## MATLAB Extras

Fun with DOTS

## Background

- Two Ways to Deat with Matrices
- As a Matrix
- Each Value is Related to Each Other Value
- EX. When Solving a Series of Equations
$\left(\begin{array}{c}2 x+3 y+4 z=12 \\ -5 x+9 z=-12 \\ 7 y+3 z=7\end{array} \quad\left(\begin{array}{ccc}2 & 3 & 4 \\ -5 & 0 & 9 \\ 0 & 7 & 3\end{array}\right)^{-1} *\left(\begin{array}{r}12 \\ -12 \\ 7\end{array}\right)=\left(\begin{array}{l}X \\ Y \\ Z\end{array}\right)\right.$
- The Solution Involves Inversing Matrix A and Performing Matrix Multiplication with that Product and B.
- As a List
- Each Term is Considered Independent of the Others
- EX. When Plotting $F(x)=\sin \left(x^{2}\right)$, where $x=1: 1: 100, x$ is a list.
- $X^{2}$ means [ $1^{2} 2^{2}$... $\left.100^{2}\right]$, not [1 2 ... 100] * [1 3 ... 100]


## Handling Matrices as Matrices

- Why?
- Matrices have special rules for multiplication and division. We need to tell MATLAB that we want to use those rules.
- How?
- Nothing Extra Required; Just Type Out What You Want Done! Paper \& Pencil Format MATLAB Format

$$
\begin{aligned}
& \left(\begin{array}{lll}
2 & 3 & 4 \\
-5 & 0 & 9 \\
0 & 7 & 3
\end{array}\right)^{2} \\
& \left(\begin{array}{lll}
2 & 3 & 4 \\
-5 & 0 & 9 \\
0 & 7 & 3
\end{array}\right) *\left(\begin{array}{lll}
1 & 2 & 3 \\
-5 & 0 & 9 \\
8 & 7 & 1
\end{array}\right)
\end{aligned}
$$

$$
[2 \text { 2 } 3 ;-509 ; 073]^{\wedge} 2
$$

## Handling Matrices as Lists

- Why?
- Many times we want to evaluate a function over a range of individual values. We need to tell MATLAB to evaluate the function at each value individually.
- How?
- Before certain operators place a DOT
- Multiplication: * goes to .*
- Power:
^ goes to .^
- Division: / goes to ./
- No Change Required for Addition or Subtraction

Example: Convert the following equation into the MATLAB equivalent

$$
f(x)=\frac{\sin \left(x^{2}\right)}{(x+3)^{x}} \longrightarrow \mathrm{f}=\sin \left(\mathrm{x}^{\wedge} 2\right) /(\mathrm{x}+3) \cdot \wedge \mathrm{x}
$$

## Tips For When DOTS Are Not Needed

- DOTS are ONLY required when Matrix by Matrix multiplication or division is used.
- Examples of When DOTS are not needed
- When multiplying by a scalar
- 3 * A (Note, 3 .*A also works)
- When dividing by a scalar
- A / 3 (Note, A ./ 3 also works)
- When Adding Two Matrices
- A + B
- When Subtracting Two Matrices
- A-B
$\left[\begin{array}{lll}2 & 3 & 4 \\ -5 & 0 & 9 \\ 0 & 7 & 3\end{array}\right)=\mathrm{A}$
$\left(\begin{array}{ccc}7 & 2 & 3 \\ 8 & 5 & 9 \\ 3 & 6 & 1\end{array}\right)=\mathrm{B}$


## Multiplication Examples $\left[\begin{array}{cc}2 & 3 \\ -5 & 0\end{array}\right]=\mathrm{A}$

- Calculate A * B

$$
\left(\begin{array}{ll}
7 & 2 \\
8 & 5
\end{array}\right)=B
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
38 & 19 \\
-35 & -10
\end{array}\right) \\
& \left(\begin{array}{ll}
14 & 6 \\
-40 & 0
\end{array}\right)
\end{aligned}
$$

- Calculate B * A

$$
\left(\begin{array}{cc}
4 & 21 \\
-9 & -24
\end{array}\right) \quad \begin{aligned}
& \text { Not Order } \\
& \text { Dependant! }
\end{aligned}
$$

- Calculate B . ${ }^{\text {A }}$

$$
\left(\begin{array}{ll}
14 & 6 \\
-40 & 0
\end{array}\right)
$$

