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Abstract: A different way to execute pure LISP programs is 
presented. It delays the evaluation of parameters and list 
structures without ever having to perform more evaluation 
steps than the usual method. Although the central idea can 
be found in earlier work this paper is of interest since it 
treats a rather well-known language and works out an 
algorithm which avoids ' full substitution. A partial 
correctness proof using Scott-Strachey semantics is sketched 
in a later section. 

I. Introduction 

This paper studies a non-standard method of performing the 
mechanical evaluation of expressions in a purely applicative 
language;i.e, one without assignment. The intuitive ideas 
behind this method are two: 

- Perform an evaluation step only when it is necessary. 

- Never perform the same step twice. 

It is somewhat surprising that these objectives can be 
approached through the use of rather simple data structures 
and algorithms. The following example should serve to 
acquaint the reader with the basic idea. 

integer procedure g(x,y); 

g := if x = 0 then 1 else y*y 

An ALGOL-60 programmer who wanted to enhance this 
procedure's speed by choosing whether to declare y a call- 
by-name or a call-by-value parameter would feel most 
uncomfortable. The value of y is going to  be used either 
twice or not at all, depending on the value of x. The lazy 
evaluation technique overcomes this dilemma because the 
evaluation of g(E,F) will proceed as follows: 

(1) Substitute pointers, ct and /3, to the expressions 
E and F for the formal parameters x and y. 

(2) Evaluate (i.e. reduce to a numeral) the contents of a. 

(3) If the result is 0 return 1. 

(4) Otherwise, evaluate the contents of ,fl and replace them 
with the resulting numeral. 

(5) Evaluate the contents of/3 again (this takes little 
time since already a numeral) and multiply the results. 

Thus a lazy evaluator will perform the work to e~'aluate the 
second parameter either once or not at all. This e×ample 
illustrates the call-by-need mechanism of Wadsworth [7] 
and and the delay rule of Vuillemin [6]. 

Here we shall carry this strategy one small, but important 
step further as suggested in [6]: list structures are evaluated 
incrementally. In LISP parlance, an argument of CONS is 
not evaluated until and unless it is selected and examined by 
some later operation. Thus the statement 

car[cons[x;y]] = x 

is always true, even if the evaluation of x or y never 
terminates. This extension is pragmatically important 
bccause it allows the possibility for significantly different 
styles of programming as the following examples illustrate. 

Example I. Infinite Lists 

The function defined by 

integers[i] = cons[i; integers[i+l]]  

is quite useful under a lazy evahlation regime, integers[0] 
denotes the infinite list (0 1 2 ... ) and the expression 

car[cdr[integers[0]]] 

will evaluate to 1 via the following intermediate steps: 

car[cdr[cons[O; integers[0+l]]]]  
car[integers[0+l]]  
car[cons[O+l; integers[O+l+l]]] 
0+1 
1 

In a similar way, the list defined by 

L = cons[l;  cons[2; L]] 

is useful and computable. 

Example 2. A leaf comparator 

The following functions solve a problem posed by Carl 
Hewitt [2] to illustrate the need for co-routines. 

EqLeaves[x;y] = EqList[Flatten[x];Flatten[y]] 
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Flatten[x] = if a tom[x]  then cons[x;NIL] 
else Append[Flat ten[car[x]] ;  

F la t ten[cdr[x] ] ]  

Append[x;y] = if null[x]  then y 
else cons[car[x];A ppend[cdr[x] ;y]]  

EqList[x;y] = if null[x]  then nul l [y]  else 
if nul l [y]  Ihen false else 
if eq[car[x] ;car[y]]  

then EqList[cd r[ x] ;cdr[y]]  
else false 

In other words, EqLeaves tests two S-expressions to see if 
their atoms are identical, independent of structure. This 
obvious solution uses Flatten to eliminate the structure, then 
uses EqList to compare the atoms. It would be an 
unnecessarily slow method under normal circumstances 
because applied to a pair of expressions like 

( A Huge1 ) and ( B Huge2 ) 

it would go to all the work of Flattening Hugel and Huge2 
even though the answer is false because of the first atoms in 
each structure differ. If a lazy evaluator is used, however, 
there is no need to change the solution to one involving co- 
routines because the same computational effect will be 
achieved automatically. Suppose location ~r 0 holds the 
expression to be evaluated. The computation will follow this 
pattern: 

Wo: EqLeaves[(A Hugel);(B Huge2)] 

First ~r 0 is updated with the definit ion of EqLeaves with 
actual parameters substituted for formals. 

no: EqList[Flatten[(A Hugel)];Flatten[(B Huge2)]] 

Now pointers, 71/1 and 7r2, to the parameters are substituted 
into the definition of EqList without any evaluation of the 
parameters. 

7to: if null[Trt] then null[Tt2] else 
if null[~r2] then false else 
if eq[car[~rl];car[~2] ] then EqList[cdr[Trl];Cdr[n2] ] 
else false 

7rl: Flatten[(A Hugel)]  

~2: Flatten[(B Huge2)] 

The primitive null now forces the lazy evaluator to go to 
work on the contents of ~r 1. 

