
A Lazy Evaluator

Peter Henderson
University of Newcastle upon Tyne

,lames H. Morris, Jr.
Xerox Palo Alto Research Center

Abstract: A different way to execute pure LISP programs is
presented. It delays the evaluation of parameters and list
structures without ever having to perform more evaluation
steps than the usual method. Although the central idea can
be found in earlier work this paper is of interest since it
treats a rather well-known language and works out an
algorithm which avoids ' full substitution. A partial
correctness proof using Scott-Strachey semantics is sketched
in a later section.

I. Introduction

This paper studies a non-standard method of performing the
mechanical evaluation of expressions in a purely applicative
language;i.e, one without assignment. The intuitive ideas
behind this method are two:

- Perform an evaluation step only when it is necessary.

- Never perform the same step twice.

It is somewhat surprising that these objectives can be
approached through the use of rather simple data structures
and algorithms. The following example should serve to
acquaint the reader with the basic idea.

integer procedure g(x,y);

g := if x = 0 then 1 else y*y

An ALGOL-60 programmer who wanted to enhance this
procedure's speed by choosing whether to declare y a call-
by-name or a call-by-value parameter would feel most
uncomfortable. The value of y is going to be used either
twice or not at all, depending on the value of x. The lazy
evaluation technique overcomes this dilemma because the
evaluation of g(E,F) will proceed as follows:

(1) Substitute pointers, ct and /3, to the expressions
E and F for the formal parameters x and y.

(2) Evaluate (i.e. reduce to a numeral) the contents of a.

(3) If the result is 0 return 1.

(4) Otherwise, evaluate the contents of ,fl and replace them
with the resulting numeral.

(5) Evaluate the contents of/3 again (this takes little
time since already a numeral) and multiply the results.

Thus a lazy evaluator will perform the work to e~'aluate the
second parameter either once or not at all. This e×ample
illustrates the call-by-need mechanism of Wadsworth [7]
and and the delay rule of Vuillemin [6].

Here we shall carry this strategy one small, but important
step further as suggested in [6]: list structures are evaluated
incrementally. In LISP parlance, an argument of CONS is
not evaluated until and unless it is selected and examined by
some later operation. Thus the statement

car[cons[x;y]] = x

is always true, even if the evaluation of x or y never
terminates. This extension is pragmatically important
bccause it allows the possibility for significantly different
styles of programming as the following examples illustrate.

Example I. Infinite Lists

The function defined by

integers[i] = cons[i; integers[i+l]]

is quite useful under a lazy evahlation regime, integers[0]
denotes the infinite list (0 1 2 ...) and the expression

car[cdr[integers[0]]]

will evaluate to 1 via the following intermediate steps:

car[cdr[cons[O; integers[0+l]]]]
car[integers[0+l]]
car[cons[O+l; integers[O+l+l]]]
0+1
1

In a similar way, the list defined by

L = cons[l; cons[2; L]]

is useful and computable.

Example 2. A leaf comparator

The following functions solve a problem posed by Carl
Hewitt [2] to illustrate the need for co-routines.

EqLeaves[x;y] = EqList[Flatten[x];Flatten[y]]

95

Flatten[x] = if a tom[x] then cons[x;NIL]
else Append[Flat ten[car[x]] ;

F la t ten[cdr[x]]]

Append[x;y] = if null[x] then y
else cons[car[x];A ppend[cdr[x] ;y]]

EqList[x;y] = if null[x] then nul l [y] else
if nul l [y] Ihen false else
if eq[car[x] ;car[y]]

then EqList[cd r[x] ;cdr[y]]
else false

In other words, EqLeaves tests two S-expressions to see if
their atoms are identical, independent of structure. This
obvious solution uses Flatten to eliminate the structure, then
uses EqList to compare the atoms. It would be an
unnecessarily slow method under normal circumstances
because applied to a pair of expressions like

(A Huge1) and (B Huge2)

it would go to all the work of Flattening Hugel and Huge2
even though the answer is false because of the first atoms in
each structure differ. If a lazy evaluator is used, however,
there is no need to change the solution to one involving co-
routines because the same computational effect will be
achieved automatically. Suppose location ~r 0 holds the
expression to be evaluated. The computation will follow this
pattern:

Wo: EqLeaves[(A Hugel);(B Huge2)]

First ~r 0 is updated with the definit ion of EqLeaves with
actual parameters substituted for formals.

no: EqList[Flatten[(A Hugel)];Flatten[(B Huge2)]]

Now pointers, 71/1 and 7r2, to the parameters are substituted
into the definition of EqList without any evaluation of the
parameters.

7to: if null[Trt] then null[Tt2] else
if null[~r2] then false else
if eq[car[~rl];car[~2]] then EqList[cdr[Trl];Cdr[n2]]
else false

7rl: Flatten[(A Hugel)]

~2: Flatten[(B Huge2)]

The primitive null now forces the lazy evaluator to go to
work on the contents of ~r 1.

