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Abstract

Current low-level networking abstractions on modern
operating systems are commonly implemented in the kernel
to provide sufficient performance for general purpose appli-
cations. However, it is desirable for high performance ap-
plications to have more control over the networking subsys-
tem to support optimizations for their specific needs. One
approach is to allow networking services to be implemented
at user-level. Unfortunately, this typically incurs costs due
to scheduling overheads and unnecessary data copying via
the kernel. In this paper, we describe a method to implement
efficient application-specific network service extensions at
user-level, that removes the cost of scheduling and provides
protected access to lower-level system abstractions. We
present a networking implementation that, with minor mod-
ifications to the Linux kernel, passes data between “sand-
boxed” extensions and the Ethernet device without copying
or processing in the kernel. Using this mechanism, we put
a customizable networking stack into a user-level sandbox
and show how it can be used to efficiently process and for-
ward data via proxies, or intermediate hosts, in the com-
munication path of high performance data streams. Unlike
other user-level networking implementations, our method
makes no special hardware requirements to avoid unnec-
essary data copies. Results show that we achieve a sub-
stantial increase in throughput over comparable user-space
methods using our networking stack implementation.

1. Introduction

Requirements for high performance networking extend
far beyond the support provided by most modern operat-
ing systems. Specifically, abstractions such as BSD sockets
and kernel-based network protocols are common to modern
systems, but they are not tailored to the needs of high per-

formance applications. These mechanisms are necessarily
general so that they can provide fair, consistent, and sim-
ple abstractions of the base hardware to all processes. With
this generality, fine grained control is sacrificed. For in-
stance, there is little support for using efficient custom com-
munication protocols in common systems. These generic
mechanisms do not provide the power to efficiently utilize
modern networking systems such as Gigabit Ethernet [21],
ATM [11], and Myrinet [6].

To efficiently use many of the modern high throughput,
low latency networking systems, specialized approaches
must been taken that depart from the traditional operat-
ing system abstractions. Streamlined network processing
stacks, zero-copy data movement, and asynchronous net-
work processing are now seen as necessary for the highest
degree of networking performance [24, 25]. A minimal,
preferably application-specific networking path is impor-
tant to reduce the latency involved in communication. For
example, zero-copy eliminates any superfluous memory us-
age, while execution at interrupt time avoids unnecessary
scheduling overheads.

Many systems have been devised that combine any num-
ber of these optimizations to provide a platform for high
demand communication [9, 18, 24]. Most of these systems,
however, require intrusive changes to their host kernel and
specific functionality built into the hardware of the network
interface to achieve enhanced performance. These are ac-
ceptable costs when the environment is controlled, as is the
case in a research or government lab for scientific appli-
cations, but not feasible on the scale of the Internet where
COTS systems must be considered.

An efficient mechanism is required with which an appli-
cation can receive more control of the underlying hardware
while still maintaining safety and isolation. Minimal impact
on the code base of the kernel of the host system is certainly
desirable. This mechanism can be provided by extensible
systems.



Much work has been done in the area of extensible sys-
tems to provide specialized services to applications whose
requirements go beyond the control and abstractions pro-
vided by the default interfaces of the host kernel. An exten-
sibility mechanism strives to allow applications to execute
code in a manner not normally provided, while maintaining
safety. Some systems allow this application extension to be
executed in the context of the kernel while still disallowing
that code to modify the kernel or disrupt other processes [4].
Others implement minimal kernels which provide low-level
interfaces and export much of the functionality and pol-
icy to the user level [10]. Linux provides the ability for
trusted code to link directly into the address space of the
kernel, without protection. Each of these mechanisms per-
mit a greater degree of control of the hardware than would
be otherwise available.

