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Inner Products and Orthogonality in Color Recording
Filter Design

Poorvi L. Vora

Abstract—We formalize ideas of orthogonality and inner prod-
ucts implicit in the development of a number of figures of merit
(FOM, [1]) of color recording filters. We show that, in negligible
measurement noise, the data dependence of each FOM based on
linear color correction is equivalent to a choice of inner product
(and hence of orthogonality). Further, we show that optimal sen-
sors with respect to noise sensitivity are simply defined as orthog-
onal with respect to this inner product. We also develop the idea of a
generalized -factor by generalizing the Euclidean inner product
to include all inner products. Simulations demonstrate the utility
of our analytical results.

Index Terms—Color, digital cameras, orthogonality, recording
filters, scanning filters.

I. INTRODUCTION

E LECTRONIC image capture devices like scanners and
digital cameras use charge-coupled device (CCD) or

active pixel sensor (APS) technology for sensor fabrication.
The color capabilities of these devices come about from the
color filters that are used with the sensors, and there has been
considerable interest and literature on the design of optimal
color filters from the point of view of color fidelity [2]–[7],
[1] and robustness [6], [8]–[10]. There is a wide range of
criteria for color fidelity—varying in colorimetric accuracy,
parameters and computational complexity. The common aspect
of most of the criteria is that they may be expressed in terms
of inner products, as we will show in Section III. The existing
investigations into robustness of a recording filter set [6],
[8]–[10] are based on specific color fidelity criteria.

This paper poses the problem of the accuracy of color
recording filters in terms of inner products and orthogo-
nality—exploiting the common aspect of most existing per-
formance criteria. This allows a common framework for noise
analysis. We define an inner product using data-dependence in
the form of preferential weighting of errors in directions where
most of the energy of the data set is concentrated. We show that
Neugebauer’s -factor can be extended using the generalized
inner product. We illustrate the use of the generalized inner
product, the induced generalized orthogonality and generalized

-factor by addressing the problems of the characterization of
color filters with respect to color fidelity and noise sensitivity.

The problem of color fidelity has been addressed satisfac-
torily by a number of researchers, and we show that the inner
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product provides a single framework for similar approaches.
We generalize the fundamental error, based on orthogonal
directions in the human visual subspace (HVSS), to other
quadratic error measures in the target color space. The FOMs
of Sharma and Trussell [1] and Wolski et al. [6] for negligible
noise, Neugebauer [2], Vora and Trussell, ( ), [3] and Finlayson
[7], are all choices of an inner product, and hence choices of
“orthogonality.” The purpose of this paper is to demonstrate
the use of inner products in the simplification of optimality
expressions for color recording filters. The rich mathematical
results available for inner products may be used to produce
other results in the future.

We address the problem of noise sensitivity in detail and show
that optimal filters with respect to noise sensitivity are those that
are orthonormal with respect to the generalized inner product.
Vrhel and Trussell [4] show that optimal filters with respect to
sensitivity to filter fabrication errors also satisfy the same crite-
rion. We present the result here in a simpler form than they do,
in terms of inner products and orthonormality. The initial part
of the paper, which deals with inner products, is essential to an
understanding of the latter part, which deals with orthogonality.

The paper is organized as follows. We establish background
in Section II. In Section III, we define the tools we use in the rest
of the paper—generalized inner products, orthogonality, projec-
tion operators and -factors. In Section IV, we describe the use
of the tools in studying colorimetric accuracy—in particular, we
describe the specific translations from color space and data sta-
tistics to inner products. In this section we also show how the
measures of [1]–[3], [6], correspond to choices of inner prod-
ucts. We also show that these measures may be expressed as a
weighted sum of generalized -factors of preferred directions
in the target space. We present the use of our tools for noise anal-
ysis in Section V. In particular, we show why orthogonality is
important for optimality of recording filters. Simulation results
demonstrating the usefulness of the framework and the noise
sensitivity results are in Section VI. A summary of the major
results of the paper is presented in Section VII.