~rl: if atom[(A Hugel)] then cons[(A Hugel); NIL]
else Append[Flat ten[car[(A Hugel)]] ;

Flatten[cdr[(A Hugel)]]]

7rl: Append[Flat ten[car[(A Hugel)]] ;
Flat ten[cdr[(A Hugel)]]]

~rl: if nullDr3] then ~t.
else cons[car[It 3];A ppend[cdr[~3];~4]]

~r3: Flatten[car[(A Hugel)]]

7r4: Flat ten[cdr[(A Hugel)]]

Again the primitive null forces evaluation steps on ~r 3.

~r3: i f atom[~t5] then consists;NIL]
else A Plfend[Flatten[cdr[~ 5]];Flatten[cdr[It 5]]]

~r5: car[(A Hugel)]

The primitive atom forces the evaluation of ~r s.

~r5: A

7r3: cons[~rs;NIL] since a tom[A] is true

~rl: cons[car[n3]; Append[cdr[lr3]; ~r4]] since null[cons ...]
is false

7to: if null[T2] then false
if eq[carDrl];car[~r2]] then EqList[cdr[Trl];Cdr[~r2]]
else false

If we choose to view Flatten as a co-routine, at this point
we would say that it has produced its first ,~u,~, ~a,t , ,3j -
A, and its context has been saved in ~r 4 for later
reacti vation.

Now the contents of ~t 2 is evaluated in the same way until
we have

~r2: cons[car[T6]; Append[cdr[~6];~rT]]

7r6: cons[B;NIL]

7r7: Flatten[(B Hugel)]

~r0: if eq[car[~rl];car[Tr2]] then EqList[cdr[nl];Cdr[~r2]]
else false

The primitive eq forces

~1: cons[A; Append[cdr[zt3]; ,/r4]]

~2: cons[B; Append[cdr[~r6]; lr7]]

Finally the test is made and the computation terminates with

n0: false

Notice that Hugel and Huge2 did not enter into any of the
foregoing computation and that the work done to evaluate
the subexpressions in ~r I and ~r 2 for the benefit of the null
primitive is not repeated when the eq primitive examines the
parameters.

Generalizing from this example we can see that a large class
of co-routine applications can be subsumed by this
technique. A producer co-routine becomes a function that
produces a long (possibly infinite) list and a consumer co-
routine becomes the receiver of such a list. Also, notions
such as streams and the dynamic lists of POP-2 are
subsumed. The purpose of these programming constructs is
to allow one to describe a sequence of values with a single
sub-program, yet have them computed on a hand- to -mouth
basis. This assumption is built into a lazy evaluator at the
most basic level so there is no need to call for it explicitly.

One the other hand. one might ask how to force a more
conventional evaluation to occur. Suppose one wishes to
cause the evaluation of f [s] to proceed conventionally,
computing the S-expression s before invoking f. One could

96

say, instead of f[s], Force[f,s] where

Force[f,s] = if Finite[s] then f [s] else don' t care

and

Fini te[s] = if a tom[s] then true else

if F in i te[car[s]] then Fin i te [cdr[s]] else don' t care

The function Finite simply explores the complete S-
expression, forcing every part of it to be evaluated. If it
ever terminates, Force invokes the function on the now-
evaluated argument.

Example 3: Prime Numbers (due to P. Quarendon)

primeswrt[x;I] produces a new list from I by removing all
multiples of x

primes[I] produces a new list from I by removing any
element which is a multiple of a predecessor.

primeswrt[x;I] = if car[I] rood x=O then primeswrt[x;cdr[I]]
else cons[car[I];primeswr t[x;cd r [I]]]

l)rimes[I] = cons[car[I] ;pr imes[primeswrt[car[I] ;cdr[I]]]]

then

primes[integers[2]]

is the infinite list of prime numbers.

Ii. A lazy evaluator for Hyper-Pure LISP

In this section we shall describe a language and its
implementation in order to crystallize the notion of lazy
evaluation. Hyper-Pure LISP is a variant of LISP 1.0 which
remains true to the principles of the ~.-calculus [1].
Specifically, FUNA~G binding is the only possibility. The
syntax of expressions in this language is as follows:

(expression> ::= <variable> I
(QUOTE (atom>) I
(CONS <expression> <expression>) I
(CAR (expression>) I
(CDR (expression>) I
(ATOM <expression>) I
(EQ (expression> <expression~.) I
(IF (expression> <expression> <expression>) I
((expression> (express ion>) I
(LAMBDA (variable> (expression>) I
(LABEL <variable> <expression>) I
(FUNARG (expression> <alist>)

<alist> ::= <empty> I (variable> (expression> <alist>

(atom> ::= <any string of capital letters>

<variable> ::= <any atom except CONS, CAR, CDR, ATOM,
EQ, IF, LAMBDA, QUOTE, LABEL, or F U N A R G)

The variations from the syntax of LISP are the replacement
of COND by IF, the restriction of QUOTE to atoms, the
restriction of LAMBDA-defined functions to one argument,

and the elevation of the FUNARG construct from an
internal bookkeeping device. The first three restrictions are
inessential and the FUNARG phrase is an extension.
Intuitively "(FUNARG el x e2 y e3)" means "el where x =
e2 and y = e3".