Using our extensibility mechanism called user-level
sandboxing [27], we are able to provide access to lower-
level abstractions such as interrupt-time execution within a
bottom-half, and regulated control over packets transferred
between memory and the network interface using DMA.
Execution in the context of a bottom half enables the lowest
possible latency for packet processing by avoiding schedul-
ing overheads. Increased control of the network interface
card (NIC) allows for zero-copy communication which re-
duces memory bus usage. Even with these privileged capa-
bilities, the extension executes at user-level without access
to the kernel address space. Further, because it executes in
the application domain, the code may link with user-level
libraries.

In summary the contributions of this paper center around
support for efficient user-level implementations of network
service extensions. The aim is to provide a means by which
high performance distributed computing applications can
customize network services for their specific needs. We
leverage our ongoing work on user-level sandboxing to sup-
port the implementation of a network subsystem in user-
space that avoids unnecessary intervention of the kernel.
Moreover, our approach allows high performance applica-
tions to communicate with the network interface without:
(1) the need to copy data via the kernel, and (2) scheduling
overheads. This is achieved on commonly available hard-
ware. We compare various implementations of a network-
ing stack, traditionally implemented in the kernel, that for-
ward data between end-hosts in a distributed system. This
scenario would be applicable for efficient peer-to-peer rout-
ing of high bandwidth data streams, or in situations where
a proxy server is handling remote procedure calls. Results
show our system is flexible enough to allow applications
to customize networking services for their specific needs,
while providing efficient throughput comparable to kernel-
level methods of forwarding network data.

The paper is organized in the following manner: Sec-

tion 2 briefly describes the sandboxing mechanism required
for our user-level networking services. Section 3 then dis-
cusses issues involved in the implementation of a network-
ing stack in a user-level sandbox. This is followed by Sec-
tion 4 that compares the performance of various network-
ing implementations. Finally, related work is described in
Section 5, followed by conclusions and future work in Sec-
tion 6.

2. User-level Sandboxing

Our base architecture for extensibility is user-level sand-
boxing. For a full description of this mechanism, includ-
ing a performance analysis, see our Sandboxing paper [27].
What follows is a an overview of all relevant information to
our user-level networking scheme.

User-level sandboxing modifies the address space of all
processes, or logical protection domains, to contain one or
more shared pages of virtual addresses. The virtual address
range shared by all processes provides a sandboxed memory
region into which extensions may be mapped. Under nor-
mal operation, these shared pages will be accessible only
by the kernel. However, when the kernel wishes to pass
control to an extension, it changes the privilege level of the
shared page (or pages) containing the extension code and
data, so that it is executed with user-level capabilities. This
prevents the extension code from violating the integrity of
the kernel. The extension code itself can run in the context
of any user-space process, even one that did not register the
extension with the system, therefore eliminating scheduling
overheads.

There is potential for corrupt or ill-written extension
code to modify the memory area of a running process. To
guard against this, we require extension code registered
with the system to be written by a trusted programmer. By
virtue of running at user-level, the kernel itself is always
shielded from any extension software faults.

2.1. Hardware Support for Memory-Safe Exten-
sions

Our approach assumes that hardware support is lim-
ited to page-based virtual memory (i.e., processors with an
MMU). 1 This minimum hardware requirement is met by
many processors made today. These relaxed requirements
will allow wide deployment across a heterogeneous envi-
ronment such as the Internet.

On many processors, switching between protection do-
mains mapped to different pages of virtual (or linear) ad-
dresses requires switching page tables stored in main mem-
ory, and then reloading TLBs with the necessary address

1A series of caches, most notably one or more untagged translation
look-aside buffers (TLBs) is desirable but not necessary.



translations. Such coarse-grained protection provided at the
hardware-level is becoming more undesirable as the dispar-
ity between processor and memory speeds increases [22].
This is certainly the case for processors that are now clock-
ing in the gigahertz range, while main memory is accessed
in the 108Hz range. In practice, it is clearly desirable to
keep address translations for separate protection domains in
cache memory as often as possible. User-level sandboxing
avoids the need for expensive page table switches and TLB
reloads by virtue of the fact that the sandbox is common to
all address spaces.