II. PRELIMINARIES

The notation in this paper follows that of Trussell [11], Vora
and Trussell [3], [9] and Sharma and Trussell [1]. A list of the
notation used may be found in the Appendix. Symbols are also
defined where they are first used. Filter transmissivities, spec-
tral reflectance functions, radiant illuminant spectral distribu-
tions, the CIE matching functions [12, pp. 130–143] and all
other functions of wavelength are assumed to be represented by

samples in the visual range. The theoretical results presented

1057–7149/01$10.00 © 2001 IEEE



VORA: INNER PRODUCTS AND ORTHOGONALITY IN COLOR RECORDING FILTER DESIGN 633

here and the ideas used are independent of the sampling rate.
The simulations have been performed for .

The common problem in color scanning, digital photography,
and color correction is the design of filters to obtain the values

(1)

where is an -vector representing the visual stimulus.
The matrix consists of columns, .
The columns of represent the combined effect of the CIE
matching functions and a viewing illuminant in the case of
color scanning and digital photography, or the combined effect
of the CIE matching functions and many different viewing
illuminants in the case of color correction. The vector may be
referred to as the -stimulus vector.

If the columns of matrix represent the CIE color matching
functions, and the diagonal matrix represents the viewing il-
luminant, the matrix product represents the color matching
functions for the viewing illuminant represented by and is de-
noted . The vector is the tristimulus vector and when

.
This formulation allows the linear model ideas of [2], [3],

[11], [13]–[15] to be extended to define color fidelity criteria of
sets of recording filters used for multi-band spectral measure-
ments, even when the measurements are not those of the CIE
tristimulus values [16]. The designed filters do not need to repli-
cate the columns of , and it is sufficient to obtain measure-
ments from which the values may be determined through a
linear transformation [3], [11], [13]. The properties of the linear
transformation determine the noise amplification inherent in the
procedure, and this is discussed in detail in Section V.

If the matrix represents the set of recording filters—ei-
ther scanning filters or filters on a camera—and is a diag-
onal matrix representing the combined effect of the recording
illuminant, the optical path and the sensor, the matrix , de-
noted , represents the effective recording system. Its output
is , where represents measurement noise. The
-stimulus values, , may be estimated from the measurements
using standard linear methods such as those used to solve sets

of simultaneous equations. The estimation procedure involves
inverting the effect of the recording system, estimating , and
thus estimating the inner product of with the columns of .

The linear minimum mean square error (LMMSE) estimate
of the -stimulus values of zero-mean signal in the presence
of zero-mean signal-uncorrelated measurement noise is [4], [8]

(2)

where and are the sample correla-
tion matrices of the data and the noise respectively. The incor-
poration of nonzero signal and noise means does not change the
basic results of the analysis.

The correction matrix is the linear transformation used to ob-
tain the estimate from the measurements

(3)

The properties of the matrix determine the noise amplification
properties of the procedure of determining the target -stimulus
values using the effective recording system .

The error in estimating the -stimulus values may be calcu-
lated in many ways. Linear models have been largely successful
in explaining the color responses of the sensor and filter combi-
nation [17]–[19], though errors perceived by the human visual
system are far from linear. Commonly used error measures for
the color reproduction of patches include the mean-square error
in a linear transformation of the CIE tristimulus space and the
mean-square error in the perceptually uniform CIELAB space
[12, p. 166]. We discuss these errors in more detail in the rest of
this section.

A common instance where linear transformations of the tris-
timulus values are the target of measurements is when a color
is to be reproduced on an additive display, like a CRT mon-
itor. While the mean-square error in a linear transformation of
CIE tristimulus space is not a good approximation of perceptual
error, it provides a numerical estimate of colorimetric accuracy
and may be manipulated with the use of simple mathematics.
Hence it is commonly used for rough optimality estimates. Eu-
clidean distance in a linear transformation of the -stimulus
space corresponds to a weighted Euclidean distance in the orig-
inal space, and is a quadratic error measure because it is of the
form , where symbolizes the error vector, and
the weights.