~rl: if atom[(A Hugel)]  then cons[(A Hugel); NIL] 
else Append[Flat ten[car[(A Hugel)]] ;  

Flatten[cdr[(A Hugel ) ] ] ]  

7rl: Append[Flat ten[car[(A Hugel)]] ;  
Flat ten[cdr[(A Hugel ) ] ] ]  

~rl: if nullDr3] then ~t. 
else cons[car[It 3];A ppend[cdr[~3];~4] ] 

~r3: Flatten[car[(A Hugel ) ] ]  

7r4: Flat ten[cdr[(A Hugel ) ] ]  

Again the primitive null forces evaluation steps on ~r 3. 

~r3: i f  atom[~t5] then consists;NIL ] 
else A Plfend[ Flatten[cdr[~ 5]];Flatten[cdr[It  5]]]  

~r5: car[(A Hugel)]  

The primitive atom forces the evaluation of ~r s. 

~r5: A 

7r3: cons[~rs;NIL ] since a tom[A]  is true 

~rl: cons[car[n3];  Append[cdr[lr3]; ~r4] ] since null[cons ...] 
is false 

7to: if null[T2] then false 
if eq[carDrl];car[~r2] ] then EqList[cdr[Trl];Cdr[~r2] ] 
else false 

If we choose to view Flatten as a co-routine, at this point  
we would say that it has produced its first ,~u,~, ~a,t , ,3j  - 
A, and its context has been saved in ~r 4 for later 
reacti vation. 

Now the contents of ~t 2 is evaluated in the same way until 
we have 

~r2: cons[car[T6]; Append[cdr[~6];~rT]] 

7r6: cons[B;NIL] 

7r7: Flatten[(B Hugel)]  

~r0: if eq[car[~rl];car[Tr2] ] then EqList[cdr[nl];Cdr[~r2] ] 
else false 

The primitive eq forces 

~1: cons[A; Append[cdr[zt3]; ,/r4] ] 

~2: cons[B; Append[cdr[~r6]; lr7] ] 

Finally the test is made and the computation terminates with 

n0: false 

Notice that Hugel and Huge2 did not enter into any of the 
foregoing computation and that the work done to evaluate 
the subexpressions in ~r I and ~r 2 for the benefit  of the null 
primitive is not repeated when the eq primitive examines the 
parameters. 

Generalizing from this example we can see that a large class 
of co-routine applications can be subsumed by this 
technique. A producer co-routine becomes a function that 
produces a long (possibly infinite) list and a consumer co- 
routine becomes the receiver of such a list. Also, notions 
such as streams and the dynamic lists of POP-2 are 
subsumed. The purpose of these programming constructs is 
to allow one to describe a sequence of values with a single 
sub-program, yet have them computed on a hand- to -mouth  
basis. This assumption is built into a lazy evaluator at the 
most basic level so there is no need to call for it explicitly. 

One the other hand. one might ask how to force a more 
conventional evaluation to occur. Suppose one wishes to 
cause the evaluation of f [ s ]  to proceed conventionally, 
computing the S-expression s before invoking f. One could 
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say, instead of f[s],  Force[f,s] where 

Force[f,s] = if Finite[s]  then f [ s ]  else don' t  care 

and 

Fini te[s]  = if a tom[s]  then true else 

if F in i te[car[s] ]  then Fin i te [cdr[s ] ]  else don' t  care 

The function Finite simply explores the complete S- 
expression, forcing every part of it to be evaluated. If it 
ever terminates, Force invokes the function on the now- 
evaluated argument. 

Example 3: Prime Numbers (due to P. Quarendon) 

primeswrt[x;I] produces a new list from I by removing all 
multiples of x 

primes[I] produces a new list from I by removing any 
element which is a multiple of a predecessor. 

primeswrt[x;I] = if car[I]  rood x=O then primeswrt[x;cdr[I]]  
else cons[car[I];primeswr t[x;cd r [ I ] ] ]  

l)rimes[I] = cons[car[I] ;pr imes[primeswrt[car[I] ;cdr[I]]]]  

then 

primes[integers[2]]  

is the infinite list of prime numbers. 

Ii. A lazy evaluator for Hyper-Pure LISP 

In this section we shall describe a language and its 
implementation in order to crystallize the notion of lazy 
evaluation. Hyper-Pure LISP is a variant of LISP 1.0 which 
remains true to the principles of the ~.-calculus [1].  
Specifically, FUNA~G binding is the only possibility. The 
syntax of expressions in this language is as follows: 

(expression> ::= <variable> I 
(QUOTE (atom>) I 
(CONS <expression> <expression>) I 
(CAR (expression>) I 
(CDR (expression>) I 
(ATOM <expression>) I 
(EQ (expression> <expression~.) I 
(IF (expression> <expression> <expression>) I 
((expression> (express ion>)  I 
(LAMBDA (variable> (expression>) I 
(LABEL <variable> <expression>) I 
(FUNARG (expression> <alist>) 

<alist> ::= <empty> I (variable> (expression> <alist> 

(atom> ::= <any string of capital letters> 

<variable> ::= <any atom except CONS, CAR, CDR, ATOM, 
EQ, IF, LAMBDA, QUOTE, LABEL, or F U N A R G )  

The variations from the syntax of LISP are the replacement 
of COND by IF, the restriction of QUOTE to atoms, the 
restriction of LAMBDA-defined functions to one argument, 

and the elevation of the FUNARG construct from an 
internal bookkeeping device. The first three restrictions are 
inessential and the FUNARG phrase is an extension. 
Intuitively "(FUNARG el x e2 y e3)" means "el where x = 
e2 and y = e3". 

