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Abstract— A coding theory framework for related-key linear
cryptanalytic attacks on block ciphers is presented. It treats
linear cryptanalysis as communication over a low capacity
channel, and a related key attack (RKA) as a concatenated code.
It is used to show that an RKA, using n related keys generated
from k independent ones, can improve the amortized cost – in
number of plaintext-ciphertext pairs per key bit determined –
over that of k single key attacks, of any linear cryptanalysis, if k
and n are large enough. The practical implications of this result
are demonstrated through the design of an RKA, with k=5 and
n=7, predicted to produce a 30% improvement for DES attacks
that use an r-1 round approximation.

I. INTRODUCTION

Attacks that exploit the non-random behavior of symmetric-
key ciphers (such as linear or differential cryptanalysis) typi-
cally require a large number of ciphertext values to success-
fully estimate the key. Because of this, it is generally assumed
that changing the key often offers good protection against such
attacks. This is clearly true, of course, if the different keys
are independent. On the other hand, relationships among keys
can arise in a number of situations: when the random number
generators used in key generation are weak, or when the
adversary is powerful enough to control the relationship. While
formal models of block cipher cryptanalysis [15], [13], [9] and
of related-key attacks (RKAs) [1] exist, there is, however, no
model of the combination. In particular, it is not known how
the relationship among keys affects the success probability of
a statistical attack.

A more formal statement of the problem for the specific
case of the linear cryptanalytic attack is as follows. Consider
a single linear cryptanalytic equation of bias β, using N
plaintext-ciphertext (P/C) pairs to determine d bits of a single
key. Denote by ν(N) its amortized cost, in P/C pairs required
per key bit determined – i.e. ν(N) = N

d , and by ε(N) the
corresponding probability of error. It is well-known that error
decreases indefinitely only if N increases correspondingly. Be-
cause d is fixed, error decreases indefinitely only if amortized
cost also increases indefinitely.

ε(N) → 0 ⇒ ν(N) =
N

d
→∞ (1)

Now consider a set of linear cryptanalytic attacks using n
related keys constructed from k independent ones. If n = k
and all k keys are independent, the best the adversary can do
is to launch k independent linear cryptanalytic attacks, and

(1) represents the behaviour of ν with N and ε(N) for each
independent key. When n 6= k, however, is ν lower or higher
or the same for a fixed value of ε? Are there relationships
among the keys for which it behaves one way or another? ν
measures the communication complexity of the attack – that
part of it that is online and requires an interaction with the
sender of the message. A significant change in it could be of
considerable importance.

This paper’s contributions are threefold.
• It presents a formal model for RKAs on block ciphers

that are already vulnerable to linear cryptanalysis. The
model focuses on attacks where r − 1 of the r rounds
are linearly approximated, and may be easily extended
to other types of statistical cryptanalysis and to stream
ciphers.

• It shows that the general RKA provides an asymptoti-
cally lower value of ν(N) than do k independent linear
cryptanalytic attacks. In fact, it shows that ν(N) can be
maintained at a constant, finite value while decreasing
ε(N), i.e. that

ε(N) → 0 and ν(N) ' Λ (2)

are simultaneously possible, for some constant finite Λ.
• It describes an RKA that provides a modest improvement

(a decrease of 29%) for DES with only a small redun-
dancy in keys (k = 5, n = 7). A larger improvement is
expected for a larger number of keys. It appears that this
RKA is general enough to be useful for other ciphers as
well.

Thus the results provide a means of designing new attacks on
block ciphers that are vulnerable to linear cryptanalysis. The
results also imply that, not only is changing the keys often
not sufficient to prevent against a statistical attack, but that,
with a particularly strong adversary or a particularly weak
key generator, it can be worse and prove beneficial to the
adversary. In coding theory terms, a single-key attack is similar
to a repetition code, but an RKA is similar to a channel code
and provides the associated improvement in communication
efficiency. With this general premise, even in the absence of a
strong relationship among the keys, the techniques described
here should be useful in various other settings where key
relationships are examined, including ciphertext-only as well
as non-linear cryptanalysis, and stream cipher cryptanalysis.