It will greatly simplify the discussion if we assume that the
computer memory is of a very accommodating, if unrealistic,
sort: each cell is capable of holding any of the forms listed
as <expression>s where addresses are used for any
component of type expression. In other words, if 90,. 91, etc.
are addresses and ~0'~]' etc. are variables, a single memory
cell is capable of holding (and discriminating among) items
like ¢0 ' (CONS 91 92) , (90 ~71) , (LAMBDA ~1 ao)' and
(FUNARG ~r 0 ¢1 91 ¢2 92)" Naturally, any real
implementation would represent such variable-sized memory
cells with linked lists; but the extra pointers would only
complicate this discussion.

The state of a computation is described by a partial memory
function, g, which has the following consistency property: If
a particular address, 7r, occurs as a component anywhere in
the memory (i.e. in #'s range), then #(9) is defined. Thus the
addresses for which # is undefined are the free cells and no
non-free cell points at a free one. A computation is started
by loading the memory with the expression in the obvious
way, performing transformations for a while, and then
examining the root cell of the expression.

As the first step in describing the lazy evaluator we describe
a set of reduction rules which transform the memory, #, to
produce a new memory #'. Each rule changes just a few cells.
To describe such an altered function we introduce some
notation:

#[e / 90] = ~.u. if 9=~t 0 then e else # (~)

In other words the new function differs from the old at just
one argument, 90 where its value has become E. Furthermore

g[t l /~t l ' E:2hr2] = (#[el / Ir l 1)[e2/~t 2]

In other words the rightmost pair represents the last change
to the memory.

There are seven transformation rules.

[C] g(90) = (CAR 91) and #(?r l) = (CONS ~r 2 93)

; ' = ~[#(92) / ~o]

In programming terms, the contents of 92 are copied into
770. When convenient we shall dispense with mention of
extra references by convening that p(Tr0) = (CAR (CONS 712
93)) implicitly asserts the existence of a 9 t for which the
above is true. The rule for CDR is similar.

p.(90) = (CDR (CONS 92 93)) ~ kt'= #[#(93) / ~t0]

[A] #(90) = (ATOM(QUOTE a))
/z' = #[(QUOTE "F) / ~t 0]

~(9o) = (ATOM(CONS ~r 92))
/~ = #[(QUOTE NIL) / 90]

I.e. "atom-hood" is simply the property of being QUOTEd.

97

[E] /Z(no) = (EQ(QUOTE a l) (Q U O T E a2))

/tt'= /z[if % = a 2 then(QUOTE T)e l se (QUOTE NIL)
/ %]

[I] / t(n0) = (IF (QUOTE T) 7r 1 n2) ~ #'= / t [# (n l) / no]

p.(n0) = (IF (QUOTE NIL) n 1 n2) ~ /.t'= / t [/ t0r2) / no]

Thus IF is just an al ternate fo rm of the usual C O N D p r i m i t i v e .

The fol lowing rule is a sort of incremental subs t i tu t ion
operat ion which allows F U N A R G expressions to bubble
down through the memory. When the specific list of
var iable-address pairs in a F U N A R G expression is no t
relevant we use 0 to denote it.

I F] (a) #(~o) = (F U N A R G n ' ~1 n l "'" ~n lrn)

and ttt(n') = ~i for some l < i < n
(choose the smallest i)

' =/uE#(~r i) / %]

(b) p.(~ro) = (F U N A R G (QUOTE a) 0)

p ' = ~ [(Q U O T E a) / n 0]

[G] #(n0) = ((F U N A R G (LAMBDA ~ h i) 0) n2)

/z'= # [(F U N A R G n I ~ n 2 0) / ~r0]

The fol lowing rule creates a circular structure.

[L] Given

p.(n) = (F U N A R G (LABEL ~ ~o) O)

p' = ~ [(F U N A R G % ~ ~ 0) / u]

Wha t can be said of these rules? The reader may wonder
whether they "work". For example, one of the au thors
(Morr is) thought that rule G might suffer f rom the usual
capture of free variables problem, and was surprised to f ind
it was not the case. This issue is taken up in the next
section. Present ly we shall cont inue with the descr ip t ion of
the evaluator.