Let denote the transformation from the -stimulus space to
a space in which Euclidean distance better represents perceptual
error. When is the identity, the error is measured as Euclidean
distance in the space of the -stimulus values. Hence, when the
-stimulus values are the CIE tristimulus values, and the

above error is the mean square tristimulus error.
In some instances, it is useful to determine the error between

fundamentals [14], i.e., the difference between the parts of
a visual stimulus that do not lie in the “black space” of the
human visual system. The fundamental, as defined in [14], is
the projection of a visual stimulus onto the space spanned by
the color matching functions (the HVSS). When the viewing
illuminant is fixed and known and taken into consideration,
the fundamental is the projection onto the human visual illu-
minant subspace (HVISS). We denote the projection operator
onto the space spanned by the columns of matrix as ,

. When corresponds to determining
, i.e., when , the error is measured as

the Euclidean distance between fundamentals. Hence, when
, the error is the Euclidean distance in the

HVISS as in [3].
Notice that the LMMSE estimate of the transformed tristim-

ulus values ( ) is the same as the transformed value ( ) of the
tristimulus estimate (2). This is, in turn, the LMMSE estimate of
tristimulus values with respect to the directions represented by

. We will denote the matrix of preferred directions, ,
by the matrix , with columns (individual preferred directions)

.
The estimation error between transformed -stimulus values

is
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where represents the Euclidean norm. Substituting for
and from (1) and (2), respectively, and simplifying gives

Trace

(4)

Both matrices in (4) are positive semi-definite, and the trace
of each is hence nonnegative. The first term is independent of
the recording filters and depends only on the data set and the pre-
ferred directions. It is the maximum value of the error because
the second term is nonnegative. The second term depends on the
recording filters—the larger its value, the smaller the error. Its
maximum value is the value of the first term, because the ex-
pected value of a nonnegative quantity cannot be negative.

Proceeding as in [1], [3], [16], one may obtain a normalized
measure based on Euclidean distance in the transformed space.
This measure is the ratio of the value of the second term in (4)
to the value of the first term, and lies between zero and unity.
The larger its value, the smaller the value of the error

Trace
Trace

(5)

The above may be reduced to Neugebauer’s -factor which
is a measure of the quality of a single recording filter and negli-
gible measurement noise, and is based on the fractional energy
contained in the HVISS. The -factor of is defined as [2]

(6)

To evaluate a single filter , particularly its effectiveness as a
color filter in the combination of recording illuminant, optical
path and sensor, , and using the simplest conditions for the
measure [(5)]: , , , i.e.,

, and , gives

The measure is, unfortunately, not good enough at pre-
dicting perceptual error [1]. Hence, Wolski et al. [6] and Sharma
and Trussell [1] suggest the use of Kronecker products to utilize
locally linear approximations to more accurate, nonlinear, per-
ceptual error models. Their notation provides a more general
analytical form than the error expressions discussed above, and
its use is justified only when errors in spaces which are not linear
transformations of the space spanned by are required. The ap-
proach of Wolski et al. and Sharma et al. also leads to error mea-
sures that are linear in the recording filters, and hence the rest
of the analysis in this paper also holds for their approaches. We
show this in detail in the Appendix, but refrain from using the
Kronecker product expressions necessary to do so in the main
body of the paper.

In the following section, we generalize the Euclidean inner
product to include weighting of different directions based on the
data statistics. This provides a common, simple framework for
all color spaces and data sets as we show in Section IV. While
[1] provides a common framework as well, and includes mea-
surement noise which ours does not, our explicit use of the inner

product allows simple expressions linking even the most com-
plex-looking measures to Neugebauer’s -factor. Further, and
perhaps more importantly, the use of the inner product is abso-
lutely necessary to understand the importance of orthogonality
in recording filter design.

III. GENERALIZATION OF INNER PRODUCTS, ORTHOGONALITY

AND PROJECTION OPERATORS

Data dependence generally weights different directions dif-
ferently in the -space of reflectance functions and recording
filters, and it is useful to define the following inner product
which accounts for the weighting

(7)

For (7) to define an inner product, it is necessary and sufficient
that be positive definite. In particular, this implies that
be invertible. Clearly, the inner product is the Euclidean inner
product and induces the Euclidean norm when . Note
that this inner product defines error measures in the “parent”

-space and not in the lower dimensional .

A. Induced Norm and Projection Operator

Consider the norm induced by this inner product

(8)

If denotes the projection operator onto the space with
respect to the inner product , i.e., is the vector in

closest to with respect to the norm of (8), it can
be shown that,

(9)

B. Generalized -Factor

The generalization of inner products and projection operators
induces a generalized -factor. The -factor with respect to the
space and the generalized inner product may be defined
as a generalization of Neugebauer’s -factor [2] [see (6)]

(10)

Let be an orthonormal basis for with respect to
the inner product in (7) [i.e., or the are “ -or-
thonormal,” and , i.e., for invertible

]. Then, from (9), and (10) is

in terms of the generalized inner product.