Traditional operating systems provide logical protection
domains for processes mapped into separate address spaces,
as shown in Figure 1(a). With user-level sandboxing (Fig-
ure 1(b)), each process address space is divided into two
parts: a conventional process-private memory region and a
shared, but normally inaccessible, virtual memory region.
The shared region acts as a sandbox for mapped extensions.
Kernel events, delivered by upcalls to sandbox code, are
handled in the context of the current process, thereby elim-
inating scheduling costs.

2.2 Sandbox Regions

In our current implementation, the sandbox consists of
two 4MB regions of virtual memory that are identically
mapped in every address space to the same physical mem-
ory. For convenience, the two regions are assigned to ad-
jacent (extended) page frames. That is, regions employ the
page size extensions supported by the Pentium processor
and each occupy one 4 megabyte page directory entry 2.

The Sandbox region is permanently assigned read-write
permission at kernel-level, but by default is inaccessible at
user-level. The region can be made accessible to user-level
by toggling the user/supervisor flags of its page directory
entry and invalidating the relevant TLB entries. This is only
allowed when an upcall occurs from the trusted kernel.

2.3 Sandbox Threads

One design consideration is whether or not to allow
threads to execute in the sandbox. If code in the sandbox
is allowed to invoke system calls, it is possible for an ex-
tension registered by one process to block the progress of
another process. For example, if process pi registers an
extension ei that is invoked at the time process pj is ac-
tive, it may be possible for ei to affect the progress of pj

by issuing ‘slow’ system calls. A currently available solu-
tion which allows extensions to use blocking system calls
is to promote them to a thread. Scheduling this thread will

2The 32-bit x86 processor uses a two-level paging scheme, comprising
page directories and tables.

have costs roughly comparable to the scheduling of a kernel
thread [27].

2.4 Pure Upcalls

Traditionally, signals and other such kernel event noti-
fication schemes [2, 16] have been used to invoke actions
in user-level address spaces when there are specific kernel
state changes. Unfortunately, there are costs associated with
the traversal of the kernel-user boundary, process context-
switching and scheduling. The aim is to implement an up-
call mechanism with the speed of a software trap (i.e., the
mirror image of a system call), to efficiently vector events
to user-level where they are handled by service extensions,
in an environment that is isolated from the core kernel. It
should be noted that sandbox extensions cannot be invoked
other than via the trusted kernel. We call this type of an in-
vocation where the extension code is run at the user-level a
pure upcall.

Of primary benefit to any high performance network
communication framework is the ability to entirely avoid
any scheduling thus processing packets immediately when
they arrive. Therefore, any extension written for this pur-
pose can be executed independent of any scheduling as a
pure upcall.

3 User-level Networking

The motivation for this work is to support high per-
formance distributed applications that require system ser-
vices configured for their specific needs. In meeting this
goal, we have implemented an entire networking subsystem
in a user-level sandbox that can be customized to support
application-specific protocols and services. This section de-
scribes the issues involved in its construction.

• Memory management: Memory resources in the sand-
box area must be managed efficiently to oversee packet
placement and to ensure all allocations occur within
the sandbox. malloc, the memory allocation tool
provided with glibc, is not satisfactory for this high
performance role. It is beneficial to have a slab allo-
cator [7] that has apriori knowledge of objects such as
packet descriptors (sk buff heads).

• Kernel Bypass: An abstraction for passing control to
the extension during a bottom half asynchronous exe-
cution unit must exist. This abstraction must include
hooks which are executed during packet reception in
the kernel to trigger execution in the sandbox. This
allows the network execution path in the kernel to be
removed in favor of the more specialized extension’s
code. The abstraction allows insertion of customized
network code into the critical networking path. This is
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seen as primary to obtaining high networking perfor-
mance [24, 9].

• NIC interaction: An interface between the NIC and the
sandbox allowing packets to be received into and sent
from the sandbox directly using DMA. This is essen-
tial in data stream processing because the packets will
be very large, and we will benefit from the zero-copy
afforded to us by this interface.

