
BOSTON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

Technical Report

Extending snBench to Support Hierarchical and Configurable Scheduling

by

GABRIEL PARMER

GEORGIOS ZERVAS

ANGSHUMAN BAGCHI

Submitted in partial fulfillment of the requirements of the course

CAS CS511 : Object Oriented Software Principles

Spring 2006

Abstract

It is useful in systems that must support multiple applications with various temporal re-

quirements to allow application-specific policies to manage resources accordingly. However,

there is a tension between this goal and the desire to control and police possibly malicious

programs. The Java-based Sensor Execution Environment (SXE) in snBench presents a sit-

uation where such considerations add value to the system. Multiple applications can be run

by multiple users with varied temporal requirements, some Real-Time and others best effort.

This paper outlines and documents an implementation of a hierarchical and configurable

scheduling system with which different applications can be executed using application-specific

scheduling policies. Concurrently the system administrator can define fairness policies be-

tween applications that are imposed upon the system. Additionally, to ensure forward progress

of system execution in the face of malicious or malformed user programs, an infrastructure

for execution using multiple threads is described.

ii

Contents

1 Introduction 1

2 Functional Description 3

3 System Design 6

3.1 The Scheduler Framework Design . 7

3.2 Integration into the SXE . 8

4 Execution: Instructions and Examples 11

4.1 Executing the Scheduling Framework as a Stand Alone Module 11

4.2 Executing the Package within the SXE . 13

5 Quality Assurance 17

6 Post Mortem 21

6.1 Initial Approach . 21

6.2 The Design of Schedulers Revisited . 24

6.3 Future Enhancements . 24

6.4 Conclusion . 25

References 26

iii

List of Tables

1.1 Schedule of Tasks . 2

iv

List of Figures

2·1 Data Model of the Scheduling System . 4

2·2 The Hierarchical Structure . 5

2·3 The Sequence Diagram . 5

3·1 The UML Diagram of the Scheduling System 10

6·1 UML diagram of the initial Preemptive Scheduler 22

v

List of Abbreviations

snBench Sensor Network Work Bench

SXE Sensor Execution Environment

STEP Sensor Task Execution Plan

QoS Quality of Service

JVM Java Virtual Machine

UML Unified Modeling Language

CPU Central Processing Unit

SRM Sensorium Resource Manager

vi

1

Chapter 1

Introduction

The Sensor Execution Environment (SXE) includes a primitive method for scheduling that

does not fully utilize computational resources and is susceptible to malicious or buggy op-

codes. An ill-written opcode which does not return from its invocation can compromise the

CPU resource, disallowing other opcodes access. Due to a single thread of execution, block-

ing on I/O causes poor processor utilization. Moreover, from the standpoint of the snBench

application author [3], little or no flexibility is offered to ensure any Quality of Service (QoS)

characteristics. Likewise, fairness constraints cannot be imposed on the execution of pro-

grams in the presence of other user’s programs. These limitations are the driving motivators

for the design decisions made for this group’s software engineering project. These functional

specifications have been discussed in detail in the following chapters.

The group management for this assignment was structured such that all members of the

group were active in the discussion of the design of the code. After the design phase, Gabriel

Parmer worked on the scheduler core code, Georgios Zervas worked on SXE integration

code, and Angshuman Bagchi worked on the web page, and external documentation. Due

to dependencies between the work of each member, everyone needed to have a stable code-

base understanding so that parallel work could be completed. Thus, very early on in the

design, three interfaces were chosen to be stable throughout the project, unless fundamental

assumptions deemed them incorrect. Therefore the IScheduler.java interface for scheduler,

the IOpcode.java interface for what constitutes an Opcode, and to a lesser extent, the

Task.java abstract class were designed and the specifications produced very early on. These

being the most pertinent interfaces to each member’s duties, a large degree of work was

accomplished in parallel.

2

Month Task Outline
January Research
February Specification
March Implementation
April Testing
May Final Submission

Table 1.1: Schedule of Tasks

We found this strategy of early isolation and freezing of interfaces to provide common-

ground between members, to be quite satisfactory. An outline of the implementation schedule

followed is given in Table 1.1. For a more detailed schedule, including weekly tasks the reader

is referred to the the web page [1]. Documentation was done at every stage and the web page

was updated on a weekly basis.