Note that at most one rule can be appl icable to any
part icular "location, so the only choices left open to an
evaluator are where to per form the next reduction and when
to halt. The procedure for a lazy evaluator is def ined
recursively as follows:

(c) #(N0) = (F U N A R G (n t n2) 0)
= O

#'= ~ [(~ l ' ~2') / % '
(F U N A R G 71 t 0) / ~ l "
(F U N A R G 172 0) / n 2']

where w l' and n 2' are dis t inct free
cells in p

(d) If a is one of CONS, CAR, CDR, ATOM, EQ,
or IF then

#(no) = (F U N A R G (a n l ... ~m) 0)

p?= p.[(a n 1' ,.. rim') / n 0, ,
(F U N A R G n I 0) / h i '
..... (F U N A R G n m 0) / nrn']

where h i ' , ~l' ,-", rim' are d is t inct free
cells in p

Rules Fc and Fd are the only ones which use addi t ional
storage. Al though it appears here that the list of pairs 0 is
being duplicated, in a real implementa t ion which represents
a single, var iable-s ized cell with mult iple l inked cells, it
would not be; only a pointer to the list would be duplicated.

Notice that rule F does not tell what to do when a
LAMBDA or LABEL construct is encountered. The
fol lowing rules give an answer for some cases. The f i rs t one
shows how variables are bound to values in F U N A R G lists,
and the second shows how recursion is implemented.

Eval(n,#) : n is the location to be reduced /.t is the memory
Eval re turns a new memory

if p (n) = (QUOTE a) then return p
if p (n) = (CONS ...) then return p
if p (n) = (F U N A R G (LAMBDA ...) ...) then return/1.
[cH
if # (n) = (CAR ~ ')

then let #1 = Eval(u' , /z)
if # l (n ') = (CONS ~I ~'2)

then let #2 = Eval(nl , /~l)
return p2[/z2(~t) / ~r]

else there is an error, CAR applied to
n o n - p a i r

[C 2]
if B (n) = (CDR n ')

then let #1 = Eval (n ' ,g)
if p l (n ') = (CONS It l 172)

then let p. 2 = Eval(~r2,gl)
return /t2[/.t2(n2) I n]

else there is an error, CDR applied to
n o n - p a i r

[A]
i f / z (n) =

then

[E]
i f / u (u) =

then

(ATOM n ')
let #1 = Eval(u ' jz)
i t # l (n ') = (QUOTE a)

then return # l [(QUOTE T) / h i ;
if # l (n ') = (CONS ...)

then return # i [(Q U O T E NIL) / n] ;
else there is an er ror

(EQ ~t ~2)
let Pl = Eval(n2,Eval(~l ,P))
if # i (n l) = (Q U O T E a l) A /s.l(n2)= (QUOTE
then if a j = a 2 then return # j [(Q U O T E T) a2/)n]

else return # i [(Q U O T E NIL) / u]
else there is an error

98

[l]
if p o t) = (IF ~'o ~'l ~2)

then let /t I = Eval0r0,~)
if btl(~r0) = (QUOTE T)

then let #2 = Eva l0r l '~ l)
return #2[P.2(~1) / ~]

if ~(~o) = (QUOTE NIL)
then let /.t 2 = Eval0r2,/tl)

return /z2[/t2(~r2) / ~]
else there is an error

[F a]
if p.(Tr) = (F U N A R G ~0 ~1 ~'1 ""~n ~n) and /z(lr0) = ~0

then
if i is the smallest such that ¢o = ~i

then let #1 = Eval0ri ,#)
return #l[/ t l (~r i) / Ir]

else there is n o such i
and there is an unbound

variable error
[Fb]
if # (~) = (F U N A R G (QUOTE a) ...)

then return p [(QUOTE a) / ~r]
• [L]

if #(~r) = (F U N A R G (LABEL ~ ~ ') O)
then return E v a I 0 r , # [(F U N A R G ~r' ,~ ~t 0) / rt])

[FC]
if P (~) e =thn (F U N A R G Or 0 ~ l) ...)

apply rule Fc to yield/,t '
return Eval(~,# ')

[F d]
if #(~r) = (F U N A R G (a ... ~n) "")

then apply rule Fd to yield/.t '
return Eval0r ,# ')

[G]
if bt(~r) = (~r 0 ~rl)

then let #1 = Eval (~o~)
if/~l(~r0) = (F U N A R G (LAMBDA ...)...)

then apply rule G to location ~r to get #2
return Eval(~,#2)

else there is an er ror

else there is an error

The most subtle aspect of this a lgor i thm centers about rules
C, I, and Fa. For example, in C1, the f i rs t componen t of the
pair is evaluated in s i tu before being copied into 7r. This
policy maximizes the number of paths through the data
s tructure which "see" the change.