II. THE APPROACH

The paper treats linear cryptanalysis as communication over
a very noisy channel, using a model of [3] extended to address
known-plaintext attacks and RKAs. The message consists of
the d key bits determined using a single linear approximation
of the cipher. The cipher provides the encoding of the message
bits, and the randomness of the channel is provided by the
plaintexts used. A property of each of the N known plaintext-
ciphertext (P/C) pairs provides an N -bit received codeword.
The rate of the transmission is d

N . Because d is fixed by the
linear approximation used, it is not possible to maintain a
constant rate while increasing N . Thus it is not possible to
achieve the limits of the channel coding theorem [12] with a
single key attack, and, beyond a certain point, using the same
key repeatedly has the disadvantage of a repetition code. This
paper hence examines RKAs.

RKAs provide improvements in error performance similar
to those of channel codes. The paper shows that RKAs
correspond to concatenated codes, where the inner code is
defined by the linear cryptanalytic attack, and the outer code
by the relationship among the keys. It translates the wrong key
hypothesis [7] to an assumption in the model, which affects
the error-correcting properties of the inner code, and hence the
error performance of the single key linear cryptanalytic attack.

Using Forney’s constructions [4], the paper applies the
channel coding theorem [12] to the super-channel, consisting
of the single-key attack and its estimate, to obtain (2). Note
that Λ does not correspond to the channel capacity of the
linear cryptanalytic channel. That capacity cannot be achieved
because d cannot be increased indefinitely.

The theoretical result (2) obtained is asymptotic. To deter-
mine whether there would be sufficient decrease in ν for a
small enough value of k and n to make the attack practical,
a careful calibration of the error of the single-key attack,
and the error of the RKA, is needed. The paper uses a few
values from Matsui’s [10] first theoretical and experimental
results to represent the error of a single key attack as N is
increased. This value represents the probability of error for
the super-channel. Motivated by [4], the paper uses an outer
Reed Solomon code for the RKA, and obtains estimates of
improvement in amortized cost for DES over that of k single
key attacks.

III. RELATED WORK

Filiol [3] first suggested that a known probabilistic rela-
tionship – between C and a single binary property of K –
be modeled as a communication channel. In his model, for
ciphertext-only attacks, the input to the channel is a single
binary property of fixed key K, denoted I(K) (the parity of a
few bits, say), see Figure 1. Its output is a bit of C, or the parity
of a few bits of C. The channel output is equal to the channel
input with a probability slightly greater than half. The property
may depend on the output, i.e. it could be an encoded bit of
the key with feedback. Each use of the cipher transmits the
same property over the channel, and corresponds to a repetition
code on the property. Our model shows that known-plaintext

CK I(K, C) C
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Fig. 1. Filiol’s Channel Model [3]

cryptanalysis, approximating the cipher for r − 1 rounds, can
be used to generate several, distinct, encoded bits of the key.

[3] also describes how the same set of N received bits may
be decoded as a single repetition code of length N , or as n
codes of length N

n . While not explicitly described thus, this
is the decoding technique for a concatenated code, with an
inner repetition code of length N

n (over the property of the
key, I(K)), and an outer repetition code of length n (over the
key). [3] correctly indicates that, in this case, concatenation
provides no advantage, and that the most efficient decoding
is one where the received bits are treated as consisting of a
single codeword. [3] does not treat related-key attacks, and
uses concatenation only for decoding, not for the purpose
of increasing the efficiency of transmission across the cipher
channel.

In other related work, Jakobsen [9] treats attacks on ciphers
whose properties can be modeled as polynomials of small
degree, and uses recent work in computational coding theory
to efficiently decode attacks. In particular, he proposes the
list decoding model, where the key estimate consists of small
set of possibilities, as opposed to a unique one. Related-
key attacks are not addressed in this model. The framework
of Wagner [15] describes more formally the techniques for
obtaining the probabilistic relationships among P , C and K.
It models the relationships as Markov chains, in the manner of
[13], [14]. Our work models a relationship as a channel, which
allows us to address related-key attacks, and provides access
to a rich literature in coding theory. At the same time, our
work allows, in a very natural way, the use of Wagner’s model
to determine the communication channel, and the properties
transmitted across it.

Biham examines related key attacks on block ciphers tracing
the relationships among the keys to the key scheduling algo-
rithm [2]. After demonstrating how related key attacks lower
the complexity for specific block ciphers, he stresses the need
for a careful design of the key scheduling algorithm. Kelsey,
Schneier and Wagner [5], [6] further present more related key
attacks on various other block ciphers and demonstrate how
real protocols can be exploited to mount such attacks on them.