The remainder of this report is structured as follows: Chapter 2 outlines the functional

description of the package implemented. It contains the Data Model of the system and

provides a high level understanding of the design. The details of the design as well as the

relevant Unified Modeling Language (UML) diagrams are provided in chapter 3. This is

followed by an overview of how the source code of the package is organized in chapter 4.

It also contains instructions to execute the package both as a stand-alone module as well as

within the SXE framework. The next chapter, chapter 5, elucidates the testing methodology

followed in this project. The report ends with a “post-mortem” or analysis of our project in

chapter 6. Limitations and possible future extensions are discussed in chapter 6 as well.

It is pertinent to note here that the documentation of this project exceeds the length

prescribed in the project guidelines. This is due to the nature of the application being

developed. Although the package does not involve writing a lot of Java code, it affects the

core SXE functionality. Therefore in this technical report we have attempted to document in

detail all design and implementation decisions. This will help any future team of developers

working on the SXE.

3

Chapter 2

Functional Description

A summary of the main functions and capabilities provided by our package follows:

Controlled Concurrent Opcode Execution: It is necessary to execute opcodes in

separate execution contexts or threads as this minimizes the effects a malicious or malformed

opcode can have on the entire SXE environment. If one opcode contains an infinite loop, other

opcodes can still continue processing concurrently regardless. Further, if multiple opcodes can

execute concurrently, then those that stall on I/O will have less of an effect on the overall CPU

utilization as other threads will still run on the processor. However, to incorporate fairness or

QoS, it is necessary that this concurrency be controlled by the Sensorium Resource Manager

(SRM). A single snBench application should not be allowed to request a hundred threads of

execution unless some trusted policy, installed by the SRM, allows it. Thus, albeit multi-

threaded, the provision of computational isolation must be provided by the system. In our

design, a ThreadManager ensures this controlled concurrency.

Polymorphic Scheduling Policies: When designing a system, it is necessary to realize

that all application usage patterns cannot be anticipated. Hence policies must be extensible

to accommodate decisions concerning resource usage made by a domain expert. Further,

to ensure some notion of QoS for applications, reservations for “administrator” users, for

instance, policies specific to these concerns must be installed. An approach which will re-

quire such functionality is flow-types, where application-specific scheduling requirements can

be specified. In view of the above requirements, polymorphic scheduling policies are imple-

mented in our architecture.

Hierarchical Scheduling Model: It is not enough to allow a single scheduling policy to

be polymorphic. Conflicts of interest will occur naturally in a system with different applica-

4

Tasks

Opcode Scheduler

TaskQueue

Thread Pool 1

?

?

*
*

!

!

parent

child

tq

Figure 2·1: Data Model of the Scheduling System

tions having different requirements. For instance, an application may require a deadline-based

scheduler while another might demand simple round-robin. To concurrently satisfy both re-

quests, hierarchical scheduling must be employed. This is an active area of research in the

System’s and Real-Time community, and we simply provide the mechanisms with which hi-

erarchies of schedulers can be constructed. In such a model, schedulers schedule “Tasks”

while “Tasks” may be either other schedulers or opcodes.

The methods we used to implement this hierarchy are illustrated in the Data Model in

Figure 2·1. This Data Model is subject to the following constraint:
There exists a t in Tasks such that,

[t.parent = ∅ and for all t’ in Tasks, t’.parent = ∅ ⇒ t’= t] and t in ThreadPool]

In other words the above constraint states that there is a task that has no parents, of

which there is only one, and that task is the sole occupant of the ThreadPool. It should be

noted that our project is not well suited to Data Models as there is very little data or data

structures involved.

The package consists of schedulers and opcodes whereby a tree is formed with all internal

nodes being scheduler tasks and all leafs being opcode tasks. Each scheduler task’s children

are either other scheduler tasks or opcode tasks, and the root scheduler has only one ancestor,

the ThreadManager. The ThreadManager′s only child is the root scheduler task. This

invariant structure is demonstrated in Figure 2·2. It is to be noted over here that the above

5

Figure 2·2: The Hierarchical Structure

invariant is maintained by the Java type system.

Of primary importance is the control flow between the ThreadManager to the opcodes.