It will greatly simplify the discussion if we assume that the 
computer memory is of a very accommodating, if unrealistic, 
sort: each cell is capable of holding any of the forms listed 
as <expression>s where addresses are used for any 
component of type expression. In other words, if 90,. 91, etc. 
are addresses and ~0'~]' etc. are variables, a single memory 
cell is capable of holding (and discriminating among) items 
like ¢0 ' (CONS 91 92) , (90 ~71) , (LAMBDA ~1 ao)' and 
(FUNARG ~r 0 ¢1 91 ¢2 92)" Naturally, any real 
implementation would represent such variable-sized memory 
cells with linked lists; but the extra pointers would only 
complicate this discussion. 

The state of a computation is described by a partial memory 
function, g, which has the following consistency property: If 
a particular address, 7r, occurs as a component anywhere in 
the memory (i.e. in #'s range), then #(9) is defined. Thus the 
addresses for which # is undefined are the free cells and no 
non-free cell points at a free one. A computation is started 
by loading the memory with the expression in the obvious 
way, performing transformations for a while, and then 
examining the root cell of the expression. 

As the first step in describing the lazy evaluator we describe 
a set of reduction rules which transform the memory, #, to 
produce a new memory #'. Each rule changes just a few cells. 
To describe such an altered function we introduce some 
notation: 

#[  e / 90 ] = ~.u. if 9=~t 0 then e else # (~)  

In other words the new function differs from the old at just 
one argument, 90 where its value has become E. Furthermore 

g[ t l /~t l '  E:2hr2 ] = (#[  el / Ir l  1)[ e2/~t 2 ] 

In other words the rightmost pair represents the last change 
to the memory. 

There are seven transformation rules. 

[C]  g(90) = (CAR 91) and #(?r l) = (CONS ~r 2 93) 

; '  = ~[  #(92) / ~o ] 

In programming terms, the contents of 92 are copied into 
770. When convenient we shall dispense with mention of 
extra references by convening that p(Tr0) = (CAR (CONS 712 
93)) implicitly asserts the existence of a 9 t for which the 
above is true. The rule for CDR is similar. 

p.(90) = (CDR (CONS 92 93) ) ~ kt'= #[#(93) / ~t0] 

[A]  #(90) = (ATOM(QUOTE a))  
/z' = #[(QUOTE "F) / ~t 0 ] 

~(9o) = (ATOM(CONS ~r 92) ) 
/~ = #[(QUOTE NIL) / 90 ] 

I.e. "atom-hood" is simply the property of being QUOTEd. 
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[ E ]  /Z(no) = (EQ(QUOTE a l ) ( Q U O T E  a2) ) 

/tt'= /z[if % = a 2 then(QUOTE T)e l se (QUOTE NIL) 
/ % ]  

[ I ]  / t(n0) = (IF (QUOTE T) 7r 1 n2) ~ #'= / t [ # ( n l )  / no ]  

p.(n0) = (IF (QUOTE NIL) n 1 n2) ~ /.t'= / t [ / t0r2) / no ]  

Thus  IF is just  an al ternate fo rm of  the usual C O N D p r i m i t i v e .  

The fol lowing rule is a sort  of  incremental  subs t i tu t ion  
operat ion which allows F U N A R G  expressions to bubble  
down through the memory.  When  the specific list of  
var iable-address  pairs in a F U N A R G  expression is no t  
relevant  we use 0 to denote  it. 

I F ]  (a) #(~o) = ( F U N A R G  n '  ~1 n l  "'" ~n lrn) 

and ttt(n') = ~i for  some l < i < n  
(choose the smallest  i) 

# '  =/uE#(~r i) / % ] 

(b)  p.(~ro) = ( F U N A R G  (QUOTE a )  0)  

p '  = ~ [ ( Q U O T E  a )  / n 0 ] 

[ G ]  #(n0)  = ( ( F U N A R G  (LAMBDA ~ h i )  0)  n2) 

/z'= # [ ( F U N A R G  n I ~ n 2 0)  / ~r0] 

The fol lowing rule creates a circular  structure.  

[ L ]  Given  

p.(n) = ( F U N A R G  (LABEL ~ ~o) O) 

p' = ~ [ ( F U N A R G  % ~ ~ 0)  / u ] 

Wha t  can be said of these rules? The  reader may wonder  
whether  they "work". For example, one of  the au thors  
(Morr is )  thought  that  rule G might  suffer  f rom the usual 
capture of free variables problem, and was surprised to f ind  
it was not  the case. This  issue is taken up in the next 
section. Present ly  we shall cont inue  with the descr ip t ion of  
the evaluator.  