IV. OUR FRAMEWORK: SINGLE KEY ATTACKS

A. Preliminaries

We use notation very similar to that of Harpes, Kramer
and Massey [7], from where we also draw our description of
linear cryptanalysis. An r-round block cipher of block size q



consists of r rounds of application of a keyed round function
FK , a bijection, using a different round key K(i) for each
round. The key to the cipher consists of all the round keys:
K(1,2,..r) = (K(1),K(2), ...K(r)), where K(i) ∈ K, the round-
key space. Plaintext P and ciphertext C belong to Σq, the
set of all binary q-tuples. We consider the attack described
by Matsui [10] that uses approximations of r − 1 rounds of
the cipher, and then uses the round function itself for the rth

round.
In linear cryptanalysis, [10], [8], a single round of the cipher

may be approximated using a linear expression of the form:

Pr[h1(X)⊕ h2(Y )⊕ h3(K) = 0] =
1
2
± γ (3)

where γ is positive, X is the round input, Y the output,
and K the round key, i.e. Y = FK(X), and h1, h2 and
h3 are linear or affine. The randomness is across plaintexts,
and not necessarily across keys. Through the repeated use of
approximations like (3) for r− 1 rounds, and the exact round
function F for the last round, one may obtain an expression
of the following form:

Pr[f(P ) = g(F−1
K(r)(C))] =

1
2
± β (4)

for some non-zero bias β and last round key K(r). The exact
value of the first-round function may also be used instead of
an approximation, and it is straightforward to see how our
model translates to this and other similar attacks.

To determine K(r), all possible values are tried, and the
right and left-hand sides of equation (4) computed for all N
P/C pairs. The sub-key chosen is the one that satisfies the
equation most often (or least often, to allow for the probability
of (4) being 1

2 − β). In addition, one bit of the rest of the
cipher key is also revealed through whether the sub-key chosen
satisfied the equation most or least often. The other bits of the
key may either be similarly determined, or determined by brute
force. Thus linear cryptanalysis reduces, by one-rth and one
bit, the length of the key that is to be determined by brute
force.

B. The Model

This paper views linear cryptanalysis as communication
across a very noisy channel. K(r), denoted K in Figure 2,
forms the message. The value of a binary property of K and
Cj , the jth ciphertext:

Ij(K) = g(F−1
K (Cj)) (5)

is the jth codebit, and the codeword is:

α(K) = (I1(K), I2(K), ...IN (K)) (6)

The codeword itself is not accessible to the adversary. How-
ever, the set (f(P1), f(P2), ...f(PN )), of the binary property
f of the plaintexts, is, and, from (4), is a very noisy value of
the codeword (6). It hence provides the output of the channel.

The randomness of the channel is provided by the different
values of plaintext encrypted, and the channel flips each bit of
the encoding almost as often as not, i.e. with a probability

Channel pe = 0.5 ± bIj(K)
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Fig. 2. Linear cryptanalysis as channel communication

0.5 ± β. The channel is a binary symmetric channel with
probability of error 0.5±β, whose capacity may be estimated
using the second order term in the Taylor series expansion
(zeroth and first order terms are zero). We assume, as in [7],
that β is not significantly dependent on K, i.e. the channel is
identical for all keys. The process of determining the target
subkey from the values f(Pj) can easily be shown to be
maximum-likelihood decoding [11]. We further assume that
the small dependence between K and β does not affect the
maximum-likelihood estimation procedure [7]. This gives us
the following observation.
Observation 1: Linear cryptanalysis, using N P/C pairs
and a single linear cryptanalytic relationship, corresponds to
the transmission of K(r) across a communication channel of
capacity C ' β2

0.34 , using the encoding α(Kr) of length N ,
and maximum-likelihood decoding.

C. The Encoding

Experimental reports of linear cryptanalysis imply that
α(K) typically contains enough information to accurately
determine K(r). A formal statement of the assumption that
this is true is frequently made in the form of the wrong key
hypothesis [7] which states that, for an incorrect key, Ij(K)
is close to as likely to be represented by f(Pj) as not. In
our model, we incorporate an assumption that we show is
equivalent to wrong key randomization, examine the error-
correcting behavior of α(K) under this assumption, and relate
it to a property of the cipher.