This is the method for execution of an opcode and includes a traversal of schedulers between

the ThreadManager and the opcode. The schedulers, of course, have the volition to choose

which opcodes to execute when they are invoked. This flow of control is illustrated in Figure

2·3.

Figure 2·3: The Sequence Diagram

6

Chapter 3

System Design

The code base for hierarchical schedulers exists in the “edu.bu.cs511.p5” package, i.e. in

“/src/edu/bu/cs111/p5/” in the directory tree. This code base includes the functional and

logical source code providing the hierarchical scheduling framework. These are in the files:

1) IOpcode.java

2) IScheduler.java

3) Task.java

4) SchedTask.java

5) OpcodeTask.java

6) ThreadManager.java

7) RRScheduler.java

8) ProportionalScheduler.java

9) FPScheduler.java

10) GenericScheduler.java

11) SchedData.java

In addition to the above files, some code which allows the framework to be tested indepen-

dently are in:

7

1) Main.java

2) SchedHierarchy.java

3) LongOpcode.java

Finally, the code used to produce the final presentation’s demo is in:

1) SchedulerDemo.java

2) DemoOpcode.java.

The SXE directory structure remains unchanged, and we discuss code changes later in this

section. A UML diagram depicting the relationship of all classes in the framework can been

seen in Figure 3·1.

3.1 The Scheduler Framework Design

The Design Patterns employed in the Scheduler Framework are:

1) SchedulerHierarchy: Implements the Factory design pattern described in page 371

of Liskov’s book [4]. It returns Tasks corresponding to scheduler/opcode and parent

scheduler arguments.

2) ThreadManager: Implements the Singleton design pattern described in page 378 of

Liskov’s book [4]. Only one thread creator must exist.

3) SchedTask: Implements the Strategy design pattern described in page 388 of Liskov’s

book [4]. Here tasks are an interface allowing the functional execution of a task from

a parent, SchedTask.

4) OpcodeTask: Implements the Command design pattern described in page 388 of Liskov’s

book [4]. Opcode execution can consist of any opcode functionality thus no assumptions

are made about the behavior or purpose of opcode execution.

8

The entire Scheduler hierarchy which is a hierarchy of “Tasks” follows a Composite Design

pattern (page 390 of Liskov’s book [4]) where “Component” nodes are of the type SchedType

and “leaf” nodes are of the type OpcodeTask. The invariant that schedulers are component

nodes and opcodes are leafs is maintained by Java typing as the parent Task of all tasks must

be a SchedTask. Each of these nodes is traversed using a Visitor design pattern (page 393 of

Liskov’s book [4]) where the visitor interface for SchedTasks is defined by IScheduler and

the visitor for OpcodeTasks is defined by IOpcode. This was the most important and useful

design pattern employed.

3.2 Integration into the SXE

From the project’s onset we envisioned the integration between our code and the snBench

environment as a cross-cutting operation. That is to say, before we even began coding we

identified the possible points of integration with the SXE. By studying and understanding

the provided software package we then set out to design our scheduler with these constraints

in mind.

This proved to be a wise choice as on one hand it allowed us to develop, document,

verify and validate our code in isolation, a good software engineering practice. On the other

hand when we had established enough confidence in our code we were able with minimal,

precise incisions on the snBench code to replace the existing scheduler with our artifact. For

problems that arose during the integration process, we were able to easily pinpoint the fault

to the integration process itself, as the schedulers had already been tested.

The integration was performed within the sxe.GraphEvaluatorThread class which was

also previously responsible for scheduling opcodes. The first task was to wrap graph nodes, as

defined by the step.Node class, by the new class SXEOpcode acting as an Adapter between

the existing environment and our scheduler. This was required as our scheduler was designed

to schedule objects that implement the IOpcode interface and not step.Node objects. As

the rest of the snBench environment didn’t need to be aware of this encapsulation, the

SXEOpcode class was defined privately withing sxe.GraphEvaluatorThread.

9

The second incision was made at the point where scheduling decisions are made, that is

within the run() method of sxe.GraphEvaluatorThread. The old code called doIteration()

to pick up an enabled opcode and execute it. We substituted this method with a doSchedu-

lerIteration method whose responsibility is to instead invoke the scheduler which would then

decide which opcode was to be executed next.