C. Generalized Inner Product Notation for Matrices

The generalization of inner products above can be used to
rewrite some useful matrix expressions
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where and are the th columns of and respectively.
Further

Trace

IV. GENERALIZED INNER PRODUCTS AND ERROR MEASURES

Generalized inner products may be used to simplify the
expressions for all measures based on an affine color correction
procedure. The most general fidelity criterion based on a
quadratic error measure for negligible measurement noise
[(5)] may be simply expressed in terms of inner products
as follows. Let where is an

-orthonormal basis for . The numerator in (5) is
Trace and

One of the strengths of the measure was the fact that it
generalized Neugebauer’s -factor. An expression for is

where is an orthonormal basis for with respect
to the Euclidean inner product and is the dimension of R( ).

The measure can be represented in terms of generalized
-factors as follows:

where is the energy in the th preferred direction in ,
. Thus the most general quadratic error measure consists of

a weighted average of the generalized -factors of preferred
directions in the target space.

Recall that is a special case of where the preferred direc-
tions are orthonormal directions in the target space. The above
expression for easily reduces to the similar one for when the
preferred directions are orthogonal, and the weighting of each
direction is equal, or are all equal to unity.

The error measures of Wolski et al. [6] and Sharma et al. [1]
may also be expressed in terms of inner products with some
modifications. The expressions are derived in the Appendix. In
the next section we illustrate the use of the generalized inner
product in noise analysis.

V. NOISE ANALYSIS USING GENERALIZED INNER PRODUCTS

The analysis performed so far ignores noise and hence im-
plies that any set of filters which maximizes expression (5)

is a “good” set of filters. However, it is clear that the correction
(2) may unduly amplify measurement noise, especially when
the inverse problem is ill-conditioned. It is well-known that the
inclusion of noise statistics in any LMMSE makes the inverse
problem better-conditioned. We address the problem of condi-
tioning in this section and derive filter design criteria to reduce
noise amplification by the correction matrix. Vrhel and Trussell
have addressed this problem while analyzing robustness of color
correction to errors in filter design [4] and while addressing op-
timality of filters with respect to noise performance [8]. One of
the solutions we present is similar to their solution, and is pre-
sented here in terms of inner products and orthogonality.

Here, we think of noise as that component of the output
that has considerable variation over patches, and has its origin
in measurement noise. The error in color reproduction which
would be constant across a patch is not thought of as noise.
Another way of thinking about the noise is thinking of it as the
variation of the error in color reproduction, while ignoring the
mean.

A. Worst-Case Signal to Noise Ratio

The min–max method of [4] may be used to analyze the
worst-case signal to noise ratio (SNR) as follows. For a specific
reflective spectrum and noise , the SNR after correction is
lowest when is an eigenvector of minimum eigenvalue of
the correction matrix (3), and is an eigenvector of maximum
eigenvalue. This minimum SNR is

SNR
Trace

Trace

where and are minimum and maximum eigenvalues,
respectively, of the correction matrix, is the SNR before cor-
rection, and is the condition number of the correction matrix
(the ratio of maximum to minimum eigenvalue). A max–min ap-
proach of maximizing the minimum SNR leads to maximizing

or minimizing . The optimal solution is when is
unity, or the correction matrix is a multiple of the identity (the
recording filters are identical scalar multiples of the preferred
directions).

The color correction matrix, and hence its condition number,
depends on the viewing illuminant and the noise correla-
tion matrix . While the viewing illuminant may be measured
very accurately, is estimated. A good assumption commonly
made is that the noise consists of uncorrelated, independent,
isotropically distributed variables, and is usually estimated
as , where is the estimated noise variance.

When the correction matrix is not a multiple of the identity,
is a measure of the amount of noise amplification for a specific
viewing illuminant and a specific estimated value of . It
is well known in the signal/image processing community that
the condition number of a transformation has a strong bearing
on the noise amplification properties of a system or a method.
Thus, the above result is not surprising at all. What is interesting
is that the condition number of the color correction matrix is not
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always easily calculated or fixed and does not always predict
image quality.