A convent ional evaluator d i f fers f rom a lazy evaluator in
that the parameters of CONS are evaluated as soon as they
are encountered and the actual parameter of. a func t ion call
are evaluated before they are bound. In terms of the
foregoing def in i t ion of Eval this means that the second case
is changed to

if /z(~)e=th. (CONS ~ l qr2)
return Eval(Tr 2 ,Eval0rÂ ,/t))

• and the case [G] is changed to

i f / t O O = (If 0 ~ I)
then let #1 = Eval(~l 'EVal(~o,~))

if #1(~o) = (F U N A R G (LAMBDA ...)...)
then apply rule G to location ~i and #1

to get #2
return Eval0r,~2)

else there is an er ror

These two changes make certain other invocat ions of Eval
unnecessary. Specifically, the case C1 becomes

if #(~) = (CAR ~')
then let #I = EvaI(~',p,)

if /z] (~ ') = (CONS ~1 ~2)
then return #lfP.l(Ttl) / ,//-]
else there is an error, CAR applied to

n o n - p a i r

Case C2 changes analogously, and case Fa becomes

i f # (~) -- (F U N A R G ~o ~1 ~1 ""~n ~n) and # (~o) = ~0
then

if i is the smallest such that ~o = ~i
then relurn # [~ (~ i) / ~]

else there is no such i
and there is an unbound

variable error

All the other cases remain the same. We believe that the lazy
evaluator never performs more reduction steps than the
convent ional one but shall not a t tempt to prove it here.

E x a m p l e 4.

To illustrate the lazy evaluator we shall per form a full
evaluat ion of the expression f rom example 1. To get things
started it is necessary to embed the expression to be
evaluated in a F U N A R G expression with all empty alist.
Also, we shall assume that PLUS is a pr imi t ive operator with
the same general characterist ics as EQ and that numerals are
understood to be QUOTEd atoms. Not all addresses are
explicit; each pair of parentheses indicates the presence of an
unnamed address.

a : (F U N A R G
((LAMBDA INTS (CAR(CDR(INTS 0))))
(LABEL INTEGERS

(LAMBDA I
(CONS I (INTEGERS (PLUS I 1)))))))

Apply Fc to ct

a: ((FUNARG (LAMBDA INTS (CAR(CDR(INTS 0)))))

n: (F U N A R G
(LABEL INTEGERS

(LAMBDA I
(CONS I(INTEGERS (PLUS I 1))))))

Apply G to a

a: (F U N A R G
(CAR(CDR(INTS 0)))
INTS n)

Apply Fd to a

a: (CAR "y)

77: (FUNARG (CDR tINTS 0))
INTS n)

Stack a, Apply Fd to y

~: (CDR ~)

99

/5: (F U N A R G (INTS 0) INTS/3)

Stack v,Apply Fc to 8

/5: (t ~o)

E: (F U N A R G INTS INTS fl)

~0: (F U N A R G 0 INTEGERS/3)

Stack 6, E, Apply L to B

/3: (F U N A R G
(LAMBDA i

(CONS I(INTEGERS (PLUS i I))))
INTEGERS/3)

Return to ~, Apply Fa

e: (F U N A R G
(LAMBOA i

(CONS I (INTEGERS(PLUS I 1))))
INTEGERS fl)

Return to /5, Apply G

i5: (F U N A R G
(CONS ! (iNTEGERS(PLUS i 1)))
i rp
li~ f EGERS fl)

Apply Fd to ~5

/5: (CONS ~ 7)

~: (FUNARG I I ~ INTEGERS fl)

7: (FUNARG (INTEGERS (PLUS I 1))
I ¢p INTEGERS/3)

Return to T to note CDR, Stack T again,
Apply Fc to r/

7: (~ s)

t: (FUNARG INTEGERS I ¢p
INTEGERS 13)

s: (FUNARG (PLUS I 1) I ¢p
INTEGERS/3)

Stack O, Apply Fa to t

t: (FUNARG (LAMBDA I (CONS !
(INTEGERS (.PLUS I 1))))

INTEGERS/3)

Return to 7, Apply G

~7: (FUNARG (CONS] (INTEGERS
(PLUS I 1)))

i s
INTEGERS/3)

Apply Fd to n

7: (CONS ~ X)

x: (FUNARG I I
INTEGERS/3)

100

h: (F U N A R G (INTEGERS (PLUS i 1))
I s iNTEGERS fl)

Return to T, Apply C

T: (CONS ~ h)

Return to a to note CAR, Stack a again,
Stack x, Apply Fd to s

s: (PLUS # ~,)

/z : (FUNARG i I rp INTEGERS fl)

v : (FUNARG 1 i ¢p iNTEGERS fl)

Stack s, Stack #, Apply Fb to ¢p

¢p: 0

Return t o # , Apply Fa t o #

#: 0

Return to s to note PLUS, Stack s,
Apply Fb to v

v: 1

Return to s, Apply P

s: 1

Return to x, Apply Fa

K: 1

Return to a, Apply C

a: 1

!11. Semantic Considerations

There are several questions one might ask about the
foregoing t ransformat ion rules and evaluator.

(1) Is the final answer independent o f the order in which
the rules are applied; i.e. does the system have the Church-
Rosser property?

(2) Are there enough rules to allow an answer to be
computed in all cases we consider legal?

(3) is the evaluator complete in the sense that will compute
an answer whenever any application of the rules will do so?

(4) is the evaluator optimal in the sense that it per forms the
min imum needed steps to compute an answer?