With these two simple, understandable, minimal amendments we were able to utilize the

functionality of the scheduler from the SXE without exposing either package to the internals

of the other: the scheduler didn’t need to be aware of actual substance of the opcodes it is

scheduling as long it implemented the IOpcode interface and the SXE environment didn’t

need to be aware of the implementation of the actual scheduling policies.

An outline UML diagram is provided if Figure 3·1. It provides a birds-eye-view of the
modules implemented in the system and the point of integration of the package with the

SXE.

10

Figure 3·1: The UML Diagram of the Scheduling System

11

Chapter 4

Execution: Instructions and Examples

This chapter contains the instructions to compile and execute the scheduling framework.

The package implemented by this team can be implemented as both a stand-alone module,

as well as within the SXE. The details of these are enumerated in the following sections.

4.1 Executing the Scheduling Framework as a Stand Alone Mod-

ule

This section describes how to compile and run the package as a stand alone module. To

compile the package, make sure you are running in a UNIX-style prompt in the “src/”

directory and issue the following instruction:

$javac edu/bu/cs511/p5/Main.java

The first test checks to make sure that basic operations for scheduling work fine. These

are enabling, re-enabling, task removal and re-execution, and non-blocking execution. To

execute this test, run:

$java edu.bu.cs511.p5.Main

An introduction to the program and a header specifying what the scheduler hierarchy is, will

be displayed. Tasks are denoted by a pair of characters: First a number for the task number,

and then a character for the scheduler that task runs under. A series of tests are carried out.

When tasks are executed, outputs like the following are printed out:

$1a2a4b6c3a7c5b8c

12

The above display translates to “first task 1 which is under scheduler a runs, then task 2

under scheduler a, then task 4 under scheduler b, etc...”.

The second test is used to demonstrate that the schedulers are working properly and

allocating appropriate amounts of CPU time to each task. To run this test, type:

$java edu.bu.cs511.p5.Main test_allocations > output

After an amount of time (the longer the time, the more accurate the results) press CTRL-C

to stop the program. A file called “output” has been created that contains a sequence of

executed opcodes. Compile the “TestTaskPercentages.java” file:

$javac edu/bu/cs511/p5/TestTaskPercentages.java

Execute this program with the trace file of task percentages:

$java edu.bu.cs511.p5.TestTaskPercentages output

Something similar to the following will be printed out:

Unique characters are: 1a24b6c7583

Their frequency is:

1: 1967 (0.3456334563345633)

a: 2817 (0.49499209277807066)

2: 425 (0.07467931822175365)

4: 587 (0.1031453171674574)

b: 1173 (0.20611491829204007)

6: 1195 (0.20998067123528377)

c: 1701 (0.2988929889298893)

7: 253 (0.04445615884730276)

5: 586 (0.10296960112458267)

8: 253 (0.04445615884730276)

3: 425 (0.07467931822175365)

Total amount of characters in output: 5691

13

It can be confirmed that these values for the fractions of CPU allocations made to tasks,

match the given scheduling hierarchy and the execution plan of opcodes through the system

is correct. For instance, it can be seen by running “java edu.bu.cs511.p5.Main” and observing

the scheduler hierarchy, that the “a” scheduler is allocated using the proportional scheduler

50% of the CPU, and that the test confirms that it received 49.49%. The expected values are

perhaps slightly deceptive when multiple threads come into play: Scheduler “a” is a Fixed

priority scheduler where task “1” has a higher priority than “2” and “3”. Thus one would

assume that “1” would always receive the CPU when scheduler “a” chooses a task to run.

However, results show that “2” and “3” receive about 7.46% of the CPU each. This is due

to the fact that “a” can request up to two concurrent threads. If it requests the threads at

the same time, then the first thread will execute “1”, but the second will choose between

“2” and “3”. Regardless of this , analyzing the results yields the fact that the scheduler’s do

schedule correctly.

An interesting conclusion can be drawn. In single-threaded cases, it is simple for sched-

ulers to make the correct allocations, but as the number of threads increases in the system,

the guarantees of the schedulers weaken due to the fact that two threads cannot concurrently

execute the same opcode. Additionally, if the reader wishes, she can run the demo seen with

the final presentation by executing:

$javac edu/bu/cs511/p5/SchedulerDemo.java

$java edu.bu.cs511.p5.SchedulerDemo

Pressing any key will step through the stages of the demo.