As in the image restoration problem, the estimated noise vari-
ance may be increased on purpose to better condition the color
correction matrix—an increase in the estimated noise variance
decreases and hence also the noise amplification. This, how-
ever, is at the cost of color saturation [20]. Hence by itself is
not an accurate predictor of the image quality from a specific
filter set, though it is a predictor of noise amplification.

(and hence the noise amplification) increases with a de-
crease in the estimated noise variance. Hence, calculating the
value of as the estimated noise variance tends to zero, or for

, is a means of estimating the worst-case noise ampli-
fication or the noise amplification and color saturation trade-off
for a fixed filter set independent of measurement noise. A large
value of for zero-estimated noise variance implies a basically
ill-conditioned situation to start with—independent of measure-
ment noise, of estimated noise variance, and of fixes to the noise
estimates. It is useful when the filters are to be evaluated for a
fixed viewing illuminant. This is not always the case (digital
camera and scanner output images may need to be rendered for
many different viewing conditions). In the following section we
show how we can get around the limitation of a fixed viewing
illuminant.

B. Ratio of Expected Signal Power to Expected Noise Power

In the previous section, we noted the effect of the color
correction matrix on the worst-case noise amplification. For
a given filter set, the color correction matrix—and hence the
value of —can be changed by changing the noise estimate
or the viewing illuminant. In this section, we investigate other
possibilities for predicting noise amplification.

The min–max method of [4] may be used to analyze the ratio
of expected signal power to expected noise power after correc-
tion (denoted ). This analysis demonstrates why or-
thogonality is an important criterion in color recording filter de-
sign. The value of assuming signal-independent and
signal-uncorrelated noise is

Trace
Trace

Trace
Trace

(11)

where represents the expectation operator.
Bounds on the value of may be obtained from the

theory of matrix inequalities, as follows. Equation (11) may be
rewritten as

Trace
Trace

where , the are columns of , and
. Values of normal-

ized by are bounded above and below by the maximum
and minimum eigenvalues of respectively, and hence so is
the value of

(12)

where and are minimum and maximum eigenvalues
respectively of .

With no more knowledge about the nature of the individual
matrices, an optimal solution is one where or,
equivalently

for a constant . This implies that

or

(13)

Hence, the correlation matrix of optimal effective recording fil-
ters is a scalar multiple of the noise correlation matrix. This is an
important result, and in this form is independent of the specific
distribution of the noise variables, as long as they are signal-in-
dependent and uncorrelated with the signal.

In particular, from (13), orthogonal noise variables imply
-orthogonal optimal effective recording filters; orthogonal,

isotropically distributed noise variables imply -orthogonal
optimal effective recording filters of equal norm (which may
be thought of as -orthonormal recording filters). The first
known use of orthogonality in color recording filters appears
to be in [21], though to date there has been no literature on
reasons why orthogonality is important. If the noise variables
are not orthogonal, i.e., there is correlation among the noise
variables, optimal recording filters are similarly correlated.

In the rest of this paper, we assume that the noise variables are
orthogonal and isotropically distributed, i.e., , which
implies that each eigenvalue of
is the ratio

where is an eigenvalue of . Inequality (12) be-
comes

(14)

The ratio of expected signal power to expected noise power
before color correction is

Trace
Trace

Trace

where is the number of recording filters, or the number of
measurements. This implies that the factor by which the ratio of
expected signal to expected noise changes after color correction
is

(15)
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Fig. 1. Sets 1–6.

Dividing inequality (14) by the average value of

Using the simple algebraic inequality that the maximum and
minimum values of a finite set of numbers are upper and lower
bounds respectively of its average value

we obtain bounds on

The condition number of and its inverse provide
upper and lower bounds, respectively, on . We refer to the con-
dition number of as in the rest of this paper, and
propose its use as a measure of filter orthogonality and noise
sensitivity. A perfect value of is unity, and indicates an -or-
thonormal set of color filters. Larger values of indicate “less
orthonormal” filters and larger noise amplification in general.