In consideration of all of these criteria, User-mode Linux
(UML) [23] was chosen as the platform to insert into the
sandbox. UML is, in essence, the Linux kernel ported to
user-space. It is a type of virtual machine that executes as
an application on top of a host Linux kernel. All of the
hardware of a real machine is emulated using the system-
call, signaling, and ptrace interfaces of the host kernel. It
provides all of the services that Linux itself does includ-
ing, most importantly, memory allocation, a modular device
interface, and a fully functional, well tested, efficient and
modular networking stack. Extensions to UML’s network-
ing code can be written, and loaded into the sandbox with
it. Furthermore, because UML is a user-space application,
it is much easier to port to the sandbox than a normal ker-
nel. UML satisfies the criteria of memory management with
its internal kmalloc interfaces. Using UML allows us to
manage the memory resources in the sandbox with the same
efficiency and granularity as in the host kernel. A benefit of
this decision is that memory is strictly controlled within the
8M boundary.

The design choice to use UML makes the conditions for
kernel bypassing easily satisfiable. Driver abstractions exist
within the Linux kernel, and therefore in UML, to receive
and transmit packets. These abstractions make it simple to
write a driver in UML that functions as an intermediary be-
tween the host kernel bottom half and the extension net-
working stack. It is only because the sandbox is mapped

across all virtual address spaces that it is possible to support
efficient bottom half execution. Typically, it would not be
efficient or desirable to execute a user-level handler in the
context of a bottom half because it is impossible to guaran-
tee that a process’s virtual address space will be currently
loaded. Executing the process’s code could require a con-
text switch. This is a costly operation to do for every inter-
rupt caused by network hardware.

UML, however, does provide abstractions and mech-
anisms that are unnecessary in a sandbox environment.
Namely, the UML analogy of user-level processes are su-
perfluous to our purposes of providing a customizable net-
working stack in the sandbox. After implementing all
changes required to make UML run in the sandbox without
these virtual user-level processes and with a specific driver
to interface with the host kernel, no more than a few hun-
dred lines of code were altered.

Because extensions running in the sandbox cannot issue
privileged instructions, they cannot directly modify or in-
fluence the networking hardware to copy packets directly to
and from the sandbox using DMA. Instead, the host kernel
and sandbox interface through a well defined set of com-
munication channels to pass the desired memory location
for packet arrival or transmission. In this way, all protected
instructions and all kernel memory remains protected from
sandbox extensions. Independent of which process is run-
ning at any given moment, the networking card can DMA
directly to or from the sandbox region. This type of com-
munication is only possible because the sandbox exists in
every process virtual address space. Consequently, no spe-
cial hardware requirements are placed on the networking
hardware. DMA is used in all our examples because its de-
ployment on modern networking cards is so ubiquitous, but
there is no innate limitation which restricts us to DMA. This
is an important point because the sandboxing user-level net-



working system is intended to be deployed Internet-wide
and must be as hardware heterogeneous as possible.

In this manner the NIC interaction criteria for providing
a high performance, user-level, networking interface is ful-
filled. This interface is leveraged to provide a minimal copy
capability where packets coming in from the network can
be copied using DMA directly into the sandbox and, after
processing by the customizable stack, can be copied directly
back onto the network. This ability has been used to provide
a direct proxying service within the sandbox. Packets of a
data stream can be routed without copying (from the CPU’s
view) at the transport level of the customized networking
stack along a backbone network.

Demultiplexing: The demultiplexing of packets is one
of the challenges when developing a user-level network-
ing stack. Other technologies rely on programmable NICs
which have apriori knowledge of the destination of incom-
ing packets so they can transfer them directly to the correct
destination. We do not take this approach because we wish
to target non-specialized NICs. Instead, a light weight clas-
sifier can be written either in the lowest levels of the host
kernel or in the sandbox, which then dispatches packets ap-
propriately. In either case, all incoming packets must still
be allocated and transfered (perhaps via DMA) to the sand-
box address range. The sandbox networking scheme is not
intended to be an architecture for the efficient processing of
all packets, only those which extensible code was written to
handle. This is not a serious limitation because it is unlikely
that every networking stream will require high-performance
communication; only a subset will need such efficiency.