Note that  at  most  one rule can be appl icable  to any 
part icular  "location, so the only choices left open to an 
evaluator  are where to per form the next reduction and when 
to halt. The  procedure for  a lazy evaluator  is def ined 
recursively as follows: 

(c) #(N0) = ( F U N A R G  (n t n2) 0)  
= O  

#'= ~ [ ( ~ l '  ~2')  / % '  
( F U N A R G  71 t 0)  / ~ l "  
( F U N A R G  172 0)  / n 2' ] 

where w l' and n 2' are dis t inct  free 
cells in p 

(d) If a is one of  CONS, CAR, CDR, ATOM, EQ, 
or IF then 

#(no)  = ( F U N A R G  ( a n  l ... ~m) 0)  

p?= p.[(a n 1' ,.. rim') / n 0, , 
( F U N A R G  n I 0)  / h i '  
..... ( F U N A R G  n m 0)  / nrn' ] 

where h i ' ,  ~l' ,-", rim' are d is t inct  free 
cells in p 

Rules Fc and Fd are the only ones which use addi t ional  
storage. Al though it appears here that  the list of  pairs 0 is 
being duplicated,  in a real implementa t ion  which represents 
a single, var iable-s ized cell with mult iple  l inked cells, it 
would not  be; only a pointer  to the list would be duplicated.  

Notice that  rule F does not  tell what  to do when a 
LAMBDA or LABEL construct  is encountered.  The 
fol lowing rules give an answer for  some cases. The  f i rs t  one 
shows how variables are bound to values in F U N A R G  lists, 
and the second shows how recursion is implemented.  

Eval(n,#)  : n is the location to be reduced /.t is the memory  
Eval re turns a new memory  

if p ( n )  = (QUOTE a )  then return p 
if p ( n )  = (CONS ...) then return p 
if p ( n )  = ( F U N A R G  (LAMBDA ...) ...) then return/1. 
[cH 
if  # ( n )  = (CAR ~ ' )  

then let #1 = Eval(u' , /z) 
if # l ( n ' )  = (CONS ~I ~'2 ) 

then let #2 = Eval(nl , /~l)  
return p2[/z2(~t) / ~r] 

else there is an error,  CAR applied to 
n o n - p a i r  

[ C 2 ]  
if B ( n )  = (CDR n ' )  

then let #1 = Eval (n ' ,g )  
if p l ( n ' )  = (CONS It l 172) 

then let p. 2 = Eval(~r2,gl) 
return /t2[/.t2(n2) I n ]  

else there is an error,  CDR applied to 
n o n - p a i r  

[ A ]  
i f / z ( n )  = 

then 

[E] 
i f / u ( u )  = 

then 

(ATOM n ' )  
let #1 = Eval(u ' jz)  
i t  # l ( n ' )  = (QUOTE a )  

then return # l [  (QUOTE T) / h i ;  
if # l ( n ' )  = (CONS ...) 

then return # i [ ( Q U O T E  NIL) / n ] ;  
else there is an er ror  

(EQ ~t ~2) 
let Pl = Eval(n2,Eval(~l ,P))  
if # i ( n l ) = ( Q U O T E  a l )  A /s.l(n2)= (QUOTE 
then if a j  = a 2 then return # j [ ( Q U O T E  T) a2/)n] 

else return # i [ ( Q U O T E  NIL) / u ]  
else there is an error  
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[ l ]  
if  p o t )  = ( IF ~'o ~'l ~2) 

then let /t I = Eval0r0,~) 
if btl(~r0) = (QUOTE T) 

then let #2 = Eva l0r l '~ l )  
return #2[P.2(~1) / ~ ] 

if ~(~o) = (QUOTE NIL) 
then let /.t 2 = Eval0r2,/tl) 

return /z2[/t2(~r2) / ~ ] 
else there is an error  

[ F a ]  
if p.(Tr) = ( F U N A R G  ~0 ~1 ~'1 ""~n ~n ) and /z(lr0) = ~0 

then 
if i is the smallest  such that  ¢o = ~i 

then let #1 = Eval0ri ,#)  
return #l[ / t l (~r i )  / Ir ] 

else there is n o  such i 
and there is an unbound  

variable error  
[Fb]  
if # ( ~ )  = ( F U N A R G  (QUOTE a )  ...) 

then return p [  (QUOTE a )  / ~r] 
• [L] 

if #(~r) = ( F U N A R G  (LABEL ~ ~ ' )  O) 
then return E v a I 0 r , # [ ( F U N A R G  ~r' ,~ ~t 0)  / rt ] )  

[FC] 
if P ( ~ ) e  =thn ( F U N A R G  Or 0 ~ l )  ...) 

apply rule Fc to yield/,t '  
return Eval(~,# ' )  

[ F d ]  
if #(~r) = ( F U N A R G  (a ... ~n) "") 

then apply rule Fd to yield/.t '  
return Eval0r ,# ' )  

[G] 
if bt(~r) = (~r 0 ~rl) 

then let #1 = Eval (~o~)  
if/~l(~r0) = ( F U N A R G  (LAMBDA ...)...) 

then apply rule G to location ~r to get #2 
return Eval(~,#2 ) 

else there is an er ror  

else there is an error  

The most subtle aspect of  this a lgor i thm centers about  rules 
C, I, and Fa. For example, in C1, the f i rs t  componen t  of  the 
pair is evaluated in s i tu  before being copied into 7r. This  
policy maximizes the number  of  paths through the data 
s tructure which "see" the change. 