The condition number of the color correction matrix (3), , is
distinct from the value , and takes the viewing illuminant and
the value of into consideration while evaluating the filters.
An optimal value of the color correction matrix corresponds to
effective recording filters that are a scalar multiple of the pre-
ferred directions, which need not be -orthogonal. When there
are many different viewing illuminants and hence no fixed set
of preferred directions, however, orthogonality is a useful crite-
rion for optimality. The value is to be used in cases where the
set of illuminants is not known.
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Fig. 2. Left: the illuminants; right: the matching functions corresponding to NTSC phosphors.

To recapitulate, when noise variables are signal-independent,
uncorrelated and isotropic, orthonormality is important for
two reasons: 1) orthonormal filters are the min–max solutions
optimizing the ratio of expected signal power to expected noise
power after color correction and 2) orthonormal filters are
min–max solutions optimizing the amplification of the SNR
after color correction. , the condition number of the matrix

, is proposed as a measure of filter orthonormality.

C. Combination of Two Optimality Criteria

“Most optimal” color recording filters with respect to both
color fidelity and noise sensitivity are those that lie along the
preferred directions. If it is not possible to design filters that lie
along the preferred directions (for example, it is not possible
to design filters that mimic the NTSC phosphor matching func-
tions (Fig. 8) because they have negative values at some points),
and in cases where the recording filters are to be designed for
a number of different viewing conditions, the “most optimal”
recording filters are those that span most of the space
and are -orthonormal, assuming noise variables are indepen-
dent among themselves and of the signal, uncorrelated among
themselves and with the signal, and isotropic.

VI. EXPERIMENTAL RESULTS

The sets of spectral responses used here are representative of
several that were used in experiments during this work. We used
six sets of spectral responses that are used in the manufacture of
consumer digital cameras. Fig. 1 shows the normalized spectral
responses. Sets 1–5 are spectral responses of sensor arrays with
RGB (Red, Green, Blue) filters, while Set 6 is the response of a
sensor array with cyan, magenta, yellow, green (CMYG) filters.
We used four different illuminants—D65, a measured overcast
daylight, a measured tungsten illuminant and a measured quartz
illuminant. The normalized illuminants are plotted in Fig. 2. The
preferred target directions are NTSC phosphors [22] normalized
so a flat spectrum gives equal R, G, and B values, in the cor-
responding illuminant. The matching functions for the NTSC
phosphors are also plotted in Fig. 2.

To test if our orthonormality measure was a valid predictor
of noise performance, we performed the following simulations.

For each set, combined with each illuminant, we simulated the
exact recorded values for the Vrhel–Gershon–Iwan set [23] and
added zero-mean, uniformly distributed noise with variance
equal to . We performed this
simulation for 20 different noise sequences for each recording
illuminant, thus obtaining 20 simulated measurements for each
Vrhel–Gershon–Iwan data point for each filter set in each
recording illuminant.

We then calculated the estimated tristimulus values for
each measurement for each illuminant as viewing illuminant,
assuming we knew the data-correlation matrix exactly. We
calculated four different color correction matrices for each
combination of recording and viewing illuminants and filter
sets, assuming four different estimated values of the noise
variance (zero, estimated variance equal to the actual simulated
noise variance, estimated noise variance equal to twice and
ten times the noise variance) and uncorrelated, independent,
identically distributed noise variables, i.e., ; ;

; and where is the actual simulated
noise variance. Thus, for each measurement, we estimated 16
different tristimulus vectors corresponding to four different
viewing illuminants and four different estimates of .

We then calculated the value of [(15)] for each combination
of viewing illuminant, recording illuminant, noise estimate and
filter set (384 values in all). We examined the values of different
criteria considered in this paper (the condition number, , of the
color correction matrix ; and the condition number, , of the
matrix ) to determine their efficacy as predictors of ,
the factor by which the ratio of expected signal to expected noise
changes after color correction. We present plots with the data
values on the -axis vs. predictors on the -axis in the following
figures.

Fig. 3 shows a scatter plot of the value of vs. , the condition
number of the corresponding color correction matrix. Both
and depend on the viewing illuminant as well as the estimated
value of . predicts the value of well, as expected.