3.1. Control Flow With Sandboxed Networking
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Figure 2. User-level networking in a sandbox.

The execution path of sandboxed networking is demon-
strated by Figure 2. To support specialized interfaces with
the sandbox extension, we modified the host’s networking
driver (referred to as the sbnet driver.)

1. When a packet is received on the NIC, an interrupt (top
half) is invoked in the sbnet driver. This is a basic noti-
fication that a packet is ready and a minimal amount of
processing is undertaken. No modifications to the top
half of the default driver are made so that it remains as
efficient as possible.

2. Interrupts are re-enabled and bottom half execution
proceeds in the sbnet driver. We then allocate space
in the sandbox by performing an upcall that directly
invokes the sandbox memory manager(kmalloc).

3. The return value of this allocation is passed to the sb-
net driver. To ensure that the extension in the sandbox
is not being malicious, a check is performed to verify
that the memory location is within the sandbox virtual
address space.

4. The sbnet driver informs the NIC of the location into
which it can DMA the packet. Because this sbnet
driver is executed in the kernel domain, it has full I/O
permissions and can communicate safely with the NIC.

5. The NIC copies the received packets into the allocated
sandbox memory using DMA.

6. After the new packet is resident in the sandbox, a pure
upcall is made and the networking stack in the exten-
sion is invoked. Note that this is still in the context
of a bottom half, so execution is unaffected by host
scheduling. Recall that when a pure upcall is triggered,
the handler runs with user permissions.

7. At points in the configurable networking stack, appli-
cation specific handlers can execute. We provide an
application that performs transport level routing to di-
rectly forward packets to another end-host system.

8. After the network stack’s processing is complete, it
may wish to transmit a packet and returns its address.
Upon return from the pure upcall initiated in step 6, we
resume execution in the kernel.

9. Because full I/O permissions are restored, the NIC is
notified. of the packet it should transmit.

10. The NIC uses DMA to retrieve and send the packet
onto the network.

11. After the DMA is complete, the sbnet driver notifies
the sandbox extension that it can free the memory for-
merly taken up by the packet. The memory manager is
invoked to free it.

12. Upon return from this pure upcall, we have completed
the bottom half and can return to the previous exe-
cution thread. Though this path seems complex, it is
highly optimized and gets excellent performance as is
shown in the results.



4. Experimental Evaluation

Our experiments are executed on a cluster of 8 IBM x se-
ries 305 e-servers, each with a tigon3 gigabit Ethernet card,
interconnected by a gigabit Ethernet switch. Each machine
has 2.4G Pentium IV CPUs and 1024M RAM. Our code is
based on the Linux 2.4.20 kernel.

4.1. UDP Forwarding

We use a simple UDP forwarding agent to test the per-
formance characteristics of our implementation. This ap-
plication forwards UDP packets for specific streams of data
from one host, which we will call A, through the forward-
ing host, B, to the receiving host, C. Such a generic appli-
cation could be used to route data along a P2P overlay, or
over a Grid. The forwarding would typically be directed
and arbitrated by routing protocols, perhaps defined by a
hashing algorithm for a P2P network [3], or by a library
such as the Globus toolkit [12] for a grid. This application
level routing protocol could be built into the sandbox, but,
to best demonstrate and stress the high performance capa-
bilities our method enables, we conducted our experiments
using only the UDP forwarding agent. An application anal-
ogy of this service is squid [20].

To generate traffic and measure throughput and jitter, we
used the Iperf [15]. Iperf generates packets at the source, A,
and measures the perceived throughput at the destination,
C. The perceived throughput can be less than the amount
sent because packets might be lost in transit, at B for in-
stance. All bandwidth figures shown in this section are of
the perceived throughput. Iperf also measures the jitter of
the arrival time of the packets. That is, it measures the devi-
ation from the average transfer time of each of the packets
and it maintains a running total of this average jitter.