Recall that the randomness of the channel, whether repre-
senting the entire cipher or a single round, is provided by the
plaintexts used. Hence, given a fixed key, there is a partition
of the plaintext space, into those plaintexts for which the last
round approximation, of the form (3), is true, and those for
which it is not, denote these by PK and PK respectively. Note
that the noise in the channel is “0”, when P ∈ PK , and “1”
otherwise.
Definition 1: For round key K, PK is the set of all rth-round
input for which h1(X)⊕ h2(Y ) = h3(K) is true.

We denote by (P1,K) ↔ (P2,K
′) that P1, with key K,

and P2, with key K ′, represent the same value of the noise
bit for the channel, i.e. the last round approximation (3) is



either true for both or untrue for both. The following lemma
holds.
Lemma 1:
h3(K) = h3(K ′) and (F−1

K (Cj),K) ↔ (F−1
K′ (Cj),K ′)

⇒ Ij(K) = Ij(K ′)
Proof: (F−1

K (Cj),K) ↔ (F−1
K′ (Cj),K ′) implies that the

value of h1(X)⊕h2(Y )⊕h3(K) is the same for both values
of K. Further, because h3(K) = h3(K ′), and h2(C) is the
same for both K and K ′, this implies that h1(X) is also the
same for both values of K. The value of X itself is different,
but h1(X) is not. Further, note that h1(X) = I(C,K), hence
Ij(K) = Ij(K ′). t

Similarly,
Lemma 2:
h3(K) 6= h3(K ′) and (F−1

K (Cj),K) !(↔) (F−1
K′ (Cj),K ′)

⇒ Ij(K) = Ij(K ′)
Proof: Clear. t

If Ij(K) = Ij(K ′) too often, α(K) will not differentiate
well between K and K ′. This motivates the following assump-
tion and Theorem:
Assumption 1: Given any two K, K ′, such that K 6= K ′,
and C chosen uniformly at random,

|Pr[(F−1
K (Cj),K) ↔ (F−1

K′ (Cj),K ′)]− 1
2
| ≤ δ

where δ is small.
Theorem 1: Assumption 1 is equivalent to the wrong key
randomization hypothesis.
Proof Sketch: For distinct K, K ′, let Pr[(F−1

K (Cj),K) ↔
(F−1

K′ (Cj),K ′)] = 1
2 + c. Further, let K be the right key, and

K ′ a wrong key. Wrong key randomization is equivalent to:

|Pr[f(Pj) = Ij(K ′)]− 1
2 |

|Pr[f(Pj) = Ij(K)]− 1
2 |

<< 1

⇔
|( 1

2 ± c)( 1
2 + β) + ( 1

2 ∓ c)( 1
2 − β)− 1

2 |
β

<< 1

⇔ β|c|
β

= |c| << 1

t
For a “good” round function, δ = 0, so that the channel is

completely independent of the key. As one might expect from
Theorem 1, the error-correcting behavior of α depends on δ,
and, in particular, a “good” round function results in a more
efficient attack.
Theorem 2: limN→∞

min dist(α)
N = 1

2 − δ, where
min dist(α) is the minimum distance of the code α. Hence,
a smaller value of δ results in a lower attack error.
Proof Sketch: Straighforward. t

V. RELATED KEYS AND CONCATENATION

Consider an RKA, where k independent keys are used to
generate n related keys. Suppose the function used is

H : Kk → Kn

H(L1,L2, ...Lk) = (K1,K2, ..Kn)

Each related key Ki can be used for a linear cryptanalytic
attack, to produce a key estimate, Kest,i. The relation among
the keys may then be inverted in some manner.

A. Related-Key Attacks as Concatenated Codes

Theorem 3: The RKA described above is a concatenated code
over the cipher channel.
Proof Sketch:H is the outer code, the inversion procedure is its
decoding. α(K) with maximum-likelihood decoding forms the
inner code. The key estimates of a single linear cryptanalytic
attack, Kest,i, form the output of the super-channel, whose
input consists of the related keys Ki, and probability of error
is that of the single-key attack. t

Figure 3 shows such an attack.

Kest,iencoding
into 

properties

noisy 
channel

I(Ki, Cj)

key

block cipher

f(Pj) Decoding
Ki

Super-channel

(L1, L2, … Lk)

(Lest,1, Lest,2, …Lest,k )

(K1, K2, … Kn)

Outer Code

Outer Decoding

(Kest,1, Kest,2, … Kest,n)

Fig. 3. Related-key Attacks as Concatenated Codes

B. The Existence of an Efficient RKA

Consider any error value, e, reasonably small, corresponding
to an amortized cost of N

d in a single key attack. Assuming
that the super-channel is symmetric, let its capacity be CS(e).
(For small values of e, CS(e) is close to unity). This gives us:
Theorem 4: ε(N) → 0 and ν(N) ' Λ, for all Λ ≥ N

dCS(e) is
possible, where N

d ≥
0.34
β2 .