4.2 Executing the Package within the SXE

Instructions to compile and run the package within the SXE are provided in this section.

Here “BASEDIR” refers to the directory where the project package has been extracted. We

assume that Java1.5 and ApacheAnt1.6 are installed on the machine where the project will

be compiled.

14

Compilation takes place in two parts. First, the scheduler has to be compiled and pack-

aged in a “jar” file. This is performed by running the following command in “BASEDIR”:

$ant -f cs511.xml clean

$ant -f cs511.xml all

The output of this process is the file “cs511.jar” which contains the scheduler. Next, we need

to compile snBench.

$cd snBench/src

$make clean

$make

This compiles the snBench environment with support for the new scheduler.

To run the SXE one needs to follow the standard instructions and just add the new jar file

to the classpath. We assume that the reader is in “BASEDIR/snbench/src” before running

the following commands.

$java -cp .:jmf.jar:../../cs511.jar sxe.Server http://localhost:8080 NO

Once a graph is posted, in this case graph number 3, using the standard mechanism execute,

$java sxe.Poster http://localhost:8080

COMMAND Does...

post Posts a STEP file to specifed SXE

delete Deletes a STEP node from specifed SXE

quit quits

:post

Got [post]

Please specify the STEP file to be uploaded.

[0] ./testsuite/framegrabber.repeating.step.xml

15

[1] ./testsuite/temperature.step.xml

[2] ./testsuite/math_and_string_ops.step.xml

[3] ./testsuite/counter.step.xml

[4] ./testsuite/sxe_info.xml

[5] ./testsuite/basic_trigger.step.xml

[6] ./testsuite/sxe_10.0.0.5.xml

[7] ./testsuite/framegrabber.step.xml

[8] ./testsuite/level_trigger_2.step.xml

[9] ./testsuite/sxe_poster_local

[10] ./testsuite/tester.java

[11] ./testsuite/Makefile

[12] ./testsuite/sxe_localhost.xml

[13] ./testsuite/post_math

[14] ./testsuite/counter2.step.xml

[15] ./testsuite/tester.class

[16] ./testsuite/framegrabber_320.step.xml

[17] ./testsuite/factorial2.step.xml

[18] ./testsuite/socket_localhost-8080_startsecond.step

[19] ./testsuite/fg_temp_repeat.step.xml

[20] ./testsuite/factorial.step.xml

[21] ./testsuite/socket_localhost-8081_startfirst.step

[22] ./testsuite/pairtest1.step.xml

[23] ./testsuite/CVS

Specify a file number:3

One should see the following output from the SXE on the command line which indicates

proper operation.

Content-Length: [751]

Serving [/snbench/sxe/node/]

16

Checking [text/xml] and [text/*]...

Got exact match: [1.0]/1.0

Returning 1.0

[CS511 Debug] New opcode to be added to the run queue: TriggerHead

[CS511 Debug] New opcode to be added to the run queue: not

[CS511 Debug] New opcode to be added to the run queue: equals

[CS511 Debug] New opcode to be added to the run queue: 0

[CS511 Debug] New opcode to be added to the run queue: lte

[CS511 Debug] New opcode to be added to the run queue: cond

[CS511 Debug] New opcode to be added to the run queue: isnil

[CS511 Debug] New opcode to be added to the run queue: lte1

[CS511 Debug] New opcode to be added to the run queue: start_value

[CS511 Debug] New opcode to be added to the run queue: subtract

[CS511 Debug] New opcode to be added to the run queue: lte2

[CS511 Debug] New opcode to be added to the run queue: 1

class sxe.core.not

[CS511 Debug] execute lte2

[CS511 Debug] execute cond

Evaluated: cond

[CS511 Debug] execute lte

[CS511 Debug] execute start_value

Evaluated: start_value

...etc...

17

Chapter 5

Quality Assurance

A majority of the project could not be checked with traditional Blackbox testing largely due

to the fact that many of the complex aspects of scheduling occur in side-effects, such as the

correct execution of the next task for a scheduler. Thus, where possible, strict black-box

testing was used to make sure that just terminated tasks returned true to isTerminated.