We believe that the answer to the f i rs t three is yes, and
know that the four th is not true. However, they are not
very meaningful questions unless we have an independent
def in i t ion of what an "answer" is. To get one we shall f i r s t
def ine the meaning of an expression in terms of Scot t -
Strachey semantics [4] and then def ine an answer as a
certain f in i te amount of informat ion about that meaning.
An analogous approach for ar i thmetic would be as follows:

(1) Given the class o f a r i thmet ic express ions involv ing
numera ls and no variables (e.g. "4", "4+5", "5-(6+2)") ,
consider the doma in of integers (i.e -2,-1,0,1,2,...).

(2) Def ine a semant ic func t ion , V, mapp ing express ions
into doma in elements .

V("9") : 9 and V("4+5") : 9

(3) In this case the def in i t ion o f an answer is obvious:
Any compute r should reduce its i npu t expression to the
(possibly signed) numera l which has the same value as the
original expression.

The central idea is that the compute r does not f ind the value
for the expression, but only reduces the inpu t to a more
comprehens ib le f o rm which has the same value. When, as in
the case o f ar i thmet ic , there is a unique, f in i te ly
representable canonical fo rm for any value the d is t inc t ion
between a value and the ou tpu t expression is not interest ing.
On the other hand, here we are deal ing with values that can
be in f in i t e list s t ructures and func t i ons so the d is t inc t ion
between a value and an answer is real.

The def in i t ion o f a semant ics for the h - calculus has already
been carried out by Wadsworth and others, see [5,7] . Our
approach follows theirs but extends it somewha t to in t roduce
the not ion of a semant ic memory . This approach allows us
more easily to make the connect ion between the semant ics
and the evaluator, In particular, it allows us to deal with
the shar ing and somet imes circular data s t ructures more
directly.

The Domains

A - the pr imi t ive domain o f a toms, a,a',a 1, etc. denote
a toms.

C - the pr imi t ive doma i n o f variables. ~ denotes a variable.
There is no reason why a toms canno t be used as variables,
bu t th ings seem clearer if they are kept distinct.

R the pr imi t ive doma i n o f references (addresses). It
denotes a reference.

E : C + A + R X R + R + R + R + R X R + R X R X R +
R × R + C X R + C X R + R × (C × R) * the doma in o f
express ions cor responding to the twelve possibil i t ies listed in
section II. In o ther words (CAR 77) is a member o f the
fou r th part o f the dis joint union, e denotes an expression.

M : R ~ E - the doma i n o f memories , each cell o f which
is capable o f holding an expression. # denotes a memory .

V = A + (V X V) + (V ~ V) - the doma i n o f values.
A value can be an atom, a pair o f values, or a func t ion
f rom a value to a value. This domain is the one which
requires Scott 's theory as it conta ins its own func t ion space.
Fur the rmore we use Reynolds 's [3] version o f the dis jo int
un ion operator so that _L, (QUOT E ..L), (CONS _L _L), and
(LAMBDA X _L) all have dis t inct values, with _L being the
bo t tom of the whole lattice.

N : C ~ V - the doma i n of env i ronments , p denotes an
env i ronmen t .

S : R ~ (N ~ V) - a semant ic memory , mapp ing
references and env i ronmen t s into values, o denotes a
semant ic memory . A semant ic m e m o r y has addresses jus t

like a convent ional one but its cells can hold genuine ly
in f in i t e objects. Roughly speaking the semant ic object that a
cell w holds is what one gets by tracing out, in the
convent ional memory , the s t ructure o f pointers emana t ing
f rom that cell.

Tile Semantic Function V

In the following, to reduce parentheses, we shall adopt the
convent ion that fa,B~ means ((f (a)) (f l)) (~) ; i . e . f is applied
to a, the result is applied to fl, etc.

V maps convent ional memor ies into semant ic memories;i .e.

V : M ~ S

it is def ined recursively by Vp~p = U(V#)(#~)p where
/.k~Ep =

i f E E C then p~ else

if e = (QUOTE a) then a

if ~ = (CONS ~1 7t2) then <a~lp , a~2p> else

if c = (CAR ~ ') then (an ' p) 1 else

if ~ = (CDR ~ ') then (o f ' p) 2 else

if ~ = (ATOM ~") then
[if a~'p E A then "T" else

if aTt'p C V X V then "NIL" else
.L

] else

i f e = (EQ~t 1 1t2) then
[if O~lp E A A a~2p E A

then if a ~ l p = a~2p then "T" else "NIL"
else _L

] else

i f e : (I F ~ 0 w ! ~2) then
[if art 0 p = "T" then a~tlP else

if art 0 p = "NIL" then a~t2p else
.L

] else

if e = (~0 ~1) then cr~Op (aztlp) else

if E = (LAMBDA ~ ~ ') then ~x. aTt'#[x/~] else

if ~ = (LABEL ~ ~t') then Y {hx. aT'p[x/~]} else

if ~ = (F U N A R G w0 ~I ~1 "'" ~n ~n) then
a~ 0 P[altnPl~n,...,a~tPl~ l]

else .1.