A convent ional  evaluator  d i f fers  f rom a lazy evaluator  in 
that the parameters of CONS are evaluated as soon as they 
are encountered and the actual parameter  of. a func t ion  call 
are evaluated before they are bound. In terms of  the 
foregoing def in i t ion  of Eval this means that  the second case 
is changed to 

if /z(~)e=th. (CONS ~ l  qr2 ) 
return Eval(Tr 2 ,Eval0rÂ ,/t)) 

• and the case [ G ]  is changed to 

i f / t O O  = (If 0 ~ I )  
then let #1 = Eval(~l 'EVal(~o,~)) 

if #1(~o) = ( F U N A R G  (LAMBDA ...)...) 
then apply rule G to location ~i and #1 

to get #2 
return Eval0r,~2) 

else there is an er ror  

These two changes make certain other  invocat ions  of  Eval 
unnecessary. Specifically, the case C1 becomes 

if #(~) = (CAR ~') 
then let #I = EvaI(~',p,) 

if /z] (~ ' )  = (CONS ~1 ~2 ) 
then return #lfP.l(Ttl) / ,//-] 
else there is an error, CAR applied to 

n o n - p a i r  

Case C2 changes analogously, and case Fa becomes 

i f # ( ~ )  -- ( F U N A R G  ~o ~1 ~1 ""~n ~n ) and # (~o)  = ~0 
then 

if i is the smallest such that  ~o = ~i 
then  relurn # [ ~ ( ~ i )  / ~ ] 

else there is no such i 
and there is an unbound  

variable error  

All the other  cases remain the same. We believe that  the lazy 
evaluator  never performs more reduction steps than the 
convent ional  one but  shall not  a t tempt  to prove it here. 

E x a m p l e  4. 

To illustrate the lazy evaluator we shall per form a full 
evaluat ion of the expression f rom example 1. To get things 
started it is necessary to embed the expression to be 
evaluated in a F U N A R G  expression with all empty alist. 
Also, we shall assume that  PLUS is a pr imi t ive  operator  with 
the same general characterist ics as EQ and that  numerals  are 
understood to be QUOTEd atoms. Not all addresses are 
explicit; each pair of  parentheses indicates the presence of  an 
unnamed address. 

a : ( F U N A R G  
( (LAMBDA INTS (CAR(CDR(INTS 0)))) 
(LABEL INTEGERS 

(LAMBDA I 
(CONS I ( INTEGERS (PLUS I 1))))))) 

Apply Fc to ct 

a: ((FUNARG (LAMBDA INTS (CAR(CDR(INTS 0))))) 

n: ( F U N A R G  
(LABEL INTEGERS 

(LAMBDA I 
(CONS I(INTEGERS (PLUS I 1)))))) 

Apply G to a 

a: ( F U N A R G  
(CAR(CDR(INTS 0))) 
INTS n )  

Apply Fd to a 

a: (CAR "y) 

77: (FUNARG (CDR tINTS 0)) 
INTS n) 

Stack a,  Apply Fd to y 

~: (CDR ~) 
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/5: ( F U N A R G  (INTS 0) INTS/3) 

Stack v,Apply Fc to 8 

/5: (t  ~o) 

E: ( F U N A R G  INTS INTS fl) 

~0: ( F U N A R G  0 INTEGERS/3)  

Stack 6, E, Apply L to B 

/3: ( F U N A R G  
(LAMBDA i 

(CONS I(INTEGERS (PLUS i I)))) 
INTEGERS/3) 

Return to ~, Apply Fa 

e: ( F U N A R G  
(LAMBOA i 

(CONS I ( INTEGERS(PLUS I 1)))) 
INTEGERS fl) 

Return to /5, Apply G 

i5: ( F U N A R G  
(CONS ! ( iNTEGERS(PLUS i 1))) 
i rp  
li~ f EGERS fl) 

Apply Fd to ~5 

/5: (CONS ~ 7) 

~: (FUNARG I I ~ INTEGERS fl) 

7: (FUNARG (INTEGERS (PLUS I 1)) 
I ¢p INTEGERS/3) 

Return to T to note CDR, Stack T again, 
Apply Fc to r/ 

7: (~ s) 

t: (FUNARG INTEGERS I ¢p 
INTEGERS 13) 

s: (FUNARG (PLUS I 1) I ¢p 
INTEGERS/3) 

Stack O, Apply Fa to t 

t: (FUNARG (LAMBDA I (CONS ! 
(INTEGERS (.PLUS I 1)))) 

INTEGERS/3) 

Return to 7, Apply G 

~7: (FUNARG (CONS ] (INTEGERS 
(PLUS I 1))) 

i s  
INTEGERS/3) 

Apply Fd to n 

7: (CONS ~ X) 

x: (FUNARG I I 
INTEGERS/3)  
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h: ( F U N A R G  ( INTEGERS (PLUS i 1)) 
I s iNTEGERS fl) 

Return to T, Apply C 

T: (CONS ~ h )  

Return to a to note CAR, Stack a again, 
Stack x, Apply Fd to s 

s: (PLUS # ~,) 

/z : (FUNARG i I rp INTEGERS fl) 

v : (FUNARG 1 i ¢p iNTEGERS fl) 

Stack s, Stack #, Apply Fb to ¢p 

¢p: 0 

Return t o #  , Apply Fa t o #  

#: 0 

Return to s to note PLUS, Stack s, 
Apply Fb to v 

v: 1 

Return to s, Apply P 

s: 1 

Return to x, Apply Fa 

K: 1 

Return to a, Apply C 

a: 1 

!11. Semantic Considerations 

There are several questions one might  ask about the 
foregoing t ransformat ion rules and evaluator. 