This analysis was limited by the nature of the project (schedulers correct functionality can

only be measured by side-effects). Therefore to test the MODIFIES clauses of our methods

we implemented the approach outlined in the following paragraphs.

To test the hierarchy itself, to see if schedulers can be added to schedulers, opcodes

to schedulers, and the entire scheduler hierarchy to the ThreadManager, features of the

Composite design pattern were utilized. Stub classes were used for the V isitor class which

defines how components and leafs are traversed and visited. These stubs were defined to be

as simple as possible. The IScheduler stub was a primitive RR scheduler which requested

a concurrency level of the sum of its children’s concurrency levels. Similarly, the IOpcode

visitors simply printed out their id and had a requested concurrency level of one.

The first aspect to test is to verify if the correct control flow through the hierarchy was

maintained from the ThreadManager to the Opcodes. When aligned in different configu-

rations (some of which were demonstrated in the midterm presentation), one could ensure

that the correct tasks were being visited at the correct times. By obtaining a sample trace of

the execution of tasks, its valid constitution could be verified. In addition to typical cases,

edge cases were tested. For example, schedulers with no tasks registered for them (thus they

should request no threads and not execute) and a large number of children tasks. Small

hierarchies where there was only a root scheduler and opcode children where tested as were

18

deep hierarchies with many schedulers under other schedulers.

The second aspect of the correct functionality was that, given requests from the opcodes

percolating up the hierarchy to the ThreadManager, the correct requested concurrency levels

were maintained while the correct number of threads were pushed into the system from the

ThreadManager. For this, scheduler stubs were inserted into the system which always

requested a given amount of concurrency and it was ensured that the ThreadManager

spawned a correct amount of threads from its thread pool. Boundary cases tested were:

1) Schedulers which requested no threads.

2) Schedulers which requested many threads but that had parent schedulers that requested

fewer (thus the child should receive that smaller number).

3) Schedulers that request more threads than the thread pool can sustain (thus the

ThreadManager should limit the number of threads in the system on its own, in-

dependent of how much higher the request level is than their threshold).

Glass box testing was then carried out. There was surprisingly little at this phase as execution

within the hierarchy was largely deterministic from a task level. Most of the conditions which

would have to be tested were in Schedulers, described in the next paragraph. Black box

testing was augmented mainly with tasks adversarial to the ThreadManager to ensure that

no concurrency issues arose and that the correct number of threads were being released into

the system given concurrency requests from the root scheduler. Many bugs were discovered

here as concurrency is notoriously difficult to debug. Tests mainly included the root scheduler

which would quickly oscillate between requesting no threads to requesting more than the

thread pool would be willing to release, and testing all intermediary values for number of

threads requested.

The main testing was carried out on schedulers. Initially, it was necessary to test on a

very fine-grained basis to determine if a particular scheduler was choosing a task to execute

correctly. To increase the amount of knowledge of the control flow through the system and

to help in debugging, a textual representation of decisions made by schedulers, including

19

information regarding when tasks are executed and which schedulers are invoked was dis-

played as a human-readable trace. The results can be validated to be correct given semantic

knowledge of specific schedulers i.e. one can check if the schedulers are acting correctly from

the traces. These traces can be enabled by setting debug = true in the Task class. It was

simple to observe the correct or incorrect functionality of schedulers based on which task

they chose to execute and which they had chosen in the past. Again, typical cases where

chosen as well as boundary cases such as:

1) Scheduling only one task

2) Scheduling many tasks

3) The immediate addition and deletion of tasks from scheduler queues

4) The increase of requested concurrency from children

5) The decrease to zero of requested concurrency.

Glass box testing followed. The amount of tasks asked to schedule, tested loops within

schedulers as they routinely looped through all the tasks in the system. Conditionals were

tested in two ways; oscillating the number of tasks schedulers must schedule and focusing on

active insertions and deletions. This was important because many conditions are dependent

on stale (already deleted) tasks still being in the data structures of schedulers and on there

being no tasks in the data structures. Further, the concurrency requested by children was

greatly oscillated to check for:

1) The correct requesting of threads from the scheduler’s parent based on it’s children’s

requests

2) The concurrent access of data structures maintaining concurrency levels to test for

race-conditions.