This def in i t ion depends upon several in formal semant ic
operations: <,> f o rms pairs, a subscr ipt selects
components ,e tc . The most noteworthy are the last four: The
appl icat ion o f a~0p to awlp is the func t ion appl icat ion
which required Scott 's const ruct ion to jus t i fy since both
values reside in the same domain . Note that the h is also
an informal not ion and that the bracket nota t ion is used to
def ine the changed e n v i r o n m e n t p [x/~]. Y is the m in im a l
f ixed poin t operator. It happens that mapp ing a F U N A R G
cons t ruc t ion into its semant ics involves a complete reversal
o f the list o f bindings.

I01

It is instructive to compare this funct ion with the Eval
funct ion of section II. The major d i f ference is that V is
quite happy to deal with completed inf in i te objects like
functions. The operation of applying a funct ion to its
argument is taken as primitive here, while it was done very
slowly and incompletely by Eval.

This particular way of describing the funct ion isolates the
application of the memory funct ion to a single place, namely
the /tw in V's def ini t ion; U uses only the semantic memory
(7.

Now, given the def in i t ion of Eval, it should be clear what
an answer is. Suppose we load the memory with an
expression so that the root of the expression occurs in w0,
and we start the lazy evaluator on that location. If it ever
halts (ignoring the possibility of error stops) we know that
w 0 will contain an expression with one of the three fo rms
(QUOTE a), (CONS ..), or (FUNARG(LAMBDA.. .) . . .) . Thus
the answer tells which of the three components of V the
value lies in; and, if it is an atom, what atom it is. In the
other cases, nothing more is revealed, or computed. This
fact indicates how we should def ine the correctness of an
evaluator:

I f I'itw0_L = _L
then Eval(w0,/u.) does not halt.

If I'jZwo.L = a
then Eval(w0,g)(w0) = (QUOTE a).

If Vgwo_L is a pair
then Eval(w0,#)(w0)=(CONS ...).

If V/uw0_L is a funct ion
then Eval(~0,#)(w0)=(FUNARG(LAMBDA..) . . .) .

We use the empty environment , _L, in these statements
because it is assumed that the expression to be reduced does
not contain free variables at the outermost level. Therefore,
an env i ronment funct ion is not needed initially.

Soundness

For the present we shall content ourselves with sketching a
partial correctness proof;i.e, that the last three clauses hold if
Eval halts. This can be done by showing that each o f the
seven t ransformat ion rules leaves the semantic memory
unchanged (except at newly allocated cells). Then if the
evaluator starts with memory /t at location 770 and halts with
memory #' we know that V/tw0.L = V/t'Wo..L , and the last
three c!auses are immediate since the Eval funct ion halts
only on the three forms in question.

This method o f proof also proves a qualif ied "yes" to the
f i rs t question in this section; it doesn ' t matter in what order
the t ransformat ions are api~lied. The argument goes as
follows: On semantic grounds we know that (QUOTE a),
(CONS ...) and (F U N A R G (L A M B D A ...)...) all denote
dist inct objects, and that atoms that look d i f fe ren t are
di f ferent . If we then show that the t ransformat ions cannot
change the semantic value in a cell, we know that all
sequences of t ransformat ions which produces one of those
configurat ions in a cell must produce the same one.

The proofs for the various rules are very similar. We shall
give two.

Rule C: Suppose /t(n0) = (CAR Wl) and / t (n l) = (CONS w 2
w3) and rule C is appl ied. We shall prove that V/t = V#"
where /t' = /t [#(~2) / w 0]. First we def ine the

truncations of V by

V i =_L for i_<0

v~+~/twp : u(r , / t) (/ t~)p

so V = lim i V i

Now a s t ra ight- forward computat ion shows that

Vi/.t = ~wp . i f w=w 0
then U(Vi_i/t)(CAR(CONS w 2 w3))p

else U(Vi_l/t)(/t~)p

= hwp . i f ~=~r 0

then {U(Vi_2/t)(CONS w 2 7t3)p} 1
else U(Vi_l/t)(g~)p

= hwp.if w=w 0 then U(Vi_:)(/t~2) p else U(Vi_t/t)(/t~)p

and

V:'=hwp. if w=~ 0 then U(I'i_l/t')(#w2) p else U(Vj_lg')(/t~)p
Now it is easy to show that (Vi)(3j)[Vi/t C I ~ '] and vice
versa. Thus lim i Vi/t = limjlK~'.