(1) Is the final answer independent  o f  the order  in which 
the rules are applied; i.e. does the system have the Church-  
Rosser property? 

(2) Are there enough rules to allow an answer to be 
computed in all cases we consider legal? 

(3) is the evaluator complete in the sense that will compute  
an answer whenever any application of  the rules will do so? 

(4) is the evaluator optimal in the sense that  it per forms  the 
min imum needed steps to compute an answer? 

We believe that the answer to the f i rs t  three is yes, and 
know that the four th  is not true. However, they are not  
very meaningful  questions unless we have an independent  
def in i t ion  of  what an "answer" is. To get one we shall f i r s t  
def ine  the meaning of  an expression in terms of  Scot t -  
Strachey semantics [4 ]  and then def ine  an answer as a 
certain f in i te  amount  of  informat ion  about  that meaning. 
An analogous approach for  ar i thmetic  would be as follows: 



(1) Given  the class o f  a r i thmet ic  express ions  involv ing  
numera ls  and no variables (e.g. "4", "4+5", "5-(6+2)") ,  
consider  the doma in  of  integers (i.e . . . . .  -2,-1,0,1,2,...). 

(2) Def ine  a semant ic  func t ion ,  V, mapp ing  express ions  
into doma in  elements .  

V("9") : 9 and V("4+5") : 9 

(3) In this  case the def in i t ion  o f  an answer  is obvious:  
Any compute r  should reduce its i npu t  expression to the  
(possibly signed) numera l  which has the same value as the  
original expression.  

The  central idea is that the compute r  does not  f ind  the value 
for the expression,  but  only reduces the inpu t  to a more  
comprehens ib le  f o rm  which has the same value. When,  as in 
the case o f  ar i thmet ic ,  there is a unique,  f in i te ly  
representable canonical  fo rm for  any value the d is t inc t ion  
between a value and the ou tpu t  expression is not  interest ing.  
On the other  hand,  here we are deal ing with values that  can 
be in f in i t e  list s t ructures  and func t i ons  so the d is t inc t ion  
between a value and an answer is real. 

The  def in i t ion  o f  a semant ics  for  the h -  calculus has already 
been carried out  by Wadsworth  and others,  see [5,7] .  Our  
approach follows theirs but  extends it somewha t  to in t roduce  
the not ion of  a semant ic  memory .  This  approach allows us 
more  easily to make the connect ion  between the semant ics  
and the evaluator,  In particular,  it allows us to deal with 
the shar ing  and somet imes  circular  data s t ructures  more  
directly. 

The Domains  

A - the pr imi t ive  domain  o f  a toms,  a,a',a 1, etc. denote  
a toms.  

C - the pr imi t ive  doma i n  o f  variables. ~ denotes  a variable. 
There  is no reason why a toms canno t  be used as variables, 
bu t  th ings  seem clearer if they are kept distinct.  

R the pr imi t ive  doma i n  o f  references (addresses).  It 
denotes  a reference. 

E : C + A + R X R  + R + R + R + R X R  + R X R X R  + 
R × R  + C X R  + C X R  + R × ( C × R ) *  the doma in  o f  
express ions  cor responding  to the twelve possibil i t ies listed in 
section II. In o ther  words (CAR 77) is a member  o f  the 
fou r th  part  o f  the  dis joint  union,  e denotes  an expression.  

M : R ~ E - the doma i n  o f  memories ,  each cell o f  which 
is capable o f  holding an expression.  # denotes  a memory .  

V = A + ( V X V ) + ( V ~ V ) - the doma i n  o f  values. 
A value can be an atom, a pair o f  values, or a func t ion  
f rom a value to a value. This  domain  is the one which 
requires Scott 's theory as it conta ins  its own func t ion  space. 
Fur the rmore  we use Reynolds 's  [ 3 ]  version o f  the dis jo int  
un ion  operator so that  _L, (QUOT E  ..L), (CONS _L _L), and 
(LAMBDA X _L) all have dis t inct  values, with _L being the 
bo t tom of  the whole lattice. 

N : C ~ V - the doma i n  of  env i ronments ,  p denotes  an 
env i ronmen t .  

S : R ~ ( N ~ V ) - a semant ic  memory ,  mapp ing  
references and env i ronmen t s  into values, o denotes  a 
semant ic  memory .  A semant ic  m e m o r y  has addresses jus t  

like a convent ional  one but  its cells can hold genuine ly  
in f in i t e  objects. Roughly  speaking the semant ic  object that  a 
cell w holds is what one gets by tracing out, in the 
convent ional  memory ,  the s t ructure  o f  pointers  emana t ing  
f rom that  cell. 

Tile Semantic  Function V 

In the following, to reduce parentheses,  we shall adopt  the 
convent ion  that  fa,B~ means  ( ( f ( a ) ) ( f l ) ) ( ~ ) ; i . e .  f is applied 
to a,  the  result  is applied to fl, etc. 

V maps  convent ional  memor ies  into semant ic  memories;i .e.  