4.2. Comparison of Networking Implementations

The experiments are broken into groups, each demon-
strating a specific aspect of the benefit of the work. The
first experiment focuses on the ease of porting an applica-
tion to the sandbox while obtaining benefits in the form of
performance.
User-Level Networking: Figure 3 shows a comparison be-
tween the capability of an UDP forwarding agent running
on host B in User Mode Linux as an application in user-
space and UML as an extension in the sandbox. MTU sized
packets were routed from A to C and the throughput was
noted. The UML forwarding agent operates in the same
way as our sandboxed network scheme: All processing and
routing is done in the UML equivalent of a bottom half. The
two main differences between the test cases are that UML
must be scheduled, and that the sandbox code can make use
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Figure 3. Throughput comparison of UML in
a sandbox versus user-process.

of DMA thus reaping zero-copy benefits. The sandbox ex-
tension code is essentially unchanged besides the fact that
we disable UML’s user-level processes in the sandbox, as
mentioned before.

Figure 3 shows the throughput corresponding to both of
these cases. Background processes are run to measure the
effect of system load on performance. These background
processes are simple while loops with minimal working-set
sizes. It is important to measure the throughput of our meth-
ods with background processes because we target COTS
systems on the Internet that could be performing other tasks
concurrently.

The results show that with no background processes, the
sandbox forwarding agent demonstrates an improvement
of 130% over the user-level UML. Further, as the number
of processes increases, application-level UML does consis-
tently worse as scheduling impedes its progress. The ex-
tension does not suffer from this degraded progress because
it is executing as an asynchronous unit, independent of any
scheduling. It is evident from the results that installing user-
mode code into the sandbox with minimal porting effort can
improve the throughput significantly.

The execution semantics of the sandbox allow for exten-
sion code to execute that is not controlled by mechanisms
that exist within the kernel to provide fairness such as CPU
scheduling. However, the sandbox is an architecture de-
signed for trusted code which is to be inserted by a trusted
user. Furthermore, this asynchronous execution environ-
ment together with efficient interaction with the networking
card, make a good environment for high performance com-
puting where high throughput and low latency are desirable.
User- versus Kernel-Level Networking: The former ex-
periment demonstrated that with minimal porting effort, a
user-level code base can be made to execute in the sandbox,
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Figure 4. Throughput comparison of an opti-
mized sandbox stack versus both user-level
sockets and kernel implementations.

thus reaping performance benefits. However, it did not pro-
vide a good comparison with which to demonstrate the raw
power of the sandbox services. UML is afflicted by some
degree of virtualization costs making it a weak candidate
for high-performance communication.

The next test, therefore, focuses on the performance as-
pects of our user-level networking scheme. We further op-
timize the extension to fully take advantage of the sand-
boxed environment. It is acceptable, using pure upcalls
and the sandbox, to make non-blocking system calls, but
it can affect performance. UML normally disables inter-
rupts to ensure synchronization. To do this it makes sys-
tem calls which disable signals that are used to virtualize
the asynchronous events of a host kernel. Only one bottom
half (softirq in Linux) can execute per processor at any one
time. By utilizing this synchronization already provided by
the kernel, the synchronization related system calls within
UML are unnecessary.

After removing synchronization system calls, perfor-
mance increases by nearly a factor of three as can be seen
in Figure 4. We compare the throughput of the sandbox
networking stack with two other implementations: that of a
simple forwarding agent within the kernel that uses a kernel
thread to send from one socket to another without copying
the data, and with that of a user-level application that sim-
ply reads the data off of a socket and writes it to the next.
The latter application should be viewed as the most efficient
possible middle-ware solution.