Proof: Follows from the application of the channel coding
theorem to the outer code and the super-channel with capacity
CS(e). t

Theorem 4 implies that, while it is possible to transmit
efficiently, one may not be able to transmit at the capacity
of the inner channel if the inner code is bad, even if the outer
code is good. Because the inner code has a finite number of
message bits, it is not, in general, a good code.

C. Construction of a Good RKA

Forney’s constructions of concatenated codes motivate the
use of RS codes as the relationship among the keys. Forney
uses an RS outer code with a good inner code to reduce



error indefinitely while maintaining any rate smaller than
channel capacity ( β2

0.34 in this case). A similar attack, with
N ' 0.34d

β2 P/C pairs in each of the n single-key attacks,
and n only slightly larger than k (as large as required by
super-channel capacity, CS(e)), cannot be used to indefinitely
decrease linear cryptanalytic error while maintaining rate at
inner channel capacity, because the inner code is unable to
maintain rate while decreasing error. It should provide some
improvement, however, and we show that it can provide a
reasonable improvement over single key attacks on DES.

D. The Good RKA is Practical

To examine the improvement in amortized cost provided by
the RKA that uses an RS code for the relationship among keys,
one needs an expression for the error of the single-key attack
in terms of N , d and β, and of the RS code in terms of d,
k, n, and super-channel error, i.e. the error of the single-key
attack. Expressions for outer code error in terms of super-
channel error are well-known [4]. The expressions for single-
key attack error would generally depend on the attack itself.
We use Matsui’s theoretical and experimental values for the
linear cryptanalytic attack on DES that uses approximations
for r − 1 rounds [10]. In this case, d = 7. [10, Table 3]
predicts estimation accuracies of 48.6%, 78.5%, 96.7%, and
99.9% for N = 2

β2 , 4
β2 , 8

β2 and 16
β2 respectively.

We construct various RKA attacks using RS outer codes
and the above single-key attacks as inner codes. For these
attacks, we obtain amortized cost estimates, requiring each of
the k keys to be determined at an accuracy level of 99.9%.
We then observe the factor by which 16

β2 , the cost for k single
key attacks each achieving a 99.9% accuracy, is larger than the
amortized cost of the RKA, call this ratio τ . Larger values of
τ imply a greater improvement in amortized cost. We observe
the following:
• An upper bound on τ corresponds to the RKA achieving

inner channel capacity. The upper bound is about 6.75.
• N = 8

β2 and the (7, 5) RS code over GF (23) (three
groups of three bits each are encoded with the outer code)
gives τ = 1.43.

• N = 4
β2 , and the (127, 65) RS code over GF (27) gives

τ = 2.
Matsui also reports experimental accuracies of 0.88 and 0.99
for N = 4

β2 and 8
β2 respectively. Using these values, we

observe that an attack with N = 4
β2 and the (127, 99) RS

code over GF (27) gives τ = 1.6, and that the upper bound
on τ , corresponding to inner code channel capacity, is about
3.4.

Larger values of τ would be obtained if larger values of n
were acceptable, or if larger accuracies were desired.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a model for RKAs that treats the RKA
as a concatenated code. We have shown that RKAs can
asymptotically achieve lower amortized cost than an equivalent
set of many single-key attacks, and that this result does not
depend on specific properties of the cipher, but simply on

the fact that it is vulnerable to linear cryptanalysis. We have
described an RKA expected to increase the efficiency of the
linear cryptanalytic attack on DES for a small number of
related-keys.

A number of future directions present themselves. First and
foremost, an implementation of the RKA on specific block ci-
phers would indicate whether it is practical, and, if so, on what
types of ciphers. Second, an implementation of similar attacks
on stream ciphers would be interesting. Third, an examination
of RKAs within the list decoding framework [9] might result
in more efficient attacks, and could also provide insights into
what types of round functions are resilient to such attacks.
Fourth, an examination of key scheduling algorithms in this
framework could be very interesting. Finally, other attacks,
such as ciphertext-only and higher-order approximation attacks
are also expected to lend themselves well to study in this
framework.
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