Although these tests provided us with reasonable confidence that the concurrency logic and

the data structure behavior of schedulers were correct, it was difficult to determine if the

20

schedulers were actually choosing the correct tasks to execute at the correct times. This

was partially due to the rather verbose output of the traces. Hence a different style of tests

was devised. These tests measured the fraction of execution time given to tasks received in

a scheduling hierarchy. Note, for this test we assumed that there would only be two levels

of schedulers, the root scheduler and a scheduler for each snBench application which would

contain all the opcodes for that application. Given that we could create the hierarchy and

utilize all forms of schedulers viz. proportional share, fixed priority and round-robin, we

could infer what percentage of the CPU time tasks should receive. For example, between

two tasks of different fixed priority, the higher priority should get 100% of the CPU. In

another case given three tasks requesting 20%, 30%, and 50% of the CPU respectively, under

a proportional share scheduler, confirm that they get those percentages. Within this testing

framework, we attempted many permutations of scheduler hierarchies with different numbers

of opcodes in each. In every case the tests confirmed that the opcodes received the correct

percentages of CPU time. These results give us reasonable confidence to presume that each

scheduler does in fact schedule its tasks as defined by its specification.

21

Chapter 6

Post Mortem

After reading the preceding chapters we hope that the reader is convinced that our endeavors

in this project were successful. Our design process proved robust enough to withstand initial

faults in design as detailed in Chapter 3 and the following section. This phenomenon of

revising the design given implementation constraints is faced in every software engineering

scenario and is testament to our belief in the spiral model of development. The early defini-

tions of important interfaces enabled a large degree of parallelism among the team members.

This not only helped us focus on sub tasks independent of the whole architecture but also

helped in testing components independently as mentioned in chapter 5.

The next section enumerates our initial preemptive approach of setting thread priorities

in Java. Section 6.2 discusses some of the design revisions we had to do while implementing

various schedulers. Section 6.3 gives a few pointers to enhance our package. The last section

of this chapter concludes this technical report.

6.1 Initial Approach

Our initial approach to tackling the SXE scheduling problem was to attempt to design a time

slice-based scheduler. That is, we wanted to implement a scheduler that could in principle

allocate specific amounts of time to opcodes for execution. The actual policy with which time

would be divided between competing opcodes viz. round-robin, RMS, EDF etc. would have

been implemented as a specific strategy of a base scheduler object. Having said that, the

policy of the scheduler doesn’t impact the rest of the discussion. Clearly, for this preemptive

form of scheduling to work, we would have needed to implement a dispatcher responsible

22

Figure 6·1: UML diagram of the initial Preemptive Scheduler

for stopping threads whose time slice had expired and moving ready threads from the ready

queue to the run queue. A high level view of our initial conceptualization of the system is

depicted in Figure 6·1 in UML notation.
The natural next step was to investigate the language, Java in our case, support for

achieving this task. The first and most obvious possibility was using the Thread.suspend()

and Thread.resume(). However, as we found these methods are potentially dangerous to use

and in fact they have been deprecated in the latest release of Java. Having decided, for reasons

beyond our control, against using the aforementioned method we had to look for alternatives.

What we came up with was the idea of manipulating the Thread.setPriority(int) method

to achieve the desired effect, possibly sacrificing a bit of time accuracy but preserving the

ability to preempt through the dispatcher. According to the official Java documentation for

the Thread class [2] ”Every thread has a priority. Threads with higher priority are executed

in preference to threads with lower priority.” This gave us the following idea:

Utilize three different priorities, let’s call them:

23

1) STOPPED(0)

2) RUNNING(9)

3) PRIVILEGED(10)

These would respectively correspond to opcodes in the ready queue, opcodes that are cur-

rently executing and the dispatcher itself. Scheduling would be achieved by first starting the

dispatcher at the highest, PRIVILEGED priority. The dispatcher would in turn Spawn a

number of threads with RUNNING priority and then wait(). Whenever an opcode would

finish its work it would notify() the dispatcher which would then become the ready thread

with the highest priority. This would prompt the JVM scheduler to run our dispatcher being

the ready thread with the absolute highest priority. The dispatcher would in turn dispatch

another opcode. Clearly, in this model the loss of time accuracy comes from the fact that

not all opcodes take exactly the same time to run but we deemed this a necessary sacrifice

in order to avoid suspending and resuming threads.