The same testing environment as before is maintained
and maximum throughput from A to C through B is mea-
sured with a certain number of background processes. One
can see that the sandboxed networking stack’s bandwidth
remains nearly constant as the number of processes in-

creases while the other approaches do not. Remember that
the kernel routing uses a kernel thread, which is a schedula-
ble entity so it has to compete for CPU time. Even with no
background processes, our user-level networking does bet-
ter than the minimal user-level application and only slightly
worse than the kernel itself.

4.3. Transfer Time Jitter
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Figure 5. Maximum jitter in transfer time.
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Figure 6. Average jitter in transfer time.

Average jitter measures the variation of the transit time
of the packets over a period of time. Maximum jitter, often
more important, measures the maximum of the deviation
from the average transfer time. The reduction or elimination
of jitter is especially important in environments which re-
quire QoS constraints to be met. If network performance is
unpredictable (i.e., high jitter is present) then guaranteeing
QoS constraints becomes increasingly difficult if not impos-
sible.



Running in the context of bottom halves gives the sand-
box pure upcall code the ability to immediately process each
incoming packet, which results in a very small amount of
variation in the transfer time of those packets. In contrast,
the kernel and process-based forwarding agents must suf-
fer from scheduling delays. The amount of deviation from
the average transfer time is a function of the size of the run
queue. Figure 5 and Figure 6 show that a nearly consis-
tent amount of jitter is demonstrated by the Sandboxed net-
working scheme while the other two show degradation as
the amount of background processes increases.

4.4. Microbenchmarks

Operation Cost in CPU cycles

Null Pure Upcall 1370

Sandbox Packet Processing Time 6360

Kernel Packet Processing Time 4800

Table 1. Sandbox Overheads.

Table 1 shows microbenchmarks measured by using the
real-time clock. The round-trip time for a pure upcall in-
voking a function that simply returns to the kernel is 1370
clock cycles. Due to various optimizations that avoid identi-
fying the process responsible for registering an upcall func-
tion, this value improves upon the costs of upcalls in our
earlier work [27]. In our original upcall implementation, it
was necessary to identify the process that registered an up-
call so that its credentials (including file descriptors) could
be made available for use by an upcall handler. This is no
longer necessary for our current work.

The second value in Table 1 measures the time it takes
to process a packet using our user-level networking code.
A measurement is taken upon reception of a packet and
again when we transmit that packet. This overhead com-
pares favorably to the cost of executing a network bottom
half handler in the kernel. Hence, the overheads of using
our sandboxing scheme do not impose excessive costs on
the implementation of network services at user-level.

5. Related Work

Many researchers have explored various methods for
high performance communication. For example, Active
Messages [25] can be used to implement an efficient
RPC [5] mechanism by running as handlers in the context of
the currently active protection domain. This avoids schedul-
ing and context switching overheads to implement network
services, as does our approach using user-level sandboxing.

In effect, our work is similar to that of U-Net [24], Eth-
ernet Message Passing (EMP) [18], and the Virtual Inter-
face Architecture (VIA) [9], that all provide abstractions for
user-level network implementation. In these alternative ap-
proaches to ours, the network interface card (NIC) is virtu-
alized and multiplexed across applications. Additionally,
if hardware permits, zero-copy capabilities are available.
EMP requires programmable NIC interfaces to offload mes-
sage processing to hardware and provide zero-copy capabil-
ity. While U-Net and VIA are also able to advantage of ad-
vanced hardware, they can only run on non-programmable
NIC cards at the cost of efficiency. In all cases, they
find that application-specific network implementations of-
fer substantial performance improvements over similar im-
plementations that run on generic OS abstractions. The fine
grained control of the network allows applications to op-
timize resource usage. Our work doesn’t provide such a
demultiplexing abstraction. Instead, it allows user-level ex-
tensions to run efficiently enough to be invoked as handlers
for networking events.

