MATLAB Extras

Fun with DOTS

George Washington University

Background

• Two Ways to Deal with Matrices

- As a Matrix
 - Each Value is Related to Each Other Value
 - EX. When Solving a Series of Equations

• The Solution Involves Inversing Matrix A and Performing Matrix Multiplication with that Product and B.

• As a List

- Each Term is Considered Independent of the Others
- EX. When Plotting $F(x)=sin(x^2)$, where x = 1:1:100, x is a list.
- X² means [1² 2² ...100²], not [1 2 ... 100] * [1 3 ... 100]

Handling Matrices as Matrices

• Why?

- Matrices have special rules for multiplication and division. We need to tell MATLAB that we want to use those rules.
- How?

Nothing Extra Required; Just Type Out What You Want Done!
<u>Paper & Pencil Format</u>
<u>MATLAB Format</u>

 $\begin{bmatrix} 2 & 3 & 4 \\ -5 & 0 & 9 \\ 0 & 7 & 3 \end{bmatrix}^{2}$ $\begin{bmatrix} 2 & 3 & 4 \\ -5 & 0 & 9 \\ -5 & 0 & 9 \\ 0 & 7 & 3 \end{bmatrix}^{*} \begin{bmatrix} 1 & 2 & 3 \\ -5 & 0 & 9 \\ 8 & 7 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 3 & 4; -5 & 0 & 9; 0 & 7 & 3 \end{bmatrix}^{*} \begin{bmatrix} 1 & 2 & 3; -5 & 0 & 9; 8 & 7 & 1 \end{bmatrix}$

Handling Matrices as Lists

• Why?

• Many times we want to evaluate a function over a range of individual values. We need to tell MATLAB to evaluate the function at each value individually.

• How?

- Before certain operators place a DOT
 - Multiplication: * goes to .*
 - Power: ^ goes to .^
 - Division: / goes to ./
 - No Change Required for Addition or Subtraction

Example: Convert the following equation into the MATLAB equivalent

$$f(x) = \frac{\sin(x^2)}{(x+3)^x} \longrightarrow f = \frac{\sin(x^2)}{(x+3)^x}$$

Tips For When DOTS Are Not Needed

- DOTS are <u>ONLY</u> required when Matrix by Matrix multiplication or division is used.
- Examples of When DOTS are not needed
 - When multiplying by a scalar
 - 3 * A (Note, 3 .* A also works)
 - When dividing by a scalar
 - A / 3 (Note, A . / 3 also works)
 - When Adding Two Matrices
 - A + B
 - When Subtracting Two Matrices
 - A B