Unfortunately, accuracy turned out to be the lesser of our problems. While conducting

simple scheduling tests by starting a few threads and manipulating their priorities we were

surprised to find inconsistent and erratic behavior which hardly resembled what we expected.

It is rather hard to characterize the observed behavior but it definitely seemed that it would be

impossible to guarantee any sort of predictable execution sequence. Matters were complicated

even further when we tested our scheduling code on different platforms for example, Linux

and Windows. We got completely different results. Hence we decided to drop this approach

as without any guarantees as to when the dispatcher would run, the whole point of designing

a preemptive scheduler became moot. This failed approach reflects the spiral development

model and signifies the fact that in reality the design needs to be revisited several times due

to implementation issues.

We do not consider pursuing this approach as time wasted. It gave us a flavor of the

project and an opportunity to get out fingers dirty. The insights gained from this strategy

helped us in designing the system described in chapter 3.

24

6.2 The Design of Schedulers Revisited

The design of schedulers followed the spiral development model. The initial design which di-

rectly leveraged the IScheduler interface to define the code for a RRScheduler (round-robin

scheduler which can now be viewed for posterity in OldRRScheduler.java) was sufficient.

However it did not allow a great degree of code re-usability when other schedulers were in-

troduced. In essence, the RRScheduler code had to be replicated across new schedulers and

specific logic changed to accommodate the new scheduling policies. Given the large possibil-

ity for re-usable code that was not being leveraged, we decided to expand our type-hierarchy

to contain specific families of schedulers. All the schedulers that we implemented, namely

round-robin, proportional progress, and fixed priority require three queues:

1) A run queue, or tasks which are ready to execute, but aren’t allocated their maximum

requested concurrency allocation

2) A running queue which contains threads which are running at their maximum thread

allocation

3) A waiting queue, or a queue containing Tasks that have not been enabled and currently

request no concurrency.

Thus a GenericScheduler abstract class was made which abstracts any scheduler which

uses these data-structures. All methods besides constructors, are defined in this class and

can be overridden by subclasses. In this manner, the GenericScheduler is an instance of a

TemplateDesignPattern described in page 369 of Liskov’s book [4]. Each specific scheduler

then implements only the methods which require specific functionality as defined by its

policy. In this way, all three schedulers went from being approximately 2000 lines of code

cumulatively, to being less than 1000 cumulatively.

6.3 Future Enhancements

Throughout the course of this project, we have developed a general and extensible framework

for hierarchical scheduling. Additionally, we have provided the integration required to allow

25

opcodes in an SXE to be scheduled given this framework. However, because the SXE does

not currently support the well-defined retrieval of flow-types for snBench applications, or

for opcodes, it is not possible to configure the scheduler hierarchy in an arbitrary manner.

Though the capability and ability exists in the scheduler hierarchy framework, additional

work is required to create well-defined flow-type interfaces. This will enable the SXE to take

advantage of the full generality afforded by our project. An addition of this code to the SXE

would allow full realization of our code’s potential in a snbench environment.

6.4 Conclusion

Our objective of taking this course was to get a flavor of software engineering and make

contributions to an existing code base of relatively large size. Although this project does not

entail a very large amount of coding, it does involve understanding the existing architecture

and making fundamental structural changes. We believe that both understanding some one

else’s code and writing code that is understandable by others are challenging. We believe that

we have achieved both these objectives. The preceding chapters have displayed our successful

software engineering methods in tackling a large project. We hope that this project will be

of use to a future team of developers and the snBench framework in general.

References

[1] http://cs-people.bu.edu/abagchi/oosp-project.htm.

[2] http://java.sun.com/j2se/1.5.0/docs/api/java/lang/thread.html.

[3] A. Kfoury A. Bestavros, A. Bradley and M. Ocean. snbench: A development and
run-time platform for rapid deployment of sensor network applications.

[4] B. Liskov and J. Guttag. Program Development in Java: Abstraction, Specification
and Object-Oriented Design. Addison Wesley, 2001.

26