V : M ~ S  

it is def ined  recursively by Vp~p = U(V#)(#~)p where 
/.k~Ep = 

i f  E E C then p~ else 

if  e = (QUOTE a)  then a 

if ~ = (CONS ~1 7t2) then <a~lp , a~2p> else 

if c = (CAR ~ ' )  then ( an ' p )  1 else 

if  ~ = (CDR ~ ' )  then ( o f ' p )  2 else 

if  ~ = (ATOM ~") then 
[ if  a~'p E A then "T" else 

if aTt'p C V X V then "NIL" else 
.L 

] else 

i f e  = (EQ~t  1 1t2) then 
[ if O~lp E A A a~2p E A 

then if a ~ l p  = a~2p then "T" else "NIL" 
else _L 

] else 

i f e  : ( I F ~ 0 w !  ~2) then 
[ if art 0 p = "T" then a~tlP else 

if art 0 p = "NIL" then a~t2p else 
.L 

] else 

if e = (~0 ~1) then cr~Op (aztlp) else 

if  E = (LAMBDA ~ ~ ' )  then ~x. aTt'#[ x/~ ] else 

if ~ = (LABEL ~ ~t') then Y {hx. aT'p[ x/~ ]} else 

if  ~ = ( F U N A R G  w0 ~I ~1 "'" ~n ~n)  then 
a~ 0 P[ altnPl~n,...,a~tPl~ l ] 

else .1. 

This  def in i t ion  depends  upon several in formal  semant ic  
operations:  <,> f o rms  pairs, a subscr ipt  selects 
components ,e tc .  The  most  noteworthy are the last four:  The  
appl icat ion o f  a~0p to awlp is the func t ion  appl icat ion 
which required Scott 's const ruct ion to jus t i fy  since both 
values reside in the same domain .  Note that  the h is also 
an informal  not ion  and that  the bracket nota t ion is used to 
def ine  the changed e n v i r o n m e n t  p [  x/~ ]. Y is the m in im a l  
f ixed poin t  operator.  It happens  that  mapp ing  a F U N A R G  
cons t ruc t ion  into its semant ics  involves a complete  reversal 
o f  the list o f  bindings.  
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It is instructive to compare this funct ion with the Eval 
funct ion of  section II. The major d i f ference  is that V is 
quite happy to deal with completed inf in i te  objects like 
functions.  The operation of  applying a funct ion to its 
argument is taken as primitive here, while it was done very 
slowly and incompletely by Eval. 

This particular way of  describing the funct ion isolates the 
application of  the memory funct ion to a single place, namely 
the /tw in V's def ini t ion;  U uses only the semantic  memory 
(7. 

Now, given the def in i t ion of  Eval, it should be clear what  
an answer is. Suppose we load the memory with an 
expression so that the root of  the expression occurs in w0, 
and we start the lazy evaluator on that location. If it ever  
halts ( ignoring the possibility of  error  stops) we know that 
w 0 will contain an expression with one of  the three fo rms  
(QUOTE a), (CONS ..), or (FUNARG(LAMBDA.. .) . . . ) .  Thus 
the answer tells which of  the three components  of  V the 
value lies in; and, if it is an atom, what atom it is. In the 
other cases, nothing more is revealed, or computed.  This  
fact indicates how we should def ine  the correctness of  an 
evaluator: 

I f  I'itw0_L = _L 
then Eval(w0,/u. ) does not halt. 

If I'jZwo.L = a 
then Eval(w0,g)(w0) = (QUOTE a). 

If Vgwo_L is a pair 
then Eval(w0,#)(w0)=(CONS ...). 

If V/uw0_L is a funct ion 
then Eval(~0,#)(w0)=(FUNARG(LAMBDA..) . . . ) .  

We use the empty environment ,  _L, in these statements 
because it is assumed that the expression to be reduced does 
not  contain free variables at the outermost  level. Therefore,  
an env i ronment  funct ion  is not needed initially. 

Soundness 

For the present we shall content  ourselves with sketching a 
partial correctness proof;i.e, that the last three clauses hold if  
Eval halts. This can be done by showing that each o f  the 
seven t ransformat ion  rules leaves the semantic memory 
unchanged (except at newly allocated cells). Then if  the 
evaluator starts with memory /t at location 770 and halts with 
memory #' we know that V/tw0.L = V/t'Wo..L , and the last 
three c!auses are immediate  since the Eval funct ion halts 
only on the three forms  in question. 

This method o f  proof  also proves a qualif ied "yes" to the 
f i rs t  question in this section; it doesn ' t  matter in what order  
the t ransformat ions  are api~lied. The argument goes as 
follows: On semantic  grounds we know that (QUOTE a), 
(CONS ...) and ( F U N A R G ( L A M B D A  ...)...) all denote  
dist inct  objects, and that atoms that look d i f fe ren t  are 
di f ferent .  If we then show that the t ransformat ions  cannot  
change the semantic  value in a cell, we know that all 
sequences of  t ransformat ions  which produces one of  those 
configurat ions in a cell must  produce the same one. 

The proofs for  the various rules are very similar. We shall 
give two. 