There have been a number of related research efforts
that focus on OS structure and extensibility, safety, and ser-
vice invocation. Extensible operating systems research [19]
aims at providing applications with greater control over the
management of their resources. SPIN [4], for example,
is an operating system that supports extensions written in
the type safe Module-3 programming language. By using
type safety and interface contracts to provide protection,
extensions can be injected into the operating system and
run at kernel level. In addition to being able to extend ker-
nel functionality, like memory management and scheduling,
they show their approach provides improved network la-
tency and lower CPU utilization over user-level implemen-
tations of protocol forwarders and video servers. Our work
attempts to bridge the performance gap between user and
kernel-level network implementations evident in the SPIN
experiments.

Transaction-based approach to system extensibility is
employed by the VINO [17] operating system. VINO sup-
ports system extensions known as grafts that are written in
C++. Since C++ is not type-safe and memory protection is
an issue, grafts are run in the context of transactions, so that
the system can be returned to a consistent state if a graft
is aborted. We are currently working to provide CPU con-
strained execution for extensions running in the Sandbox,
using techniques found in the VINO and SafeX [26] work.
Such a method would allow us to avoid the situation where
a extension executing as a bottom half uses more than a
constrained amount of resources.

In contrast to safe kernel extensions, micro-kernels such
as Mach [1] and Exokernel [10] offer a few basic abstrac-
tions, while moving the implementation of more complex
services and policies into application-level components. By



separating kernel and user-level services, micro-kernels in-
troduce significant amounts of interprocess communication
overhead. This has caused micro-kernels to fall out of fa-
vor despite substantial reductions [14] in communication
costs. Regardless of the overhead, a network implemen-
tation running on Exokernel achieved an average a factor
of 2-5 improvement in throughput over conventional imple-
mentations [13]. Our approach differs in that it is aimed
at extending existing systems, by slight modifications to
the kernel, as opposed to employing an entirely new (albeit
small) trusted kernel.

Finally, observe that our work is not to be confused with
user-level resource-constrained sandboxing [8], by Chang,
Itzkovitz and Karamcheti. Their work focuses on the use of
sandboxes to enforce quantitative restrictions on resource
usage. They propose a method for instrumenting an ap-
plication, to intercept requests for resources such as CPU
cycles, memory and bandwidth. As a result, they are able
to control the allocation of such resources in a predictable
manner. The emphasis of our work is to develop an efficient
execution environment at user-level for kernel extensions
and system services, regardless of which address space is
active at the time extension code is invoked.

6. Conclusions and Future Work

We have devised a high performance networking scheme
that, utilizing the sandbox extensibility service, can provide
levels of throughput higher than those of middleware while
coming close to the kernel’s native throughput while still
utilizing a fully-featured networking stack. The user-level
sandboxing scheme allows networking extension code to
safely and efficiently access and influence lower-level ab-
stractions such as bottom halves and the network hardware.
It is through these exposed abstractions that such high per-
formance is available. The sandboxing mechanism itself
allows for customizable network processing units or stacks
to execute with user-level permissions. These extensions,
therefore, cannot compromise the integrity of the kernel’s
address space and are well encapsulated. Moreover, this ef-
ficiency and safety are provided without cumbersome hard-
ware requirements. The only requisite is that of a paging
memory management unit which is ubiquitous in modern
computers. It follows that wide deployment across a het-
erogeneous environment such as the Internet is possible and
desirable.

Many aspects of this work can be expanded. We are
exposing the ability to deploy efficient network services
to a trusted user, for the benefit of implementing func-
tionality specific to high performance applications. Future
work involves the implementation of sandboxed services
that have isolated and controlled resource usage. For ex-
ample, an end-system service extension used for the pur-

poses of processing and forwarding high bandwidth data
should not prevent a user of the system from performing
other tasks by consuming all available resources. Other fu-
ture work involves exposing hardware devices to extensions
executing in a user-level sandbox, thereby supporting user-
configurable device drivers. Finally, to make our sandbox-
ing system truly portable, we intend to eliminate the need to
make any modifications to the core kernel. In fact, we are
currently investigating a number of binary-rewriting tech-
niques to achieve this objective. This will enable our sand-
boxing system to be easily deployed on multiple hosts in a
distributed environment.
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