Rule L: Here the proof is somewhat d i f fe ren t since it
involves comparing a circular data structure with a minimal
f ixed-poin t . Suppose

(no) = (FUNARG (LABEL ~ ~ t) ~2 ~2 "'" ~n Wn)

and IC = # [(F U N A R O w I ~ ~0 ~2 w2 "'" ~n qln)/q/0]

First, we claim without proof that V# and V#' are the
minimal solutions to the following equations, respectively:

V# = hwp. if lz=Iz o
then Y{Xx. V#wtP [V#~tnPl~n...Vl~Tt2Pl~p x/~]}

else U(V#)(#~)p

Vg' = hwp. if w=w 0
then V#'w]p[V#'WnO/~n...V/t'~2P/~2, V#'woP/~]

else U(V/t') (/tw)p

It is simple to show that V# satisfies the equation for V/t'
so V#' C V/t. The proof in the other direct ion is more
diff icult . The dif f icul ty seems to be that V# involves a
loop, represented by the Y, within a loop, represented by the
def in i t ion of V, while V/t' involves just one loop. To
overcome this problem we will "cut" the loop represented by
Y at the same time we cut the loop represented by V. First,
we claim (based on cont inui ty) that the following equations
are equivalent to the ones above for def in ing V/t.

Vi/t = ..L for i < 0

hwp. if 7t=It 0

then Yi{hx.Vi_lgWlp [Vi_lp.W~/,~n.. .Vi_I/tw2p/{2, x/{] }
else U(Vi_l/t)(/tw)p

Yi = _L for i < 0

Yi = h f ' f (Y i - l f)

V = lira i V i

Now we prove Vi/t C V/t' by induction on i. It is vacuously

102

true for i ~ 0, so assume it for all k<i. Then, by the
induction hypothesis

I~# C_ X~rp. if ~r:lr 0
then Yi F

else U(Vil')(#~r)p
where F = {hx. Vg'~rtp [VIl'TrrvO/~n...V#'~r2P/~2 , x/,~]}

The proof will be complete if we can show

ViF C_ V#'~r0P

This fact can also be shown by and induction on i. Assume
the result for all k<i,then

Yi F : V/l'Trl.p[V~'~rnP/~n...Vtt'Tr2Pl~2, Yi_iF/~]

C vW~!p[vW~,.p/~,...vW~2P(~2, v~'~op/~]
by the induction nypothesis

: y ~ ' ~

IV. Remarks

The two objectives presented at the beginning of the paper
can now be g ve ~ more substance.

First, the general question of when an evaluation step is
necessary needs to be answered. Initially, some external
consideration must indicate that a particular location's value
must be pursued; e.g. the user would like that value to be
printed. Then, the "need to be ewduated" propagates itself
to the descendants of that location according to rules
peculiar to the semantics of the language. These rules were
straightforward for the language studied here. Sometimes
they are less so. For example, changing the semantics of IF
so that

(IF p x x) : x

even when p is undefined would require simu!taneous
evaluation of all three parts of an IF clause. In any case, it
appears that performing "outer-most" reductions, i.e. those
closest to the initial source of the need, is a good heuristic.
The reason is that these reductions may make some parts of
the structure which are farther away unnecessary.

Second, the notion of "same step" needs clarification. Here,
all that has been achieved through the use of pointers is that
the advantages of evaluating an expression earlier have been
I~LdlIICU. II t,C c^plc~tU, "3+7" arose twice in an
evaluation from entirely different places there is no simple
way to avoid its recomputation.

Finally, a comment on the usefulness of Scott-Strachey
semantics. We can hardly claim that the lazy evaluator is
"right" because it is correct with respect to the semantics
defined in section II1. It is obvious that the semantics can
be adjusted to fit any mechanical evaluation method one
chooses. One the other hand the use of a semantic model is
a great aid in studying the implications of various evaluation
rules without gettting involved in too many details.

Acknowledgement

Section Ill of this paper was primarily the work of the
second author with significant help from Howard Sturgis of
Xerox PARC.

References

[1] Curry,H.B. and Feys,R., Combinatory Logic, vol !. North-
Holland, 1958.

[2] Hewitt, Carl, et. al., Behavioral semantics of non-
recursive control structures, Proceedings, Colloque sur la
Programmation, Springer-Verlag Lecture Notes in Computer
Science, No. 19, 1974.

[3] Reynolds, J. R., Notes on a lattice-theoretic approach to
the theory of computation, Lecture notes, Syracuse Unversity,
1971.

[4] Scott, D. and Strachey, C., Toward a mathematical
semantics for computer languages, Proc. of the Symposium
on Computers and Automata, Polytechnic Institute of
Brooklyn, and PRG-6 Oxford University Computing
Laboratory, 1971

[5] Stoy, J., The Scott-Strachey approach to the
mathematical semantics of programming languages, Course
notes at M.I.T. Project MAC, 1973.

[6] Vuillemin, J., Correct and optimal implementations of
recursion in a simple programming language, Journal of
Computer and System Sciences, vol. 9, No. 3, December
1974.

[7] Wadsworth, Christopher, Semantics and Pragmatics of
the Lambda-calculus, PhD. thesis, Oxford, 1971

103