Increasing the value of the estimated noise variance decreases
the condition number [20] and hence increases , but it de-
creases color saturation [20]. As described in Section V-A, it
is useful to look at the value of as the noise variance tends
to zero to get an estimate of the basic noise amplification prop-
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Fig. 3. Left: � versus � ; right: average � over different noise estimates versus � , noise estimate � 0.

erties of the color correction matrix—independent of measure-
ment noise, noise estimates, and fixes to decrease noise ampli-
fication which also decrease color saturation. Fig. 3 also shows
a scatter plot of the average value of over the different esti-
mated noise variances versus with estimated value of vari-
ance equal to zero. The plot is similar to the previous one, and
average values of are well-predicted by values of for zero
estimated noise variance.

The value of for zero estimated noise variance, though in-
dependent of noise variance, requires knowledge of the viewing
and recording illuminants. It would be useful to observe the
ability of the condition number of the color correction matrix
to predict noise amplification when only one illuminant, or nei-
ther illuminant, is known. We present two plots, Figs. 4 and 5,
that fix the viewing and recording illuminants, respectively.

Fig. 4 shows the scatter plot of the average value of over
the different estimated noise variances and the four different
recording illuminants while fixing the viewing illuminant vs.
the condition number of the color correction matrix assuming
zero noise variance and assuming that the recording illuminant
is identical to the viewing illuminant. Fig. 5 shows a scatter
plot of the average value of over the different estimated noise
variances and the four different viewing illuminants while fixing
the recording illuminant vs. the same values.

Figs. 4 and 5 show very similar graphs. While the value of
decreases in general with respect to the value of , it is not

monotonic, and the value of does not seem to predict well
the value of when averaged over many different viewing or
recording illuminants. The data points for Set 6 are plotted as
asterisks (*) and they lie well in the middle of the plots. Hence,
as described in Section V-A, it is necessary to use predictors
other than the condition number of the color correction matrix
when the viewing and recording illuminants are not fixed or not
known.

Figs. 6 and 7 show the same data as in Fig. 5 versus the natural
logarithm of the value of , for and ,
respectively. The values of are measures of filter orthonor-
mality using two different inner products: corre-
sponds to the Euclidean inner product and to the
data-weighted inner product. Fig. 7 shows a clear monotonic
decreasing relationship between averaged over many viewing

Fig. 4. � averaged over noise estimates and different recording illuminants,
versus � , viewing and recording illuminants identical.

Fig. 5. � averaged over noise estimates and different viewing illuminants,
versus � , viewing and recording illuminants identical.
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Fig. 6. � averaged over noise estimates and different viewing illuminants
versus � for

��� �
	
.

Fig. 7. � averaged over noise estimates and different viewing illuminants
versus � for

��� �
�
.

illuminants and the value of for . The points that
do not fit as well in this graph as most of the points are points as-
sociated with Set 6, and are shown with asterisks (*) as in Figs. 4
and 5.

Figs. 6 and 7 demonstrate quite clearly that , a measure of
filter orthonormality, is at least as good a measure of noise sen-
sitivity as , though it depends upon fewer variables (it is in-
dependent of the viewing illuminant and of the estimated noise
variance).

Figs. 8 and 9 show the average of over the different noise es-
timates as well as over both recording and viewing illuminants,
versus the natural logarithm for and
respectively. The values of in this case are different from those
in Figs. 6 and 7 because they have been calculated for .
is clearly a good predictor of average performance over different
viewing and recording illuminants, especially when the data set
is known. The sets with high values of either have high overlap

Fig. 8. Average � over all conditions versus orthonormality criterion without
recording illuminant,

��� �	
.

Fig. 9. Average � over all conditions versus orthonormality criterion without
recording illuminant,

��� ���
.

among the spectral response functions of each channel, (Sets 2
and 6) or have very different channel gains as well as fairly high
overlap (Set 5) and are hence far from orthonormal.

