(.) {wait for notification}
3: if notification received then
4: if notification from controller then
5: read the event
6: if shared memory event then
7: service the event
8: else {scheduling event}
9: suspend controller

10: arm timer
11: end if
12: else {notification from timer}
13: audit time
14: resume controller
15: end if
16: end if
17: end while

We assessed the time consistency of two systems using a
PD controller performing the swing-up and balancing tasks from
the downward equilibrium point. Our experiments were run on
Linux kernel 3.2.0 (“vanilla” Ubuntu 12.04) using a 2.80GHz In-
tel Xeon quad-core processor. We used ROS Groovy Galapagos
for all ROS-based experiments and Moby [9] as the dynamics
library; we did not use methods for simulating perception.

4.1 Experiment using traditional callback model
To gauge the performance of simulators that use the callback

model, we developed a PD controller via a ROS service that in-
terfaces to Gazebo. We then evaluated the system-time of the
control code activation with respect to Gazebo simulation time.
For each simulation iteration, the controller computes and sub-
mits motor torques as a function of pendulum joint position and
velocity. We recorded the simulation time (i.e., the virtual time
according to the simulator) on each controller invocation, and we
recorded the CPU time spent in the controller by querying system
/proc statistics for the controller.

This experiment shows that for every second of system time
that the controller runs, Gazebo advances simulation time ap-
proximately 1/10th of a second. Our results demonstrate that
Gazebo and callback based simulations in general do not main-
tain real-time system requirements, and therefore controllers de-
signed and tested exclusively in callback based simulations will
not match real-world operation. The practical implication of this
finding is that controllers that need to synchronize actions to time
(i.e., controllers that are tightly coupled to time) cannot be ex-
pected to exhibit identical performance in simulation and in situ.

Figure 5 shows the disparity between the system time made
available to the controller and the time maintained by the simu-

lator. Figure 6 shows the instantaneous change in observed time
between the controller and the simulation. We note that not only
is there a disparity between controller and simulator times, but
that this disparity changes over time (indicated by the derivative
being far from zero).

4.2 Experiment using temporally consistent system
As a second experiment, we implemented the PD controller

for the pendulum swing-up and balancing tasks under our tempo-
rally consistent system using the TCS branch of the Moby simu-
lator. The PD controller was to operate at a frequency of 1000Hz
over 10,000 simulation cycles. The simulation time was main-
tained by the Coordinator.

Figure 5 shows that over the course of the simulation, dy-
namic scheduling of the controller guaranteed control code to op-
erate at the expected frequency within a small (under 2%) margin
of error. Figure 7 shows that—if we use the corrective method
described in §3.8—the aggregate relative and absolute errors are
small (although a controller may overrun its interval by as much
as 2%); the plot shows that relative error is an error of magnitude
greater without the corrective method.

The experimental data shows that the temporally consistent
system is indeed consistent with time. Additionally, we note that
the system allows us to effectively time control loops and thus,
by testing, guarantee—again, to a 2% margin of error—that a
control loop will run within its allotted time when moved to a
real-time OS (assuming comparable hardware).

5 Future work
Our future work in this area will add to our technical contri-

butions by implementing suspension of controllers that run over
their allocated time and by further reducing the system’s aggre-
gate timing error (below its already low level) by calibrating for
time expended in API calls. The current work addresses con-
trolling the CPU time consumption of a single controller. Future
work will also extend the system to control the timing of both
planners and controllers in a simulated distributed system, and
will provide simulated sensor input that matches that provided
by physical systems.

We will also address thorny theoretical and practical issues
like ()managing simulators that use adaptive, higher-order, and
implicit integrators (integrating ODEs without monotonic ad-
vancement through the integration interval is technically chal-
lenging); ()managing interactions and collisions due to schedul-
ing multiple controllers on a single processor toward maximizing
throughput; and () the management of controllers operating on
different cores, processors, or even remote machines (thereby fa-
cilitating use of high performance machines for simulations, in-
cluding cloud computing environments).

8 Copyright c© 2014 by ASME



REFERENCES
[1] Smith, R. ODE: Open Dynamics Engine.
[2] Gerkey, B., Vaughan, R. T., and Howard, A., 2003. “The

player/stage project: Tools for multi-robot and distributed
sensor systems”. In Proc. of the Intl. Conf. on Advanced
Robotics (ICRA), pp. 317–323.

[3] Dynamics, S. SD/FAST user’s manual.
[4] Michel, O., 1998. “Webots: a powerful realistic mobile

robots simulator”. In Proc. of the Workshop on Robotcup.
[5] Kanehiro, F., and Kajita, S., 2004. “Open HRP: Open archi-

tecture humanoid robotics platform”. Intl. J. Robotics Re-
search, 23, pp. 155–165.

[6] Koenig, N., and Howard, A., 2004. “Design and use
paradigms for gazebo, an open-source multi-robot simula-
tor”. In Proc. of IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), pp. 2149–2154.

[7] Rohmer, E., Singh, S. P. N., and Freese, M., 2013. “V-REP: a
versatile and scalable robot simulation framework”. In Proc.
IEEE/RSJ Intl. Conf. Intell. Robots & Systems (IROS).

[8] Dyer, P., and McReynolds, 1970. The Computation and The-
ory of Optimal Control. Academic Press.

[9] Drumwright, E. Moby. https:://github.com/edumwri/Moby.

9 Copyright c© 2014 by ASME