Rule C: Suppose /t(n0) = (CAR Wl) and / t (n l )  = (CONS w 2 
w3) and rule C is appl ied. We shall prove that V/t = V#" 
where /t' = /t [ #(~2) / w 0 ]. First  we def ine  the 

truncations of  V by 

V i =_L for  i_<0 

v~+~/twp : u(r , / t ) ( / t~)p 

so V = lim i V i 

Now a s t ra ight- forward computat ion shows that 

Vi/.t = ~wp . i f  w=w 0 
then U(Vi_i/t)(CAR(CONS w 2 w3))p 

else U(Vi_l/t)(/t~)p 

= hwp . i f  ~=~r 0 

then {U(Vi_2/t)(CONS w 2 7t3)p} 1 
else U(Vi_l/t)(g~)p 

= hwp.if w=w 0 then U(Vi_:)(/t~2) p else U(Vi_t/t)(/t~)p 

and 

V:'=hwp. if w=~ 0 then U(I'i_l/t')(#w2) p else U(Vj_lg')(/t~)p 
Now it is easy to show that (Vi)(3j)[  Vi/t C I ~ '  ] and vice 
versa. Thus lim i Vi/t = limjlK~'. 

Rule L: Here the proof  is somewhat d i f fe ren t  since it 
involves comparing a circular data structure with a minimal  
f ixed-poin t .  Suppose 

# (no)  = (FUNARG (LABEL ~ ~ t )  ~2 ~2 "'" ~n Wn) 

and IC = # [ ( F U N A R O  w I ~ ~0 ~2 w2 "'" ~n qln)/q/0 ] 

First, we claim without  proof  that V# and V#' are the 
minimal  solutions to the following equations, respectively: 

V# = hwp. if  lz=Iz o 
then Y{Xx. V#wtP [ V#~tnPl~n...Vl~Tt2Pl~p x/~]}  

else U( V#)(#~)p 

Vg' = hwp. if w=w 0 
then V#'w]p[ V#'WnO/~n...V/t'~2P/~2, V#'woP/~ ] 

else U(V/t') (/tw)p 

It is simple to show that V# satisfies the equation for  V/t' 
so V#' C V/t. The proof  in the other  direct ion is more  
diff icult .  The dif f icul ty  seems to be that V# involves a 
loop, represented by the Y, within a loop, represented by the 
def in i t ion of  V, while V/t' involves just  one loop. To 
overcome this problem we will "cut" the loop represented by 
Y at the same time we cut the loop represented by V. First, 
we claim (based on cont inui ty)  that the following equations 
are equivalent to the ones above for  def in ing  V/t. 

Vi/t = ..L for  i < 0  

hwp.  if  7t=It 0 

then Yi{hx.Vi_lgWlp [ Vi_lp.W~/,~n.. .Vi_I/tw2p/{2, x/{ ] }  
else U(Vi_l/t)(/tw)p 

Yi = _L for  i < 0  

Yi = h f ' f (Y i - l f )  

V = lira i V i 

Now we prove Vi/t C V/t' by induction on i. It is vacuously 
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true for i ~ 0, so assume it for all k<i. Then, by the 
induction hypothesis 

I~# C_ X~rp. if ~r:lr 0 
then Yi F 

else U( Vil')(#~r )p 
where F = {hx. Vg'~rtp [ VIl'TrrvO/~n...V#'~r2P/~2 , x/,~]} 

The proof will be complete if we can show 

ViF C_ V#'~r0P 

This fact can also be shown by and induction on i. Assume 
the result for all k<i,then 

Yi F : V/l'Trl.p[ V~'~rnP/~n...Vtt'Tr2Pl~2, Yi_iF/~ ] 

C vW~!p[ vW~,.p/~,...vW~2P(~2, v~'~op/~ ] 
by the induction nypothesis 

: y ~ ' ~  

IV. Remarks 

The two objectives presented at the beginning of the paper 
can now be g ve ~ more substance. 

First, the general question of when an evaluation step is 
necessary needs to be answered. Initially, some external 
consideration must indicate that a particular location's value 
must be pursued; e.g. the user would like that value to be 
printed. Then, the "need to be ewduated" propagates itself 
to the descendants of that location according to rules 
peculiar to the semantics of the language. These rules were 
straightforward for the language studied here. Sometimes 
they are less so. For example, changing the semantics of IF 
so that 

(IF p x x) : x 

even when p is undefined would require simu!taneous 
evaluation of all three parts of an IF clause. In any case, it 
appears that performing "outer-most" reductions, i.e. those 
closest to the initial source of the need, is a good heuristic. 
The reason is that these reductions may make some parts of 
the structure which are farther away unnecessary. 

Second, the notion of "same step" needs clarification. Here, 
all that has been achieved through the use of pointers is that 
the advantages of evaluating an expression earlier have been 
I~LdlIICU. II t,C c^plc~tU, "3+7" arose twice in an 
evaluation from entirely different places there is no simple 
way to avoid its recomputation. 

Finally, a comment on the usefulness of Scott-Strachey 
semantics. We can hardly claim that the lazy evaluator is 
"right" because it is correct with respect to the semantics 
defined in section II1. It is obvious that the semantics can 
be adjusted to fit any mechanical evaluation method one 
chooses. One the other hand the use of a semantic model is 
a great aid in studying the implications of various evaluation 
rules without gettting involved in too many details. 
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