VII. CONCLUSIONS

We have built on the linear model ideas of [2], [13]–[15], [11],
[3] to demonstrate how the use of inner products and orthogo-
nality can simplify the procedure of color recording filter de-
sign. We have shown how definitions of inner products and or-
thogonality are influenced by the choice of error measures for
color recording filters, and we have used these ideas to develop a
generalized -factor as an extension of Neugebauer’s -factor
[2]. We used these ideas to show that optimal recording filters
with respect to noise sensitivity are orthonormal filters when
the noise variables are orthogonal and isotropically distributed.
Lastly, we have presented simulations to support our claims.
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APPENDIX

A. Accurate Approximations of Perceptual Error

The average error in CIE space [12, pg. 166] is
a perceptual error which is not equivalent to Euclidean distance
in any linear transformation of CIE tristimulus space. This mo-
tivates the analysis of nonquadratic error measures. If
and represent the nonlinear transformation of real and
estimated -stimulus values respectively, to a transformed space
where the Euclidean distance represents a valid error measure,
then the error measure is . A locally linear
approximation of error proposed by Wolski et al. [6]
allows the use of linear models to analyze nonquadratic error
measures as follows.

If the error between estimated and real -stimulus values is
small, and the transformation is differentiable with contin-
uous first partial derivatives at both points, the error measure can
be approximated by the first term of the Taylor series approxi-
mation [1], [6]. The linear transformation that minimizes the
approximated error measure is defined by [1]

(16)

where

As in (5), we obtain a normalized fidelity measure which de-
pends on both the preferred directions in the target space as
well as the transformation from the target space to a percep-
tually uniform space as shown in (17) at the bottom of the page.
The main difference between expressions (5) and (17) is that
the latter treats the entire matrix as one vector in N-space,
unlike the former which treats each column of , i.e., each pre-
ferred direction, as a separate vector. Further, the latter treats
each column of as a vector in N-space, with zeros padding
the N-vector

Because of these differences, (17) allows the use of product
terms of the form (elements of the matrix

) while (5) allows only terms of the
form (elements of the matrix ).
In other words, (17) allows the use of different weights for
each product term, , while (5) requires the same
weighting factors for fixed wavelength positions—in (5) the
weights depend on only and .

Another difference is that the weights (elements of the ma-
trices and for the former and latter respectively) depend
only on the data and not on or in the former case, but
depend on both the data and in the latter. However, the two

expressions are similar in that the weights in both do not de-
pend on and both can be expressed in terms of inner prod-
ucts—(17) in N-space or N-space, (5) in N-space.

To extend the ideas of Section IV to accurate approximations
of nonlinear error measures, the definitions of inner products,
projection operators and -factors need to be slightly modified.
The matrix is replaced by the vector , the matrix
by the matrix , and the matrix by the matrix .
The expression of (17) for negligible noise may be represented
in terms of inner products as follows. If

and is an -orthonormal basis for in
-space, then

In terms of generalized -factors

NOTATION

Reflective spectrum.
Matrix of target measurement
filters.

, and -stimulus values of and their
linear minimum mean square
error (LMMSE) estimates, re-
spectively.
Matrix of the CIE matching func-
tions.
Matrix of recording filters.
Combination of optical path,
recording illuminant and sensor
characteristic.
Viewing illuminant.

and Diagonal matrices with
and , respectively.

and Matrix products (or “effec-
tive recording system”) and ,
respectively.
CIE tristimulus vector of reflec-
tive spectrum under viewing il-
luminant .
Recorded noisy measurements.
Color correction matrix.
Linear transformation of -stim-
ulus values for error metric.

(17)
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Preferred directions in target
space, .

, Correlation matrices of data and
noise, respectively.

, Color fidelity metrics based on
quadratic error measures and ap-
proximations to perceptual error,
respectively.

, , Neugebauer’s -factor, and
generalized -factors based on
quadratic error measures and ap-
proximations to perceptual error,
respectively.
Energy in th preferred direction,

.
Noise variance.

, , and Eigenvalues of matrices
, and

, respectively.
and Condition numbers of matrices

and , respectively.
Ratio of signal power to noise
power before color correction.
Amplification of ratio of expected
signal power to expected noise
power after color correction.
Jacobian matrix for nonlinear
transformation from target space
to uniform error space.
Range space of matrix —the
span (set of linear combinations)
of its column vectors.
Pseudo-inverse of matrix .

, Euclidean and generalized inner
products, respectively.

, , Norms induced by the Euclidean
and generalized inner products,
respectively.

, Projection operators onto
using the Euclidean norm and the
norm induced by the generalized
inner product, respectively.

vec( ) Matrix stacked column by
column as a vector.
Kronecker product.
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